Oxyfluorfen (BioDeep_00000397831)

Main id: BioDeep_00000002106

 


代谢物信息卡片


Oxyfluorfen

化学式: C15H11ClF3NO4 (361.0329)
中文名称: 甲醇中乙氧氟草醚溶液
谱图信息: 最多检出来源 Homo sapiens(general) 100%

分子结构信息

SMILES: CCOC1=C(C=CC(=C1)OC2=C(C=C(C=C2)C(F)(F)F)Cl)[N+](=O)[O-]
InChI: InChI=1S/C15H11ClF3NO4/c1-2-23-14-8-10(4-5-12(14)20(21)22)24-13-6-3-9(7-11(13)16)15(17,18)19/h3-8H,2H2,1H3

描述信息

CONFIDENCE standard compound; EAWAG_UCHEM_ID 3174

同义名列表

2 个代谢物同义名

Oxyfluorfen; Oxyfluorfen



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ARHGAP45, CAT, CCNA2, CCND1, HPGDS, MAPK8, PIK3CA, RB1, SLC5A5
Peripheral membrane protein 3 ACHE, CYP1B1, PPOX
Endoplasmic reticulum membrane 2 CYP1B1, HMOX2
Nucleus 10 ACHE, ALAD, CCNA2, CCND1, MAPK8, PCNA, RB1, RBL2, SLC5A5, ZIC5
cytosol 11 ALAD, ARHGAP45, CAT, CCNA2, CCND1, GPT, HPGDS, MAPK8, PIK3CA, RB1, RBL2
mitochondrial membrane 1 PPOX
nuclear body 1 PCNA
centrosome 3 CCNA2, CCND1, PCNA
nucleoplasm 7 CCNA2, CCND1, HPGDS, MAPK8, PCNA, RB1, RBL2
Cell membrane 3 ACHE, SLC5A5, TNF
Cytoplasmic side 1 HMOX2
lamellipodium 1 PIK3CA
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 1 SLC5A5
Synapse 3 ACHE, MAPK8, PPOX
cell surface 2 ACHE, TNF
Golgi apparatus 1 ACHE
mitochondrial inner membrane 1 PPOX
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
postsynapse 1 PPOX
synaptic vesicle 1 PPOX
plasma membrane 6 ACHE, ARHGAP45, HMOX2, PIK3CA, SLC5A5, TNF
Membrane 6 ACHE, ARHGAP45, CAT, CYP1B1, HMOX2, SLC5A5
axon 1 MAPK8
extracellular exosome 6 ALAD, CAT, GPT, PCNA, RBL2, SLC5A5
extracellular space 3 ACHE, CXCL8, TNF
perinuclear region of cytoplasm 3 ACHE, PIK3CA, PPOX
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, CYP1B1, PPOX
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 3 CAT, CYP1B1, HPGDS
Microsome membrane 2 CYP1B1, HMOX2
Secreted 2 ACHE, CXCL8
extracellular region 7 ACHE, ALAD, ARHGAP45, CAT, CXCL8, PPOX, TNF
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
transcription regulator complex 1 RBL2
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 1 TNF
Extracellular vesicle 1 SLC5A5
neuronal dense core vesicle lumen 1 PPOX
cytoplasmic vesicle 1 PPOX
nucleolus 1 RBL2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, ruffle membrane 1 ARHGAP45
Mitochondrion inner membrane 1 PPOX
Membrane raft 1 TNF
focal adhesion 1 CAT
spindle 1 RB1
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
PML body 1 RB1
mitochondrial intermembrane space 1 PPOX
chromatin 3 PCNA, RB1, RBL2
phagocytic cup 1 TNF
Chromosome 1 RBL2
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
Lipid-anchor, GPI-anchor 1 ACHE
specific granule membrane 1 HMOX2
side of membrane 1 ACHE
replication fork 1 PCNA
ficolin-1-rich granule lumen 2 ALAD, CAT
secretory granule lumen 3 ALAD, ARHGAP45, CAT
transcription repressor complex 1 CCND1
male germ cell nucleus 1 PCNA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
azurophil granule lumen 1 ARHGAP45
SWI/SNF complex 1 RB1
Single-pass type IV membrane protein 1 HMOX2
nuclear lamina 1 PCNA
synaptic cleft 1 ACHE
basal dendrite 1 MAPK8
female pronucleus 1 CCNA2
male pronucleus 1 CCNA2
Rough endoplasmic reticulum 1 PPOX
Intermembrane side 1 PPOX
cyclin-dependent protein kinase holoenzyme complex 3 CCNA2, CCND1, PCNA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
cyclin A2-CDK1 complex 1 CCNA2
cyclin D1-CDK4 complex 1 CCND1
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
cyclin A2-CDK2 complex 1 CCNA2
[Isoform H]: Cell membrane 1 ACHE
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Irene Verdú, Miguel González-Pleiter, Francisco Leganés, Francisca Fernández-Piñas, Roberto Rosal. Leaching of herbicides mixtures from pre-exposed agricultural plastics severely impact microalgae. Chemosphere. 2023 Jun; 326(?):138475. doi: 10.1016/j.chemosphere.2023.138475. [PMID: 36958502]
  • Zhao Jie Chen, Yuxin Qiao, Nan Zhang, Hong Yang, Jintong Liu. Acetyltransferase OsACE2 acts as a regulator to reduce the environmental risk of oxyfluorfen to rice production. The Science of the total environment. 2023 Apr; 867(?):161599. doi: 10.1016/j.scitotenv.2023.161599. [PMID: 36640869]
  • Abdallah Tageldein Mansour, Rehab M Amen, Heba H Mahboub, Sherif M Shawky, Sahar H Orabi, Amany Ramah, Heba S Hamed. Exposure to oxyfluorfen-induced hematobiochemical alterations, oxidative stress, genotoxicity, and disruption of sex hormones in male African catfish and the potential to confront by Chlorella vulgaris. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2023 Feb; ?(?):109583. doi: 10.1016/j.cbpc.2023.109583. [PMID: 36828347]
  • Andreia F Mesquita, Fernando J M Gonçalves, Ana M M Gonçalves. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides-A Review. International journal of environmental research and public health. 2023 Feb; 20(4):. doi: 10.3390/ijerph20043706. [PMID: 36834400]
  • Jamal R Qasem. Chemical control and herbicide resistance of hairy fleabane (Erigeron bonariensis L.) in Jordan. PloS one. 2023; 18(10):e0263154. doi: 10.1371/journal.pone.0263154. [PMID: 37824594]
  • Liberty Baker Galvin, Aaron Becerra-Alvarez, Kassim Al-Khatib. Assessment of oxyfluorfen-tolerant rice systems and implications for rice-weed management in California. Pest management science. 2022 Nov; 78(11):4905-4912. doi: 10.1002/ps.7111. [PMID: 36069293]
  • Li-Xia Zhao, Mao-Jun Jiang, Jia-Jun Hu, Yue-Li Zou, Yuan Cheng, Tao Ren, Shuang Gao, Ying Fu, Fei Ye. Design, Synthesis, and Herbicidal Activity of Novel Diphenyl Ether Derivatives Containing Fast Degrading Tetrahydrophthalimide. Journal of agricultural and food chemistry. 2020 Mar; 68(12):3729-3741. doi: 10.1021/acs.jafc.0c00947. [PMID: 32125836]
  • Ghada I Abd El-Rahman, Shaimaa A A Ahmed, Alshimaa A Khalil, Yasmina M Abd-Elhakim. Assessment of hematological, hepato-renal, antioxidant, and hormonal responses of Clarias gariepinus exposed to sub-lethal concentrations of oxyfluorfen. Aquatic toxicology (Amsterdam, Netherlands). 2019 Dec; 217(?):105329. doi: 10.1016/j.aquatox.2019.105329. [PMID: 31648108]
  • Mohd Faizan Siddiqui, Bilqees Bano. In-vitro assessment of the binding mechanism of oxyfluorfen (herbicide) with garlic phytocystatin: multi-spectroscopic and isothermal titration calorimetric study. Journal of biomolecular structure & dynamics. 2019 09; 37(15):4120-4131. doi: 10.1080/07391102.2018.1544100. [PMID: 30394179]
  • Chi Wu, Xingang Liu, Xiaohu Wu, Fengshou Dong, Jun Xu, Yongquan Zheng. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils. The Science of the total environment. 2019 Mar; 658(?):87-94. doi: 10.1016/j.scitotenv.2018.12.059. [PMID: 30572218]
  • Amina Mohamed Ibrahim, Dawlat A Sayed. Toxicological impact of oxyfluorfen 24\% herbicide on the reproductive system, antioxidant enzymes, and endocrine disruption of Biomphalaria alexandrina (Ehrenberg, 1831) snails. Environmental science and pollution research international. 2019 Mar; 26(8):7960-7968. doi: 10.1007/s11356-019-04251-w. [PMID: 30684178]
  • Bin Huang, Dongdong Yan, Xiaoning Wang, Xianli Wang, Wensheng Fang, Daqi Zhang, Canbin Ouyang, Qiuxia Wang, Aocheng Cao. Soil fumigation alters adsorption and degradation behavior of pesticides in soil. Environmental pollution (Barking, Essex : 1987). 2019 Mar; 246(?):264-273. doi: 10.1016/j.envpol.2018.12.003. [PMID: 30557800]
  • María Belén Carboneras, José Villaseñor, Francisco Jesús Fernández-Morales, Manuel Andrés Rodrigo, Pablo Cañizares. Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. Chemosphere. 2018 Dec; 213(?):244-251. doi: 10.1016/j.chemosphere.2018.09.054. [PMID: 30223129]
  • Anestis Karkanis, Christos Lykas, Vasiliki Liava, Anna Bezou, Spyridon Petropoulos, Nikolaos Tsiropoulos. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield. Journal of the science of food and agriculture. 2018 Jan; 98(1):43-50. doi: 10.1002/jsfa.8435. [PMID: 28503740]
  • Silvia Barba, José Villaseñor, Manuel A Rodrigo, Pablo Cañizares. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil. Chemosphere. 2017 Jun; 177(?):120-127. doi: 10.1016/j.chemosphere.2017.03.002. [PMID: 28288422]
  • Pablo Fernández, Ricardo Alcántara, María D Osuna, Martin M Vila-Aiub, Rafael De Prado. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species. Pest management science. 2017 May; 73(5):936-944. doi: 10.1002/ps.4368. [PMID: 27447950]
  • Joon-Heum Park, Sunyo Jung. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling. Biochemical and biophysical research communications. 2017 Jan; 482(4):672-677. doi: 10.1016/j.bbrc.2016.11.092. [PMID: 27865844]
  • R López-Vizcaíno, C Risco, J Isidro, S Rodrigo, C Saez, P Cañizares, V Navarro, M A Rodrigo. Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?. Chemosphere. 2017 Jan; 166(?):549-555. doi: 10.1016/j.chemosphere.2016.09.114. [PMID: 27692679]
  • Bin Huang, Jun Li, Wensheng Fang, Pengfei Liu, Meixia Guo, Dongdong Yan, Qiuxia Wang, Aocheng Cao. Effect of Soil Fumigation on Degradation of Pendimethalin and Oxyfluorfen in Laboratory and Ginger Field Studies. Journal of agricultural and food chemistry. 2016 Nov; 64(46):8710-8721. doi: 10.1021/acs.jafc.6b01437. [PMID: 27787973]
  • Huanhuan Zhao, Jun Xu, Fengshou Dong, Xingang Liu, Yanbing Wu, Xiaohu Wu, Yongquan Zheng. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway. Applied microbiology and biotechnology. 2016 Aug; 100(15):6837-6845. doi: 10.1007/s00253-016-7504-x. [PMID: 27079576]
  • C Risco, H Rubí-Juárez, S Rodrigo, R López-Vizcaíno, C Saez, P Cañizares, C Barrera-Díaz, V Navarro, M A Rodrigo. Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes. The Science of the total environment. 2016 07; 559(?):94-102. doi: 10.1016/j.scitotenv.2016.03.174. [PMID: 27058128]
  • Nhi-Thi Pham, Jin-Gil Kim, Sunyo Jung. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa. International journal of molecular sciences. 2015 Jul; 16(7):16529-44. doi: 10.3390/ijms160716529. [PMID: 26197316]
  • Thu-Ha Phung, Sunyo Jung. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen. Biochemical and biophysical research communications. 2015 Apr; 459(2):346-351. doi: 10.1016/j.bbrc.2015.02.125. [PMID: 25735982]
  • Thu-Ha Phung, Sunyo Jung. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen. Pesticide biochemistry and physiology. 2014 Nov; 116(?):103-10. doi: 10.1016/j.pestbp.2014.10.002. [PMID: 25454526]
  • Andrew J Brueggeman, Daniel Kuehler, Donald P Weeks. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant biotechnology journal. 2014 Sep; 12(7):894-902. doi: 10.1111/pbi.12192. [PMID: 24796724]
  • P Janaki, R Sathya Priya, C Chinnusamy. Field dissipation of oxyfluorfen in onion and its dynamics in soil under Indian tropical conditions. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2013; 48(11):941-7. doi: 10.1080/03601234.2013.816599. [PMID: 23998306]
  • Sheeba, Vijay Pratap Singh, Prabhat Kumar Srivastava, Sheo Mohan Prasad. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicology and environmental safety. 2011 Oct; 74(7):1981-93. doi: 10.1016/j.ecoenv.2011.07.006. [PMID: 21798597]
  • Hiroyuki Kojima, Fumihiro Sata, Shinji Takeuchi, Tatsuya Sueyoshi, Tadanori Nagai. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology. 2011 Feb; 280(3):77-87. doi: 10.1016/j.tox.2010.11.008. [PMID: 21115097]
  • Ompal Singh, Zakia Khanam, Neelam Misra, Manoj Kumar Srivastava. Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy reviews. 2011 Jan; 5(9):82-95. doi: 10.4103/0973-7847.79103. [PMID: 22096322]
  • Kostantinos Benekos, Christos Kissoudis, Irini Nianiou-Obeidat, Nikolaos Labrou, Panagiotis Madesis, Mary Kalamaki, Antonis Makris, Athanasios Tsaftaris. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. Journal of biotechnology. 2010 Oct; 150(1):195-201. doi: 10.1016/j.jbiotec.2010.07.011. [PMID: 20638428]
  • Lidia M Ravelo-Pérez, Javier Hernández-Borges, María Asensio-Ramos, Miguel Angel Rodríguez-Delgado. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas. Journal of chromatography. A. 2009 Oct; 1216(43):7336-45. doi: 10.1016/j.chroma.2009.08.012. [PMID: 19700165]
  • Sunyo Jung, Kyoungwhan Back. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant physiology and biochemistry : PPB. 2005 May; 43(5):423-30. doi: 10.1016/j.plaphy.2005.03.008. [PMID: 15890521]
  • J P Thomas, B Nsouli, T Darwish, M Fallavier, R Khoury, N Wehbé. Assessment of the plasma desorption time-of-flight mass spectrometry technique for pesticide adsorption and degradation on 'as-received' treated soil samples. Rapid communications in mass spectrometry : RCM. 2005; 19(17):2379-89. doi: 10.1002/rcm.2068. [PMID: 16047317]
  • Eunjoo Jeong, Thavrak Houn, Yongin Kuk, Eun-Seon Kim, Hema Kumar Chandru, Myunggi Baik, Kyoungwhan Back, Ja-Ock Guh, Oksoo Han. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen. Bioorganic chemistry. 2003 Oct; 31(5):389-97. doi: 10.1016/s0045-2068(03)00093-2. [PMID: 12941291]
  • Sushil K Kothari, Chandra P Singh, Kamla Singh. Weed control in rose-scented geranium (Pelargonium spp). Pest management science. 2002 Dec; 58(12):1254-8. doi: 10.1002/ps.592. [PMID: 12477000]
  • E Warabi, K Usui, Y Tanaka, H Matsumoto. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pest management science. 2001 Aug; 57(8):743-8. doi: 10.1002/ps.357. [PMID: 11517729]
  • H J Lee, S B Lee, J S Chung, S U Han, O Han, J O Guh, J S Jeon, G An, K Back. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant & cell physiology. 2000 Jun; 41(6):743-9. doi: 10.1093/pcp/41.6.743. [PMID: 10945344]
  • H M Hassanein, M A Banhawy, F M Soliman, S A Abdel-Rehim, W E Müller, H C Schröder. Induction of hsp70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile fish, Oreochromis niloticus. Archives of environmental contamination and toxicology. 1999 Jul; 37(1):78-84. doi: 10.1007/s002449900492. [PMID: 10341045]
  • J Krijt, P Stranska, P Maruna, M Vokurka, J Sanitrak. Herbicide-induced experimental variegate porphyria in mice: tissue porphyrinogen accumulation and response to porphyrogenic drugs. Canadian journal of physiology and pharmacology. 1997 Oct; 75(10-11):1181-7. doi: . [PMID: 9431441]
  • B Rio, D Parent-Massin, S Lautraite, H Hoellinger. Effects of a diphenyl-ether herbicide, oxyfluorfen, on human BFU-E/CFU-E development and haemoglobin synthesis. Human & experimental toxicology. 1997 Feb; 16(2):115-22. doi: 10.1177/096032719701600207. [PMID: 9051416]
  • J Krijt, M Vokurka, J Sanitrak, V Janousek, I van Holsteijn, B J Blaauboer. Effect of the protoporphyrinogen oxidase-inhibiting herbicide fomesafen on liver uroporphyrin and heptacarboxylic porphyrin in two mouse strains. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1994 Jul; 32(7):641-50. doi: 10.1016/0278-6915(94)90008-6. [PMID: 8045477]
  • D J Hoffman, J W Spann, L J LeCaptain, C M Bunck, B A Rattner. Developmental toxicity of diphenyl ether herbicides in nestling American kestrels. Journal of toxicology and environmental health. 1991 Nov; 34(3):323-36. doi: 10.1080/15287399109531571. [PMID: 1942122]
  • I L Adler, B M Jones, J P Wargo. Fate of 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene (oxyfluorofen) in rats. Journal of agricultural and food chemistry. 1977 Nov; 25(6):1339-41. doi: 10.1021/jf60214a010. [PMID: 915134]