2-Oxo-4-methylthiobutanoic acid (BioDeep_00000001222)
Secondary id: BioDeep_00001868345
human metabolite Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H8O3S (148.0194138)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(feces) 0.04%
分子结构信息
SMILES: CSCCC(=O)C(=O)O
InChI: InChI=1S/C5H8O3S/c1-9-3-2-4(6)5(7)8/h2-3H2,1H3,(H,7,8)
描述信息
2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263).
2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.
同义名列表
46 个代谢物同义名
2-Keto-4-methylthiobutyric acid, monosodium salt; 2-Keto-4-methylthiobutyric acid, calcium salt; 4-(METHYLsulphanyl)-2-oxobutanoic acid; alpha-oxo-gamma-Methylthiobutyric acid; 4-(METHYLsulfanyl)-2-oxobutanoIC ACID; 4-(METHYLsulphanyl)-2-oxobutanoate; alpha-oxo-gamma-Methylthiobutyrate; 2-Oxo-4-(methylthio)butanoic acid; 4-(Methylthio)-2-oxobutanoic acid; 4-(Methylsulfanyl)-2-oxobutanoate; 2-Keto-4-methylthiobutanoic acid; 4-Methylthio-2-ketobutanoic acid; alpha-Keto-gamma-methiolbutyrate; 2-Keto-4-methylthiobutyric acid; S-Methyl-alpha-ketobutyric acid; gamma-Methiol-keto-butyric acid; 4-Methylthio-2-oxobutanoic acid; 2-Oxo-4-methylthiobutanoic acid; 4-Methylthio-2-ketobutyric acid; 2-oxo-4-Thiomethylbutyric acid; a-oxo-g-Methylthiobutyric acid; Α-oxo-γ-methylthiobutyric acid; 4-Methylmercapto-2-oxobutyrate; alpha-Keto-methiolbutyric acid; 4-Methylthio-2-oxobutyric acid; 4-Methylthio-2-ketobutanoate; 2-Ketothiomethylbutyric acid; 4-Methylthio-2-ketobutyrate; 2-oxo-4-Methylthiobutanoate; 4-Methylthio-2-oxobutanoate; 2-Keto-4-thiomethylbutyrate; 2-Keto-4-methylthiobutyrate; a-oxo-g-Methylthiobutyrate; Α-oxo-γ-methylthiobutyrate; 4-Methylthio-2-oxobutyrate; Keto-4-methylthiobutyrate; Ketomethiobutyric acid; Methylthiobutyric acid; 2-Ketomethiobutyrate; alpha-Ketomethionine; alpha-Oxomethionine; Methylthiobutyrate; Ketomethiobutyrate; 2-Oxomethionine; KMTB; 4-Methylthio-2-oxobutanoic acid
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:33574
- KEGG: C01180
- PubChem: 473
- HMDB: HMDB0001553
- Metlin: METLIN6319
- DrugBank: DB02238
- ChEMBL: CHEMBL1233860
- MetaCyc: CPD-479
- KNApSAcK: C00007474
- foodb: FDB030353
- chemspider: 460
- CAS: 583-92-6
- PMhub: MS000000159
- ChEBI: CHEBI:16723
- PubChem: 4407
- LipidMAPS: LMFA01060170
- PDB-CCD: KMT
- 3DMET: B00255
- NIKKAJI: J39.561G
- RefMet: 2-Oxo-4-methylthiobutanoic acid
- KNApSAcK: 16723
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
34 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(2)
- Methionine de novo and salvage pathway:
Choline ⟶ Betaine
- Glucosinolate biosynthesis from methionine:
5-Methylthiopentyl glucosinolate ⟶ 5-(Methylsulfinyl)pentyl glucosinolate
Plant Reactome(5)
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Homomethionine biosynthesis:
3-(2'-methylthio)ethylmalic-acid ⟶ 2-oxo-5-methylthiopentanoic acid + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Yang cycle:
5'-methylthioadenosine + H2O ⟶ 5-methylthioribose + Ade
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(27)
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- L-Homomethionine Biosynthesis:
L-Methionine + a 2-oxo carboxylate ⟶ 2-Oxo-4-methylthiobutanoic acid + a proteinogenic amino acid
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
PharmGKB(0)
5 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5691 - Trypanosoma brucei:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Axel de Zélicourt, Lukas Synek, Maged M Saad, Hanin Alzubaidy, Rewaa Jalal, Yakun Xie, Cristina Andrés-Barrao, Eleonora Rolli, Florence Guerard, Kiruthiga G Mariappan, Ihsanullah Daur, Jean Colcombet, Moussa Benhamed, Thomas Depaepe, Dominique Van Der Straeten, Heribert Hirt. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.
PLoS genetics.
2018 03; 14(3):e1007273. doi:
10.1371/journal.pgen.1007273
. [PMID: 29554117] - Haiqiang Jiang, Lei Nie, Yunlun Li, Jun Xie. Application of ultra-performance liquid chromatography coupled with mass spectrometry to metabonomic study on spontaneously hypertensive rats and intervention effects of Ping Gan prescription.
Journal of separation science.
2012 Feb; 35(4):483-9. doi:
10.1002/jssc.201100769
. [PMID: 22282408] - Hiroshi Hasegawa, Yoshihiko Shinohara, Kenji Akahane, Takao Hashimoto, Kimiyoshi Ichida. Altered D: -methionine kinetics in rats with renal impairment.
Amino acids.
2011 Apr; 40(4):1205-11. doi:
10.1007/s00726-010-0746-5
. [PMID: 20872028] - Jan-Willem de Kraker, Jonathan Gershenzon. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis.
The Plant cell.
2011 Jan; 23(1):38-53. doi:
10.1105/tpc.110.079269
. [PMID: 21205930] - Philippe Goffin, Bert van de Bunt, Marco Giovane, Johan H J Leveau, Sachie Höppener-Ogawa, Bas Teusink, Jeroen Hugenholtz. Understanding the physiology of Lactobacillus plantarum at zero growth.
Molecular systems biology.
2010 Sep; 6(?):413. doi:
10.1038/msb.2010.67
. [PMID: 20865006] - Sun Ju Kim, Do Young Kwon, Yeong Shik Kim, Young Chul Kim. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants.
Archives of pharmacal research.
2010 Jun; 33(6):867-73. doi:
10.1007/s12272-010-0609-3
. [PMID: 20607491] - David De Vleesschauwer, Yinong Yang, Casiana Vera Cruz, Monica Höfte. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling.
Plant physiology.
2010 Apr; 152(4):2036-52. doi:
10.1104/pp.109.152702
. [PMID: 20130100] - Zhengfeng Fang, Hefeng Luo, Hongkui Wei, Feiruo Huang, Zhili Qi, Siwen Jiang, Jian Peng. Methionine metabolism in piglets Fed DL-methionine or its hydroxy analogue was affected by distribution of enzymes oxidizing these sources to keto-methionine.
Journal of agricultural and food chemistry.
2010 Feb; 58(3):2008-14. doi:
10.1021/jf903317x
. [PMID: 20073466] - Tanja Knill, Michael Reichelt, Christian Paetz, Jonathan Gershenzon, Stefan Binder. Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation.
Plant molecular biology.
2009 Oct; 71(3):227-39. doi:
10.1007/s11103-009-9519-5
. [PMID: 19597944] - Yukihito Kabuyama, Elizabeth S Litman, Paul D Templeton, Sandra I Metzner, Eric S Witze, Gretchen M Argast, Stephen J Langer, Kirsi Polvinen, Yiqun Shellman, Daniel Chan, John B Shabb, James E Fitzpatrick, Katheryn A Resing, Marcelo C Sousa, Natalie G Ahn. A mediator of Rho-dependent invasion moonlights as a methionine salvage enzyme.
Molecular & cellular proteomics : MCP.
2009 Oct; 8(10):2308-20. doi:
10.1074/mcp.m900178-mcp200
. [PMID: 19620624] - Richard Splivallo, Urs Fischer, Cornelia Göbel, Ivo Feussner, Petr Karlovsky. Truffles regulate plant root morphogenesis via the production of auxin and ethylene.
Plant physiology.
2009 Aug; 150(4):2018-29. doi:
10.1104/pp.109.141325
. [PMID: 19535471] - Tanja Knill, Joachim Schuster, Michael Reichelt, Jonathan Gershenzon, Stefan Binder. Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis.
Plant physiology.
2008 Mar; 146(3):1028-39. doi:
10.1104/pp.107.111609
. [PMID: 18162591] - Jan-Willem de Kraker, Katrin Luck, Susanne Textor, James G Tokuhisa, Jonathan Gershenzon. Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine.
Plant physiology.
2007 Feb; 143(2):970-86. doi:
10.1104/pp.106.085555
. [PMID: 17189332] - A Khalid, M H Akhtar, M H Makhmood, M Arshad. [Effect of substrate-dependent microbialy produced ethylene on plant growth].
Mikrobiologiia.
2006 Mar; 75(2):277-83. doi:
. [PMID: 16758878]
- H Schempp, D Weiser, O Kelber, E F Elstner. Radical scavenging and anti-inflammatory properties of STW 5 (Iberogast) and its components.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2006; 13 Suppl 5(?):36-44. doi:
10.1016/j.phymed.2006.03.017
. [PMID: 16777393] - Manas K Chattopadhyay, Celia White Tabor, Herbert Tabor. Studies on the regulation of ornithine decarboxylase in yeast: effect of deletion in the MEU1 gene.
Proceedings of the National Academy of Sciences of the United States of America.
2005 Nov; 102(45):16158-63. doi:
10.1073/pnas.0507299102
. [PMID: 16260735] - Joachim Schuster, Stefan Binder. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
Plant molecular biology.
2005 Jan; 57(2):241-54. doi:
10.1007/s11103-004-7533-1
. [PMID: 15821880] - Kimberly L Falk, Christine Vogel, Susanne Textor, Stefan Bartram, Alastair Hick, John A Pickett, Jonathan Gershenzon. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa.
Phytochemistry.
2004 Apr; 65(8):1073-84. doi:
10.1016/j.phytochem.2004.02.021
. [PMID: 15110687] - M Arshad, Z-H Nazli, A Khalid, Z A Zahir. Kinetics and effects of trace elements and electron complexes on 2-keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil.
Letters in applied microbiology.
2004; 39(3):306-9. doi:
10.1111/j.1472-765x.2004.01590.x
. [PMID: 15287880] - Agnieszka Sekowska, Antoine Danchin. The methionine salvage pathway in Bacillus subtilis.
BMC microbiology.
2002 Apr; 2(?):8. doi:
10.1186/1471-2180-2-8
. [PMID: 12022921] - J Grassmann, S Hippeli, K Dornisch, U Rohnert, N Beuscher, E F Elstner. Antioxidant properties of essential oils. Possible explanations for their anti-inflammatory effects.
Arzneimittel-Forschung.
2000 Feb; 50(2):135-9. doi:
"
. [PMID: 10719616] - C Coudray, S Rachidi, A Favier. Effect of zinc on superoxide-dependent hydroxyl radical production in vitro.
Biological trace element research.
1993 Sep; 38(3):273-87. doi:
10.1007/bf02785311
. [PMID: 7504944] - A A Elfarra, I Y Hwang. Targeting of 6-mercaptopurine to the kidneys. Metabolism and kidney-selectivity of S-(6-purinyl)-L-cysteine analogs in rats.
Drug metabolism and disposition: the biological fate of chemicals.
1993 Sep; 21(5):841-5. doi:
. [PMID: 7902246]
- B Blaurock, S Hippeli, N Metz, E F Elstner. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.
Archives of toxicology.
1992; 66(10):681-7. doi:
10.1007/bf01972618
. [PMID: 1283938] - D G Abraham, A J Cooper. Glutamine transaminase K and cysteine S-conjugate beta-lyase activity stains.
Analytical biochemistry.
1991 Sep; 197(2):421-7. doi:
10.1016/0003-2697(91)90414-o
. [PMID: 1723851] - E Dicker, A I Cederbaum. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
Biochemical pharmacology.
1991 Jul; 42(3):529-35. doi:
10.1016/0006-2952(91)90315-v
. [PMID: 1650215] - H J Blom, P Ferenci, G Grimm, S H Yap, A Tangerman. The role of methanethiol in the pathogenesis of hepatic encephalopathy.
Hepatology (Baltimore, Md.).
1991 Mar; 13(3):445-54. doi:
. [PMID: 1999315]
- E Kukiełka, A I Cederbaum. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
Archives of biochemistry and biophysics.
1990 Dec; 283(2):326-33. doi:
10.1016/0003-9861(90)90650-n
. [PMID: 2275546] - L Dupuis, C L Saunderson, A Puigserver, P Brachet. Oxidation of methionine and 2-hydroxy 4-methylthiobutanoic acid stereoisomers in chicken tissues.
The British journal of nutrition.
1989 Jul; 62(1):63-75. doi:
10.1079/bjn19890008
. [PMID: 2789990] - M MacFarlane, J R Foster, G G Gibson, L J King, E A Lock. Cysteine conjugate beta-lyase of rat kidney cytosol: characterization, immunocytochemical localization, and correlation with hexachlorobutadiene nephrotoxicity.
Toxicology and applied pharmacology.
1989 Apr; 98(2):185-97. doi:
10.1016/0041-008x(89)90224-x
. [PMID: 2711386] - H J Blom, G H Boers, J P van den Elzen, W A Gahl, A Tangerman. Transamination of methionine in humans.
Clinical science (London, England : 1979).
1989 Jan; 76(1):43-9. doi:
10.1042/cs0760043
. [PMID: 2920533] - H J Blom, G H Boers, J P van den Elzen, J J van Roessel, J M Trijbels, A Tangerman. Differences between premenopausal women and young men in the transamination pathway of methionine catabolism, and the protection against vascular disease.
European journal of clinical investigation.
1988 Dec; 18(6):633-8. doi:
10.1111/j.1365-2362.1988.tb01279.x
. [PMID: 3147189] - H Tomisawa, Y Takanohashi, S Ichihara, H Fukazawa, M Tateishi. Transamination of LTE4 by cysteine conjugate aminotransferase.
Biochemical and biophysical research communications.
1988 Sep; 155(3):1119-25. doi:
10.1016/s0006-291x(88)81256-7
. [PMID: 2845964] - J L Stevens, N Ayoubi, J D Robbins. The role of mitochondrial matrix enzymes in the metabolism and toxicity of cysteine conjugates.
The Journal of biological chemistry.
1988 Mar; 263(7):3395-401. doi:
. [PMID: 3343250]
- S Harel, J Kanner. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide.
Free radical research communications.
1988; 5(1):21-33. doi:
10.3109/10715768809068555
. [PMID: 2853114] - P W Scislowski, B M Hokland, W I Davis-van Thienen, J Bremer, E J Davis. Methionine metabolism by rat muscle and other tissues. Occurrence of a new carnitine intermediate.
The Biochemical journal.
1987 Oct; 247(1):35-40. doi:
10.1042/bj2470035
. [PMID: 3689352] - J L Stevens, J D Robbins, R A Byrd. A purified cysteine conjugate beta-lyase from rat kidney cytosol. Requirement for an alpha-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K.
The Journal of biological chemistry.
1986 Nov; 261(33):15529-37. doi:
. [PMID: 3782077]
- J Mårtensson. The occurrence of 4-methylthio-2-hydroxybutyrate in human urine.
Analytical biochemistry.
1986 Apr; 154(1):43-9. doi:
10.1016/0003-2697(86)90493-8
. [PMID: 3706736] - L Eklöw-Låstbom, L Rossi, H Thor, S Orrenius. Effects of oxidative stress caused by hyperoxia and diquat. A study in isolated hepatocytes.
Free radical research communications.
1986; 2(1-2):57-68. doi:
10.3109/10715768609088055
. [PMID: 3505239] - G D Lawrence, G Cohen. In vivo production of ethylene from 2-keto-4-methylthiobutyrate in mice.
Biochemical pharmacology.
1985 Sep; 34(18):3231-6. doi:
10.1016/0006-2952(85)90339-9
. [PMID: 4038334] - J L Dixon, A E Harper. Effects on plasma amino acid concentrations and hepatic branched-chain alpha-keto acid dehydrogenase activity of feeding rats diets containing 9 or 50\% casein.
The Journal of nutrition.
1984 Jun; 114(6):1025-34. doi:
10.1093/jn/114.6.1025
. [PMID: 6726468] - H Kaji, N Saito, M Murao, M Ishimoto, H Kondo, S Gasa, K Saito. Gas chromatographic and gas chromatographic--mass spectrometric studies on alpha-keto-gamma-methylthiobutyric acid in urine following ingestion of optical isomers of methionine.
Journal of chromatography.
1980 Nov; 221(1):145-8. doi:
10.1016/s0378-4347(00)81016-6
. [PMID: 7451616] - A J Cooper. Purification of soluble and mitochondrial glutamine transaminase K from rat kidney. Use of a sensitive assay involving transamination between L-phenylalanine and alpha-keto-gamma-methiolbutyrate.
Analytical biochemistry.
1978 Sep; 89(2):451-60. doi:
10.1016/0003-2697(78)90374-3
. [PMID: 727444] - A D Mitchell, N J Benevenga. The role of transamination in methionine oxidation in the rat.
The Journal of nutrition.
1978 Jan; 108(1):67-78. doi:
10.1093/jn/108.1.67
. [PMID: 619045] - . .
.
. doi:
. [PMID: 17056707]
- . .
.
. doi:
. [PMID: 19946895]
- . .
.
. doi:
. [PMID: 11706188]