δ-Tocotrienol (BioDeep_00000400389)

Main id: BioDeep_00000003565

 

natural product


代谢物信息卡片


NCGC00253541-03_C27H40O2_(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-6-chromanol

化学式: C27H40O2 (396.3028)
中文名称: δ-生育三烯酚
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C(=CC(=C2O[C@@](C)(CCC=12)CC/C=C(\C)/CC/C=C(\C)/CC/C=C(/C)\C)C)O
InChI: InChI=1/C27H40O2/c1-20(2)10-7-11-21(3)12-8-13-22(4)14-9-16-27(6)17-15-24-19-25(28)18-23(5)26(24)29-27/h10,12,14,18-19,28H,7-9,11,13,15-17H2,1-6H3/b21-12+,22-14+/t27-/m1/s1

描述信息

A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.

同义名列表

5 个代谢物同义名

2R,8-dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-chromen-6-ol; delta-tocotrienol; δ-Tocotrienol; NCGC00253541-03_C27H40O2_(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-6-chromanol; delta-Tocotrienol



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

16 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AKT1, BCL2, BCL2L1, CASP3, CASP8, CCND1, CDK4, CTNNB1, MTOR, PIK3CA, PTGS2, VEGFA
Peripheral membrane protein 2 MTOR, PTGS2
Endosome membrane 1 NOTCH1
Endoplasmic reticulum membrane 5 BCL2, HMGCR, MTOR, NOTCH1, PTGS2
Mitochondrion membrane 1 BCL2L1
Nucleus 10 AKT1, BCL2, CASP3, CASP8, CCND1, CDK4, CTNNB1, MTOR, NOTCH1, VEGFA
cytosol 11 AKT1, BCL2, BCL2L1, CASP3, CASP8, CCND1, CDK4, CTNNB1, MTOR, NOTCH1, PIK3CA
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 3 BCL2L1, CCND1, CTNNB1
nucleoplasm 8 AKT1, CASP3, CASP8, CCND1, CDK4, CTNNB1, MTOR, NOTCH1
Cell membrane 4 AKT1, CTNNB1, NOTCH1, TNF
Cytoplasmic side 2 BCL2L1, MTOR
lamellipodium 4 AKT1, CASP8, CTNNB1, PIK3CA
Multi-pass membrane protein 1 HMGCR
Golgi apparatus membrane 1 MTOR
Synapse 1 CTNNB1
cell cortex 2 AKT1, CTNNB1
cell junction 1 CTNNB1
cell surface 3 NOTCH1, TNF, VEGFA
glutamatergic synapse 4 AKT1, CASP3, CTNNB1, NOTCH1
Golgi apparatus 1 VEGFA
Golgi membrane 3 INS, MTOR, NOTCH1
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
presynaptic membrane 1 CTNNB1
Cytoplasm, cytosol 1 BCL2L1
Lysosome 1 MTOR
acrosomal vesicle 1 NOTCH1
plasma membrane 5 AKT1, CTNNB1, NOTCH1, PIK3CA, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 7 AKT1, BCL2, CTNNB1, HMGCR, MTOR, NOTCH1, VEGFA
apical plasma membrane 1 NOTCH1
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 1 CTNNB1
Lysosome membrane 1 MTOR
endoplasmic reticulum 6 BCL2, BCL2L1, HMGCR, NOTCH1, PTGS2, VEGFA
extracellular space 5 CRP, IL6, INS, TNF, VEGFA
perinuclear region of cytoplasm 2 CTNNB1, PIK3CA
Schaffer collateral - CA1 synapse 2 CTNNB1, NOTCH1
adherens junction 3 CTNNB1, NOTCH1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 3 CCND1, CDK4, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, BCL2L1, CASP8
protein-containing complex 5 AKT1, BCL2, CASP8, CTNNB1, PTGS2
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 NOTCH1
Secreted 4 CRP, IL6, INS, VEGFA
extracellular region 6 CRP, IL6, INS, NOTCH1, TNF, VEGFA
Mitochondrion outer membrane 3 BCL2, BCL2L1, MTOR
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 4 BCL2, BCL2L1, CASP8, MTOR
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 2 CDK4, CTNNB1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 4 BCL2, BCL2L1, CCND1, CDK4
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 4 BCL2, BCL2L1, CCND1, CDK4
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 AKT1
nucleolus 1 CDK4
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 1 CTNNB1
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 1 CTNNB1
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
peroxisomal membrane 1 HMGCR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 NOTCH1
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 1 CDK4
Late endosome membrane 1 NOTCH1
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
cytoskeleton 1 CASP8
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
endosome lumen 1 INS
euchromatin 1 CTNNB1
cell body 1 CASP8
myelin sheath 1 BCL2
Peroxisome membrane 1 HMGCR
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
postsynaptic density membrane 1 NOTCH1
presynaptic active zone cytoplasmic component 1 CTNNB1
protein-DNA complex 1 CTNNB1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, CDK4
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 2 CCND1, CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
cyclin D1-CDK6 complex 1 CCND1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Notch 1 intracellular domain]: Nucleus 1 NOTCH1
MAML1-RBP-Jkappa- ICN1 complex 1 NOTCH1
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Farhana Suleman, Dilshad Ahmed Khan, Muhammad Amjad Pervez, Mohammad Aamir. Effects of delta-tocotrienol supplementation on glycaemic control in individuals with prediabetes: A randomized controlled study. JPMA. The Journal of the Pakistan Medical Association. 2022 Jan; 72(1):4-7. doi: 10.47391/jpma.966. [PMID: 35099428]
  • Wajiha Mahjabeen, Dilshad Ahmed Khan, Shakeel Ahmed Mirza, Muhammad Amjad Pervez. Effects of delta-tocotrienol supplementation on Glycemic Control, oxidative stress, inflammatory biomarkers and miRNA expression in type 2 diabetes mellitus: A randomized control trial. Phytotherapy research : PTR. 2021 Jul; 35(7):3968-3976. doi: 10.1002/ptr.7113. [PMID: 33899292]
  • Darío R Gómez-Linton, Silvestre Alavez, Arturo Navarro-Ocaña, Angélica Román-Guerrero, Luis Pinzón-López, Laura J Pérez-Flores. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans. Planta medica. 2021 Apr; 87(5):368-374. doi: 10.1055/a-1266-6674. [PMID: 33124008]
  • Chao Yang, Yiying Zhao, Suji Im, Cindy Nakatsu, Yava Jones-Hall, Qing Jiang. Vitamin E delta-tocotrienol and metabolite 13'-carboxychromanol inhibit colitis-associated colon tumorigenesis and modulate gut microbiota in mice. The Journal of nutritional biochemistry. 2021 03; 89(?):108567. doi: 10.1016/j.jnutbio.2020.108567. [PMID: 33347911]
  • Xingui Liu, Zhengya Gao, Qiang Fu, Lin Song, Peiyi Zhang, Xuan Zhang, Howard Hendrickson, Peter A Crooks, Daohong Zhou, Guangrong Zheng. Deuteration of the farnesyl terminal methyl groups of δ-tocotrienol and its effects on the metabolic stability and ability of inducing G-CSF production. Bioorganic & medicinal chemistry. 2020 06; 28(11):115498. doi: 10.1016/j.bmc.2020.115498. [PMID: 32291146]
  • Nathalia Pizato, Larissa Fernanda Melo Vasconcelos Kiffer, Beatriz Christina Luzete, José Antonio Fagundes Assumpção, Luis Henrique Correa, Heloisa Antoniella Braz de Melo, Lívia Pimentel de Sant'Ana, Marina Kiyomi Ito, Kelly Grace Magalhães. Omega 3-DHA and Delta-Tocotrienol Modulate Lipid Droplet Biogenesis and Lipophagy in Breast Cancer Cells: the Impact in Cancer Aggressiveness. Nutrients. 2019 May; 11(6):. doi: 10.3390/nu11061199. [PMID: 31141912]
  • Rolly G Fuentes, Kirk C Pearce, Yongle Du, Andriamalala Rakotondrafara, Ana L Valenciano, Maria B Cassera, Vincent E Rasamison, T Daniel Crawford, David G I Kingston. Phloroglucinols from the Roots of Garcinia dauphinensis and Their Antiproliferative and Antiplasmodial Activities. Journal of natural products. 2019 03; 82(3):431-439. doi: 10.1021/acs.jnatprod.8b00379. [PMID: 30354100]
  • Sara Damiano, Luigi Navas, Patrizia Lombari, Serena Montagnaro, Iris M Forte, Antonio Giordano, Salvatore Florio, Roberto Ciarcia. Effects of δ-tocotrienol on ochratoxin A-induced nephrotoxicity in rats. Journal of cellular physiology. 2018 11; 233(11):8731-8739. doi: 10.1002/jcp.26753. [PMID: 29775204]
  • Asaf A Qureshi, Dilshad A Khan, Shahida Mushtaq, Shui Qing Ye, Min Xiong, Nilofer Qureshi. δ-Tocotrienol feeding modulates gene expression of EIF2, mTOR, protein ubiquitination through multiple-signaling pathways in chronic hepatitis C patients. Lipids in health and disease. 2018 Jul; 17(1):167. doi: 10.1186/s12944-018-0804-7. [PMID: 30031388]
  • Muhammad Amjad Pervez, Dishad Ahmet Khan, Aamir Ijaz, Shamrez Khan. Effects of Delta-tocotrienol Supplementation on Liver Enzymes, Inflammation, Oxidative stress and Hepatic Steatosis in Patients with Nonalcoholic Fatty Liver Disease. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology. 2018 03; 29(2):170-176. doi: 10.5152/tjg.2018.17297. [PMID: 29749323]
  • Fei Xu, Janam K Pandya, Cheryl Chung, David Julian McClements, Amanda J Kinchla. Emulsions as delivery systems for gamma and delta tocotrienols: Formation, properties and simulated gastrointestinal fate. Food research international (Ottawa, Ont.). 2018 03; 105(?):570-579. doi: 10.1016/j.foodres.2017.11.033. [PMID: 29433249]
  • Siti Syairah Mohd Mutalip, Mohd Hamim Rajikin, Sharaniza Ab Rahim, Norashikin Mohamed Noor Khan. Annatto (Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/ Akt-Cyclin D1 pathway. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 2018 Feb; 88(1-2):16-26. doi: 10.1024/0300-9831/a000492. [PMID: 30907699]
  • London Allen, Latha Ramalingam, Kalhara Menikdiwela, Shane Scoggin, Chwan-Li Shen, Michael D Tomison, Gurvinder Kaur, Jannette M Dufour, Eunhee Chung, Nishan S Kalupahana, Naima Moustaid-Moussa. Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice. The Journal of nutritional biochemistry. 2017 10; 48(?):128-137. doi: 10.1016/j.jnutbio.2017.07.003. [PMID: 28825992]
  • Hoda Yeganehjoo, Russell DeBose-Boyd, Brian K McFarlin, Huanbiao Mo. Synergistic Impact of d-δ-Tocotrienol and Geranylgeraniol on the Growth and HMG CoA Reductase of Human DU145 Prostate Carcinoma Cells. Nutrition and cancer. 2017 May; 69(4):682-691. doi: 10.1080/01635581.2017.1299876. [PMID: 28362175]
  • Weng-Yew Wong, Leigh C Ward, Chee Wai Fong, Wei Ney Yap, Lindsay Brown. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. European journal of nutrition. 2017 Feb; 56(1):133-150. doi: 10.1007/s00394-015-1064-1. [PMID: 26446095]
  • Chiaki Sato, Saki Kaneko, Ayami Sato, Nantiga Virgona, Kozue Namiki, Tomohiro Yano. Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth. Journal of nutritional science and vitaminology. 2017; 63(5):349-354. doi: 10.3177/jnsv.63.349. [PMID: 29225320]
  • Amit Mahipal, Jason Klapman, Shivakumar Vignesh, Chung S Yang, Anthony Neuger, Dung-Tsa Chen, Mokenge P Malafa. Pharmacokinetics and safety of vitamin E δ-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolites. Cancer chemotherapy and pharmacology. 2016 Jul; 78(1):157-65. doi: 10.1007/s00280-016-3048-0. [PMID: 27278668]
  • Ibrahim Babangida Abubakar, Kuan-Hon Lim, Toh-Seok Kam, Hwei-San Loh. Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers. Journal of ethnopharmacology. 2016 May; 184(?):107-18. doi: 10.1016/j.jep.2016.03.004. [PMID: 26947901]
  • Ping Tou Gee, Chen Yee Liew, Meng Chil Thong, Melvin C L Gay. Vitamin E analysis by ultra-performance convergence chromatography and structural elucidation of novel α-tocodienol by high-resolution mass spectrometry. Food chemistry. 2016 Apr; 196(?):367-73. doi: 10.1016/j.foodchem.2015.09.073. [PMID: 26593503]
  • Lu Zhao, Xiefan Fang, Maurice R Marshall, Soonkyu Chung. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules (Basel, Switzerland). 2016 Mar; 21(3):344. doi: 10.3390/molecules21030344. [PMID: 26978344]
  • Gregory M Springett, Kazim Husain, Anthony Neuger, Barbara Centeno, Dung-Tsa Chen, Tai Z Hutchinson, Richard M Lush, Saïd Sebti, Mokenge P Malafa. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia. EBioMedicine. 2015 Dec; 2(12):1987-95. doi: 10.1016/j.ebiom.2015.11.025. [PMID: 26844278]
  • H Hansen, T Wang, David Dolde, Hongwei Xin. Tocopherol and annatto tocotrienols distribution in laying-hen body. Poultry science. 2015 Oct; 94(10):2421-33. doi: 10.3382/ps/pev228. [PMID: 26286995]
  • Puvaneswari Meganathan, Rafid Salim Jabir, Ho Gwo Fuang, Nirmala Bhoo-Pathy, Roma Basu Choudhury, Nur Aishah Taib, Kalanithi Nesaretnam, Zamri Chik. A new formulation of Gamma Delta Tocotrienol has superior bioavailability compared to existing Tocotrienol-Rich Fraction in healthy human subjects. Scientific reports. 2015 Sep; 5(?):13550. doi: 10.1038/srep13550. [PMID: 26323969]
  • Xiang Hong Li, Cam T Ha, Dadin Fu, Michael R Landauer, Sanchita P Ghosh, Mang Xiao. Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury. PloS one. 2015; 10(3):e0122258. doi: 10.1371/journal.pone.0122258. [PMID: 25815474]
  • Ryosuke Sugahara, Ayami Sato, Asuka Uchida, Shinya Shiozawa, Chiaki Sato, Nantiga Virgona, Tomohiro Yano. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3. Journal of nutritional science and vitaminology. 2015; 61(6):497-501. doi: 10.3177/jnsv.61.497. [PMID: 26875492]
  • Suryatheja Ananthula, Parash Parajuli, Fathy A Behery, Alaadin Y Alayoubi, Khalid A El Sayed, Sami Nazzal, Paul W Sylvester. Oxazine derivatives of γ- and δ-tocotrienol display enhanced anticancer activity in vivo. Anticancer research. 2014 Jun; 34(6):2715-26. doi: . [PMID: 24922632]
  • Kazuo Mukai, Eri Ishikawa, Aya Ouchi, Shin-Ichi Nagaoka, Tomomi Suzuki, Katsuhiro Izumisawa, Taisuke Koike. Kinetic study of the quenching reaction of singlet oxygen by α-, β-, γ-, δ-tocotrienols, and palm oil and soybean extracts in solution. Bioscience, biotechnology, and biochemistry. 2014; 78(12):2089-101. doi: 10.1080/09168451.2014.943653. [PMID: 25093256]
  • Genevieve M Forster, Komal Raina, Ajay Kumar, Sushil Kumar, Rajesh Agarwal, Ming-Hsuan Chen, John E Bauer, Anna M McClung, Elizabeth P Ryan. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food chemistry. 2013 Nov; 141(2):1545-52. doi: 10.1016/j.foodchem.2013.04.020. [PMID: 23790950]
  • Kazim Husain, Barbara A Centeno, Dung-Tsa Chen, Sunil R Hingorani, Said M Sebti, Mokenge P Malafa. Vitamin E δ-tocotrienol prolongs survival in the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer. Cancer prevention research (Philadelphia, Pa.). 2013 Oct; 6(10):1074-83. doi: 10.1158/1940-6207.capr-13-0157. [PMID: 23963802]
  • R Loganathan, K R Selvaduray, K Nesaretnam, A K Radhakrishnan. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity. Cell proliferation. 2013 Apr; 46(2):203-13. doi: 10.1111/cpr.12014. [PMID: 23510475]
  • Kazim Husain, Barbara A Centeno, Dung-Tsa Chen, William J Fulp, Marta Perez, Guo Zhang Lee, Noreen Luetteke, Sunil R Hingorani, Said M Sebti, Mokenge P Malafa. Prolonged survival and delayed progression of pancreatic intraepithelial neoplasia in LSL-KrasG12D/+;Pdx-1-Cre mice by vitamin E δ-tocotrienol. Carcinogenesis. 2013 Apr; 34(4):858-63. doi: 10.1093/carcin/bgt002. [PMID: 23302291]
  • Mohd Nor Syidiq Rodzian, Ibrahim Abdel Aziz Ibrahim, Mohd Fahami Nur Azlina, Mohd Ismail Nafeeza. Pure tocotrienol concentrate protected rat gastric mucosa from acute stress-induced injury by a non-antioxidant mechanism. Polish journal of pathology : official journal of the Polish Society of Pathologists. 2013 Apr; 64(1):52-8. doi: 10.5114/pjp.2013.34604. [PMID: 23625601]
  • Asaf A Qureshi, Dilshad A Khan, Wajiha Mahjabeen, Christopher J Papasian, Nilofer Qureshi. Nutritional Supplement-5 with a Combination of Proteasome Inhibitors (Resveratrol, Quercetin, δ-Tocotrienol) Modulate Age-Associated Biomarkers and Cardiovascular Lipid Parameters in Human Subjects. Journal of clinical & experimental cardiology. 2013 Mar; 4(3):. doi: 10.4172/2155-9880.1000238. [PMID: 24319627]
  • Fathy A Behery, Mohamed R Akl, Suryatheja Ananthula, Parash Parajuli, Paul W Sylvester, Khalid A El Sayed. Optimization of tocotrienols as antiproliferative and antimigratory leads. European journal of medicinal chemistry. 2013 Jan; 59(?):329-41. doi: 10.1016/j.ejmech.2012.11.012. [PMID: 23274571]
  • M Satyamitra, P Ney, J Graves, C Mullaney, V Srinivasan. Mechanism of radioprotection by δ-tocotrienol: pharmacokinetics, pharmacodynamics and modulation of signalling pathways. The British journal of radiology. 2012 Nov; 85(1019):e1093-103. doi: 10.1259/bjr/63355844. [PMID: 22674714]
  • Merriline M Satyamitra, Shilpa Kulkarni, Sanchita P Ghosh, Conor P Mullaney, Donald Condliffe, Venkataraman Srinivasan. Hematopoietic Recovery and Amelioration of Radiation-Induced Lethality by the Vitamin E Isoform δ-Tocotrienol. Radiation research. 2011 Jun; 175(6):736-45. doi: 10.1667/rr2460.1. [PMID: 21434782]
  • Asaf A Qureshi, Julia C Reis, Nilofer Qureshi, Christopher J Papasian, David C Morrison, Daniel M Schaefer. δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens. Lipids in health and disease. 2011 Feb; 10(?):39. doi: 10.1186/1476-511x-10-39. [PMID: 21356098]
  • Shi Wei Tan, Rajesh Ramasamy, Maha Abdullah, Sharmili Vidyadaran. Inhibitory effects of palm α-, γ- and δ-tocotrienol on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Cellular immunology. 2011; 271(2):205-9. doi: 10.1016/j.cellimm.2011.07.012. [PMID: 21839427]
  • N Zaiden, W N Yap, S Ong, C H Xu, V H Teo, C P Chang, X W Zhang, K Nesaretnam, S Shiba, Y L Yap. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. Journal of atherosclerosis and thrombosis. 2010 Oct; 17(10):1019-32. doi: 10.5551/jat.4911. [PMID: 20702976]
  • Mudit Mudit, Fathy A Behery, Vikram B Wali, Paul W Sylvester, Khalid A El Sayed. Synthesis of fluorescent analogues of the anticancer natural products 4-hydroxyphenylmethylene hydantoin and delta-tocotrienol. Natural product communications. 2010 Oct; 5(10):1623-6. doi: . [PMID: 21121261]
  • Fengjuan Li, Wenjuan Tan, Zhanfang Kang, Chi-Wai Wong. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors. Atherosclerosis. 2010 Jul; 211(1):278-82. doi: 10.1016/j.atherosclerosis.2010.01.015. [PMID: 20138624]
  • Francesco Mazzini, Michele Betti, Thomas Netscher, Francesco Galli, Piero Salvadori. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds. Chirality. 2009 May; 21(5):519-24. doi: 10.1002/chir.20630. [PMID: 18655162]
  • Kazim Husain, Rony A Francois, Sean Z Hutchinson, Anthony M Neuger, Richard Lush, Domenico Coppola, Said Sebti, Mokenge P Malafa. Vitamin E delta-tocotrienol levels in tumor and pancreatic tissue of mice after oral administration. Pharmacology. 2009; 83(3):157-63. doi: 10.1159/000190792. [PMID: 19142032]
  • Constantina Constantinou, John Anthony Hyatt, Panayiota S Vraka, Andreas Papas, Konstantinos A Papas, Constantinos Neophytou, Vicky Hadjivassiliou, Andreas I Constantinou. Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives. Nutrition and cancer. 2009; 61(6):864-74. doi: 10.1080/01635580903285130. [PMID: 20155628]
  • Khalid A El Sayed, Surat Laphookhieo, Muhammad Yousaf, Justin A Prestridge, Amit B Shirode, Vikram B Wali, Paul W Sylvester. Semisynthetic and biotransformation studies of (1S,2E,4S,6R,7E,11E)-2,7,11-cembratriene-4,6-diol. Journal of natural products. 2008 Jan; 71(1):117-22. doi: 10.1021/np0704351. [PMID: 18177013]
  • Siew Ping Yap, Kah Hay Yuen. Influence of lipolysis and droplet size on tocotrienol absorption from self-emulsifying formulations. International journal of pharmaceutics. 2004 Aug; 281(1-2):67-78. doi: 10.1016/j.ijpharm.2004.05.015. [PMID: 15288344]
  • Eun-Kyoung Seo, Nam-Cheol Kim, Mansukh C Wani, Monroe E Wall, Hernán A Navarro, Jason P Burgess, Kazuko Kawanishi, Leonardus B S Kardono, Soedarsono Riswan, William C Rose, Craig R Fairchild, Norman R Farnsworth, A Douglas Kinghorn. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzophenones from Cratoxylum sumatranum. Journal of natural products. 2002 Mar; 65(3):299-305. doi: 10.1021/np010395f. [PMID: 11908969]
  • P W Sylvester, B S McIntyre, A Gapor, K P Briski. Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase C(alpha) activation. Cell proliferation. 2001 Dec; 34(6):347-57. doi: 10.1046/j.1365-2184.2001.00221.x. [PMID: 11736999]
  • H Nakamura, F Furukawa, A Nishikawa, M Miyauchi, H Y Son, T Imazawa, M Hirose. Oral toxicity of a tocotrienol preparation in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2001 Aug; 39(8):799-805. doi: 10.1016/s0278-6915(01)00025-4. [PMID: 11434987]
  • S P Yap, K H Yuen, J W Wong. Pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under different food status. The Journal of pharmacy and pharmacology. 2001 Jan; 53(1):67-71. doi: 10.1211/0022357011775208. [PMID: 11206194]
  • T M Black, P Wang, N Maeda, R A Coleman. Palm tocotrienols protect ApoE +/- mice from diet-induced atheroma formation. The Journal of nutrition. 2000 Oct; 130(10):2420-6. doi: 10.1093/jn/130.10.2420. [PMID: 11015467]
  • B S McIntyre, K P Briski, M A Tirmenstein, M W Fariss, A Gapor, P W Sylvester. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids. 2000 Feb; 35(2):171-80. doi: 10.1007/bf02664767. [PMID: 10757548]
  • E Katsanidis, P B Addis. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free radical biology & medicine. 1999 Dec; 27(11-12):1137-40. doi: 10.1016/s0891-5849(99)00205-1. [PMID: 10641704]
  • J P Kamat, H D Sarma, T P Devasagayam, K Nesaretnam, Y Basiron. Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes. Molecular and cellular biochemistry. 1997 May; 170(1-2):131-7. doi: 10.1023/a:1006853419214. [PMID: 9144327]
  • N Guthrie, A Gapor, A F Chambers, K K Carroll. Inhibition of proliferation of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast cancer cells by palm oil tocotrienols and tamoxifen, alone and in combination. The Journal of nutrition. 1997 Mar; 127(3):544S-548S. doi: 10.1093/jn/127.3.544s. [PMID: 9082043]
  • K C Hayes, A Pronczuk, J S Liang. Differences in the plasma transport and tissue concentrations of tocopherols and tocotrienols: observations in humans and hamsters. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1993 Mar; 202(3):353-9. doi: 10.3181/00379727-202-43546. [PMID: 8437992]