S-Formylglutathione (BioDeep_00000004544)
Secondary id: BioDeep_00001869219
human metabolite Endogenous
代谢物信息卡片
化学式: C11H17N3O7S (335.0787)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 33.64%
分子结构信息
SMILES: C(CC(=O)NC(CSC=O)C(=O)NCC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C11H17N3O7S/c12-6(11(20)21)1-2-8(16)14-7(4-22-5-15)10(19)13-3-9(17)18/h5-7H,1-4,12H2,(H,13,19)(H,14,16)(H,17,18)(H,20,21)/t6-,7-/m0/s1
描述信息
S-Formylglutathione, also known as L-gamma-glutamyl-S-formyl-L-cysteinylglycine, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of three to ten alpha-amino acids joined by peptide bonds. S-Formylglutathione is a very strong basic compound (based on its pKa). S-Formylglutathione exists in all living species, ranging from bacteria to humans. Outside of the human body, S-formylglutathione has been detected, but not quantified in, several different foods, such as sweet marjorams, muscadine grapes, amaranths, lemon verbena, and garden tomato. This could make S-formylglutathione a potential biomarker for the consumption of these foods. S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PMID: 2806555).
S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PubMed ID 2806555) [HMDB]. S-Formylglutathione is found in many foods, some of which are horseradish tree, wild carrot, japanese walnut, and red beetroot.
同义名列表
9 个代谢物同义名
(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-(formylsulfanyl)ethyl]carbamoyl}butanoic acid; N-(S-(Formyl-N-L-gamma-glutamyl)-L-cysteinyl)glycine; N-(S-(Formyl-N-L-g-glutamyl)-L-cysteinyl)glycine; N-(S-(Formyl-N-L-γ-glutamyl)-L-cysteinyl)glycine; L-gamma-Glutamyl-S-formyl-L-cysteinylglycine; L-γ-Glutamyl-S-formyl-L-cysteinylglycine; S-Formylglutathione; SCHEMBL380153; S-Formylglutathione
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:16225
- KEGG: C01031
- PubChem: 189122
- PubChem: 488
- HMDB: HMDB0001550
- Metlin: METLIN3469
- MetaCyc: CPD-548
- foodb: FDB022685
- chemspider: 164320
- CAS: 50409-81-9
- PMhub: MS000017061
- PubChem: 4274
- 3DMET: B01368
- NIKKAJI: J1.171.612A
- RefMet: S-Formylglutathione
- KNApSAcK: 16225
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
101 个相关的代谢反应过程信息。
Reactome(100)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
ATP + CH3COO- + CoA-SH ⟶ AMP + Ac-CoA + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
BioCyc(0)
WikiPathways(1)
- RuMP cycle, oxidative branch of the pentose phosphate pathway and formaldehyde assimilation:
S-formylglutathione ⟶ formate
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Coralie Damon, Frédéric Lehembre, Christine Oger-Desfeux, Patricia Luis, Jacques Ranger, Laurence Fraissinet-Tachet, Roland Marmeisse. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.
PloS one.
2012; 7(1):e28967. doi:
10.1371/journal.pone.0028967
. [PMID: 22238585] - Eva K F Chan, Heather C Rowe, Jason A Corwin, Bindu Joseph, Daniel J Kliebenstein. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana.
PLoS biology.
2011 Aug; 9(8):e1001125. doi:
10.1371/journal.pbio.1001125
. [PMID: 21857804] - Renier A L van der Hoorn, Tom Colby, Sabrina Nickel, Kerstin H Richau, Jürgen Schmidt, Markus Kaiser. Mining the Active Proteome of Arabidopsis thaliana.
Frontiers in plant science.
2011; 2(?):89. doi:
10.3389/fpls.2011.00089
. [PMID: 22639616] - Marjo Tuomainen, Arja Tervahauta, Viivi Hassinen, Henk Schat, Kaisa M Koistinen, Satu Lehesranta, Kimmo Rantalainen, Jukka Häyrinen, Seppo Auriola, Mikko Anttonen, Sirpa Kärenlampi. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation.
Journal of experimental botany.
2010 Feb; 61(4):1075-87. doi:
10.1093/jxb/erp372
. [PMID: 20048332] - Farnusch Kaschani, Christian Gu, Sherry Niessen, Heather Hoover, Benjamin F Cravatt, Renier A L van der Hoorn. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana.
Molecular & cellular proteomics : MCP.
2009 May; 8(5):1082-93. doi:
10.1074/mcp.m800494-mcp200
. [PMID: 19136719] - J Allen Crow, Abdolsamad Borazjani, Philip M Potter, Matthew K Ross. Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases.
Toxicology and applied pharmacology.
2007 May; 221(1):1-12. doi:
10.1016/j.taap.2007.03.002
. [PMID: 17442360] - T Philipp, A M Sharma, H M Thiede, A Kribben. Sympathetic nervous activity and noradrenaline reactivity during angiotensin converting enzyme inhibition.
The American journal of cardiology.
1987 Apr; 59(10):55D-59D. doi:
10.1016/0002-9149(87)90054-3
. [PMID: 3034034] - A F Attili, D Autizi, L Capocaccia. Rapid determination of plasma ammonia using an ion specific electrode.
Biochemical medicine.
1975 Sep; 14(1):109-16. doi:
10.1016/0006-2944(75)90025-3
. [PMID: 2165]