delta-Tocotrienol (BioDeep_00000003565)
Secondary id: BioDeep_00000400389
natural product human metabolite Endogenous Antitumor activity Volatile Flavor Compounds
代谢物信息卡片
化学式: C27H40O2 (396.302814)
中文名称: δ-生育三烯酚
谱图信息:
最多检出来源 Viridiplantae(plant) 0.03%
分子结构信息
SMILES: C([C@@]2(C)CCC=[C@](C)CCC=[C@](C)CCC=C(C)C)Cc(c1O2)cc(O)cc1C
InChI: InChI=1S/C27H40O2/c1-20(2)10-7-11-21(3)12-8-13-22(4)14-9-16-27(6)17-15-24-19-25(28)18-23(5)26(24)29-27/h10,12,14,18-19,28H,7-9,11,13,15-17H2,1-6H3/b21-12+,22-14+
描述信息
delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile.
Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee.
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
16 个代谢物同义名
(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol; (2R)-3,4-Dihydro-2,8-dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-2H-1-benzopyran-6-ol; 2R,8-dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-chromen-6-ol; (R)-delta-Tocotrienol; 8-Methyltocotrienol; δ-Tocotrienol; D-delta-Tocotrienol; Tocotrienol, delta; delta tocotrienol; (R)-Δ-tocotrienol; delta-tocotrienol; D-Δ-tocotrienol; d-Tocotrienol; δ-Tocotrienol; BCP27813; delta-Tocotrienol
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:33276
- KEGG: C14156
- PubChem: 53394607
- PubChem: 5282350
- HMDB: HMDB0030008
- Metlin: METLIN44833
- ChEMBL: CHEMBL121305
- Wikipedia: Tocotrienol
- LipidMAPS: LMPR02020056
- MetaCyc: CPD-15839
- KNApSAcK: C00035077
- foodb: FDB001299
- chemspider: 4445515
- CAS: 25612-59-3
- MoNA: PS125803
- MoNA: PS125801
- MoNA: PR100479
- MoNA: PS125802
- PMhub: MS000010031
- PubChem: 7846968
- NIKKAJI: J17.358D
- RefMet: d-Tocotrienol
- PubChem: 9854614
- LOTUS: LTS0255585
- KNApSAcK: 33276
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
73 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol
- vitamin E biosynthesis (tocotrienols):
2-methyl-6-geranylgeranyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol + H+ + SAH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(71)
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
2-methyl-6-geranylgeranyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
2-methyl-6-geranylgeranyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol + SAM ⟶ α-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
δ-tocotrienol + SAM ⟶ β-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
δ-tocotrienol + SAM ⟶ β-tocotrienol + H+ + SAH
- vitamin E biosynthesis (tocotrienols):
δ-tocotrienol + SAM ⟶ β-tocotrienol + H+ + SAH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
69 个相关的物种来源信息
- 3563 - Amaranthaceae: LTS0255585
- 3564 - Amaranthus: LTS0255585
- 117272 - Amaranthus cruentus: 10.1007/BF02536726
- 117272 - Amaranthus cruentus: LTS0255585
- 66671 - Bixa: LTS0255585
- 66672 - Bixa orellana: 10.1016/0031-9422(89)80298-5
- 66672 - Bixa orellana: LTS0255585
- 66670 - Bixaceae: LTS0255585
- 703253 - Calophyllaceae: LTS0255585
- 3424 - Canellaceae: LTS0255585
- 132964 - Cinnamosma: LTS0255585
- 1602317 - Cinnamosma fragrans:
- 1602317 - Cinnamosma fragrans: 10.1021/NP0601298
- 1602317 - Cinnamosma fragrans: LTS0255585
- 1602319 - Cinnamosma macrocarpa: 10.1021/NP060435L
- 1602319 - Cinnamosma macrocarpa: 10.1021/NP070474C
- 1602319 - Cinnamosma macrocarpa: LTS0255585
- 132965 - Cinnamosma madagascariensis: 10.1021/NP060435L
- 132965 - Cinnamosma madagascariensis: 10.1021/NP070474C
- 132965 - Cinnamosma madagascariensis: LTS0255585
- 55961 - Clusiaceae: LTS0255585
- 198760 - Cratoxylum: LTS0255585
- 271749 - Cratoxylum cochinchinense:
- 271749 - Cratoxylum cochinchinense: 10.1016/J.PHYTOL.2010.11.006
- 271749 - Cratoxylum cochinchinense: 10.1016/S0031-9422(00)95100-8
- 271749 - Cratoxylum cochinchinense: LTS0255585
- 2516474 - Cratoxylum sumatranum: 10.1021/NP010395F
- 2516474 - Cratoxylum sumatranum: LTS0255585
- 39181 - Cystophora: LTS0255585
- 698722 - Cystophora monilifera: 10.1016/J.PHYTOCHEM.2015.06.014
- 698722 - Cystophora monilifera: LTS0255585
- 2759 - Eukaryota: LTS0255585
- 58227 - Garcinia: LTS0255585
- 469930 - Garcinia kola: 10.3987/COM-97-7854
- 469930 - Garcinia kola: LTS0255585
- 1009474 - Garcinia multiflora:
- 1009474 - Garcinia multiflora: 10.1021/NP8006364
- 1009474 - Garcinia multiflora: 10.1055/S-0029-1234987
- 1009474 - Garcinia multiflora: LTS0255585
- 9606 - Homo sapiens: -
- 629714 - Hypericaceae: LTS0255585
- 477925 - Iryanthera lancifolia: 10.1016/S0031-9422(97)01092-3
- 198771 - Kielmeyera: LTS0255585
- 639202 - Kielmeyera coriacea: 10.1016/J.BMC.2010.10.044
- 639202 - Kielmeyera coriacea: LTS0255585
- 198772 - Kielmeyera lathrophyton: 10.1590/S0103-50532001000100016
- 198772 - Kielmeyera lathrophyton: LTS0255585
- 2508382 - Kielmeyera reticulata: 10.1590/S0103-50532002000500029
- 2508382 - Kielmeyera reticulata: LTS0255585
- 4447 - Liliopsida: LTS0255585
- 3398 - Magnoliopsida: LTS0255585
- 2696291 - Ochrophyta: LTS0255585
- 4527 - Oryza: LTS0255585
- 4530 - Oryza sativa:
- 4530 - Oryza sativa: LTS0255585
- 2870 - Phaeophyceae: LTS0255585
- 132968 - Pleodendron: LTS0255585
- 549616 - Pleodendron costaricense: 10.1021/NP0504863
- 549616 - Pleodendron costaricense: LTS0255585
- 4479 - Poaceae: LTS0255585
- 3688 - Salicaceae: LTS0255585
- 3014 - Sargassaceae: LTS0255585
- 3015 - Sargassum: LTS0255585
- 127572 - Sargassum siliquastrum: 10.1007/BF02026361
- 127572 - Sargassum siliquastrum: LTS0255585
- 35493 - Streptophyta: LTS0255585
- 58023 - Tracheophyta: LTS0255585
- 33090 - Viridiplantae: LTS0255585
- 312407 - Zuelania: LTS0255585
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Farhana Suleman, Dilshad Ahmed Khan, Muhammad Amjad Pervez, Mohammad Aamir. Effects of delta-tocotrienol supplementation on glycaemic control in individuals with prediabetes: A randomized controlled study.
JPMA. The Journal of the Pakistan Medical Association.
2022 Jan; 72(1):4-7. doi:
10.47391/jpma.966
. [PMID: 35099428] - Wajiha Mahjabeen, Dilshad Ahmed Khan, Shakeel Ahmed Mirza, Muhammad Amjad Pervez. Effects of delta-tocotrienol supplementation on Glycemic Control, oxidative stress, inflammatory biomarkers and miRNA expression in type 2 diabetes mellitus: A randomized control trial.
Phytotherapy research : PTR.
2021 Jul; 35(7):3968-3976. doi:
10.1002/ptr.7113
. [PMID: 33899292] - Darío R Gómez-Linton, Silvestre Alavez, Arturo Navarro-Ocaña, Angélica Román-Guerrero, Luis Pinzón-López, Laura J Pérez-Flores. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans.
Planta medica.
2021 Apr; 87(5):368-374. doi:
10.1055/a-1266-6674
. [PMID: 33124008] - Chao Yang, Yiying Zhao, Suji Im, Cindy Nakatsu, Yava Jones-Hall, Qing Jiang. Vitamin E delta-tocotrienol and metabolite 13'-carboxychromanol inhibit colitis-associated colon tumorigenesis and modulate gut microbiota in mice.
The Journal of nutritional biochemistry.
2021 03; 89(?):108567. doi:
10.1016/j.jnutbio.2020.108567
. [PMID: 33347911] - Xingui Liu, Zhengya Gao, Qiang Fu, Lin Song, Peiyi Zhang, Xuan Zhang, Howard Hendrickson, Peter A Crooks, Daohong Zhou, Guangrong Zheng. Deuteration of the farnesyl terminal methyl groups of δ-tocotrienol and its effects on the metabolic stability and ability of inducing G-CSF production.
Bioorganic & medicinal chemistry.
2020 06; 28(11):115498. doi:
10.1016/j.bmc.2020.115498
. [PMID: 32291146] - Nathalia Pizato, Larissa Fernanda Melo Vasconcelos Kiffer, Beatriz Christina Luzete, José Antonio Fagundes Assumpção, Luis Henrique Correa, Heloisa Antoniella Braz de Melo, Lívia Pimentel de Sant'Ana, Marina Kiyomi Ito, Kelly Grace Magalhães. Omega 3-DHA and Delta-Tocotrienol Modulate Lipid Droplet Biogenesis and Lipophagy in Breast Cancer Cells: the Impact in Cancer Aggressiveness.
Nutrients.
2019 May; 11(6):. doi:
10.3390/nu11061199
. [PMID: 31141912] - Rolly G Fuentes, Kirk C Pearce, Yongle Du, Andriamalala Rakotondrafara, Ana L Valenciano, Maria B Cassera, Vincent E Rasamison, T Daniel Crawford, David G I Kingston. Phloroglucinols from the Roots of Garcinia dauphinensis and Their Antiproliferative and Antiplasmodial Activities.
Journal of natural products.
2019 03; 82(3):431-439. doi:
10.1021/acs.jnatprod.8b00379
. [PMID: 30354100] - Sara Damiano, Luigi Navas, Patrizia Lombari, Serena Montagnaro, Iris M Forte, Antonio Giordano, Salvatore Florio, Roberto Ciarcia. Effects of δ-tocotrienol on ochratoxin A-induced nephrotoxicity in rats.
Journal of cellular physiology.
2018 11; 233(11):8731-8739. doi:
10.1002/jcp.26753
. [PMID: 29775204] - Asaf A Qureshi, Dilshad A Khan, Shahida Mushtaq, Shui Qing Ye, Min Xiong, Nilofer Qureshi. δ-Tocotrienol feeding modulates gene expression of EIF2, mTOR, protein ubiquitination through multiple-signaling pathways in chronic hepatitis C patients.
Lipids in health and disease.
2018 Jul; 17(1):167. doi:
10.1186/s12944-018-0804-7
. [PMID: 30031388] - Muhammad Amjad Pervez, Dishad Ahmet Khan, Aamir Ijaz, Shamrez Khan. Effects of Delta-tocotrienol Supplementation on Liver Enzymes, Inflammation, Oxidative stress and Hepatic Steatosis in Patients with Nonalcoholic Fatty Liver Disease.
The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology.
2018 03; 29(2):170-176. doi:
10.5152/tjg.2018.17297
. [PMID: 29749323] - Fei Xu, Janam K Pandya, Cheryl Chung, David Julian McClements, Amanda J Kinchla. Emulsions as delivery systems for gamma and delta tocotrienols: Formation, properties and simulated gastrointestinal fate.
Food research international (Ottawa, Ont.).
2018 03; 105(?):570-579. doi:
10.1016/j.foodres.2017.11.033
. [PMID: 29433249] - Siti Syairah Mohd Mutalip, Mohd Hamim Rajikin, Sharaniza Ab Rahim, Norashikin Mohamed Noor Khan. Annatto (Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/ Akt-Cyclin D1 pathway.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2018 Feb; 88(1-2):16-26. doi:
10.1024/0300-9831/a000492
. [PMID: 30907699] - London Allen, Latha Ramalingam, Kalhara Menikdiwela, Shane Scoggin, Chwan-Li Shen, Michael D Tomison, Gurvinder Kaur, Jannette M Dufour, Eunhee Chung, Nishan S Kalupahana, Naima Moustaid-Moussa. Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice.
The Journal of nutritional biochemistry.
2017 10; 48(?):128-137. doi:
10.1016/j.jnutbio.2017.07.003
. [PMID: 28825992] - Hoda Yeganehjoo, Russell DeBose-Boyd, Brian K McFarlin, Huanbiao Mo. Synergistic Impact of d-δ-Tocotrienol and Geranylgeraniol on the Growth and HMG CoA Reductase of Human DU145 Prostate Carcinoma Cells.
Nutrition and cancer.
2017 May; 69(4):682-691. doi:
10.1080/01635581.2017.1299876
. [PMID: 28362175] - Weng-Yew Wong, Leigh C Ward, Chee Wai Fong, Wei Ney Yap, Lindsay Brown. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats.
European journal of nutrition.
2017 Feb; 56(1):133-150. doi:
10.1007/s00394-015-1064-1
. [PMID: 26446095] - Chiaki Sato, Saki Kaneko, Ayami Sato, Nantiga Virgona, Kozue Namiki, Tomohiro Yano. Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth.
Journal of nutritional science and vitaminology.
2017; 63(5):349-354. doi:
10.3177/jnsv.63.349
. [PMID: 29225320] - Amit Mahipal, Jason Klapman, Shivakumar Vignesh, Chung S Yang, Anthony Neuger, Dung-Tsa Chen, Mokenge P Malafa. Pharmacokinetics and safety of vitamin E δ-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolites.
Cancer chemotherapy and pharmacology.
2016 Jul; 78(1):157-65. doi:
10.1007/s00280-016-3048-0
. [PMID: 27278668] - Ibrahim Babangida Abubakar, Kuan-Hon Lim, Toh-Seok Kam, Hwei-San Loh. Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers.
Journal of ethnopharmacology.
2016 May; 184(?):107-18. doi:
10.1016/j.jep.2016.03.004
. [PMID: 26947901] - Ping Tou Gee, Chen Yee Liew, Meng Chil Thong, Melvin C L Gay. Vitamin E analysis by ultra-performance convergence chromatography and structural elucidation of novel α-tocodienol by high-resolution mass spectrometry.
Food chemistry.
2016 Apr; 196(?):367-73. doi:
10.1016/j.foodchem.2015.09.073
. [PMID: 26593503] - Lu Zhao, Xiefan Fang, Maurice R Marshall, Soonkyu Chung. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols.
Molecules (Basel, Switzerland).
2016 Mar; 21(3):344. doi:
10.3390/molecules21030344
. [PMID: 26978344] - Gregory M Springett, Kazim Husain, Anthony Neuger, Barbara Centeno, Dung-Tsa Chen, Tai Z Hutchinson, Richard M Lush, Saïd Sebti, Mokenge P Malafa. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia.
EBioMedicine.
2015 Dec; 2(12):1987-95. doi:
10.1016/j.ebiom.2015.11.025
. [PMID: 26844278] - H Hansen, T Wang, David Dolde, Hongwei Xin. Tocopherol and annatto tocotrienols distribution in laying-hen body.
Poultry science.
2015 Oct; 94(10):2421-33. doi:
10.3382/ps/pev228
. [PMID: 26286995] - Puvaneswari Meganathan, Rafid Salim Jabir, Ho Gwo Fuang, Nirmala Bhoo-Pathy, Roma Basu Choudhury, Nur Aishah Taib, Kalanithi Nesaretnam, Zamri Chik. A new formulation of Gamma Delta Tocotrienol has superior bioavailability compared to existing Tocotrienol-Rich Fraction in healthy human subjects.
Scientific reports.
2015 Sep; 5(?):13550. doi:
10.1038/srep13550
. [PMID: 26323969] - Xiang Hong Li, Cam T Ha, Dadin Fu, Michael R Landauer, Sanchita P Ghosh, Mang Xiao. Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury.
PloS one.
2015; 10(3):e0122258. doi:
10.1371/journal.pone.0122258
. [PMID: 25815474] - Ryosuke Sugahara, Ayami Sato, Asuka Uchida, Shinya Shiozawa, Chiaki Sato, Nantiga Virgona, Tomohiro Yano. Annatto Tocotrienol Induces a Cytotoxic Effect on Human Prostate Cancer PC3 Cells via the Simultaneous Inhibition of Src and Stat3.
Journal of nutritional science and vitaminology.
2015; 61(6):497-501. doi:
10.3177/jnsv.61.497
. [PMID: 26875492] - Suryatheja Ananthula, Parash Parajuli, Fathy A Behery, Alaadin Y Alayoubi, Khalid A El Sayed, Sami Nazzal, Paul W Sylvester. Oxazine derivatives of γ- and δ-tocotrienol display enhanced anticancer activity in vivo.
Anticancer research.
2014 Jun; 34(6):2715-26. doi:
. [PMID: 24922632]
- Kazuo Mukai, Eri Ishikawa, Aya Ouchi, Shin-Ichi Nagaoka, Tomomi Suzuki, Katsuhiro Izumisawa, Taisuke Koike. Kinetic study of the quenching reaction of singlet oxygen by α-, β-, γ-, δ-tocotrienols, and palm oil and soybean extracts in solution.
Bioscience, biotechnology, and biochemistry.
2014; 78(12):2089-101. doi:
10.1080/09168451.2014.943653
. [PMID: 25093256] - Genevieve M Forster, Komal Raina, Ajay Kumar, Sushil Kumar, Rajesh Agarwal, Ming-Hsuan Chen, John E Bauer, Anna M McClung, Elizabeth P Ryan. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth.
Food chemistry.
2013 Nov; 141(2):1545-52. doi:
10.1016/j.foodchem.2013.04.020
. [PMID: 23790950] - Kazim Husain, Barbara A Centeno, Dung-Tsa Chen, Sunil R Hingorani, Said M Sebti, Mokenge P Malafa. Vitamin E δ-tocotrienol prolongs survival in the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer.
Cancer prevention research (Philadelphia, Pa.).
2013 Oct; 6(10):1074-83. doi:
10.1158/1940-6207.capr-13-0157
. [PMID: 23963802] - R Loganathan, K R Selvaduray, K Nesaretnam, A K Radhakrishnan. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.
Cell proliferation.
2013 Apr; 46(2):203-13. doi:
10.1111/cpr.12014
. [PMID: 23510475] - Kazim Husain, Barbara A Centeno, Dung-Tsa Chen, William J Fulp, Marta Perez, Guo Zhang Lee, Noreen Luetteke, Sunil R Hingorani, Said M Sebti, Mokenge P Malafa. Prolonged survival and delayed progression of pancreatic intraepithelial neoplasia in LSL-KrasG12D/+;Pdx-1-Cre mice by vitamin E δ-tocotrienol.
Carcinogenesis.
2013 Apr; 34(4):858-63. doi:
10.1093/carcin/bgt002
. [PMID: 23302291] - Mohd Nor Syidiq Rodzian, Ibrahim Abdel Aziz Ibrahim, Mohd Fahami Nur Azlina, Mohd Ismail Nafeeza. Pure tocotrienol concentrate protected rat gastric mucosa from acute stress-induced injury by a non-antioxidant mechanism.
Polish journal of pathology : official journal of the Polish Society of Pathologists.
2013 Apr; 64(1):52-8. doi:
10.5114/pjp.2013.34604
. [PMID: 23625601] - Asaf A Qureshi, Dilshad A Khan, Wajiha Mahjabeen, Christopher J Papasian, Nilofer Qureshi. Nutritional Supplement-5 with a Combination of Proteasome Inhibitors (Resveratrol, Quercetin, δ-Tocotrienol) Modulate Age-Associated Biomarkers and Cardiovascular Lipid Parameters in Human Subjects.
Journal of clinical & experimental cardiology.
2013 Mar; 4(3):. doi:
10.4172/2155-9880.1000238
. [PMID: 24319627] - Fathy A Behery, Mohamed R Akl, Suryatheja Ananthula, Parash Parajuli, Paul W Sylvester, Khalid A El Sayed. Optimization of tocotrienols as antiproliferative and antimigratory leads.
European journal of medicinal chemistry.
2013 Jan; 59(?):329-41. doi:
10.1016/j.ejmech.2012.11.012
. [PMID: 23274571] - M Satyamitra, P Ney, J Graves, C Mullaney, V Srinivasan. Mechanism of radioprotection by δ-tocotrienol: pharmacokinetics, pharmacodynamics and modulation of signalling pathways.
The British journal of radiology.
2012 Nov; 85(1019):e1093-103. doi:
10.1259/bjr/63355844
. [PMID: 22674714] - Merriline M Satyamitra, Shilpa Kulkarni, Sanchita P Ghosh, Conor P Mullaney, Donald Condliffe, Venkataraman Srinivasan. Hematopoietic Recovery and Amelioration of Radiation-Induced Lethality by the Vitamin E Isoform δ-Tocotrienol.
Radiation research.
2011 Jun; 175(6):736-45. doi:
10.1667/rr2460.1
. [PMID: 21434782] - Asaf A Qureshi, Julia C Reis, Nilofer Qureshi, Christopher J Papasian, David C Morrison, Daniel M Schaefer. δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens.
Lipids in health and disease.
2011 Feb; 10(?):39. doi:
10.1186/1476-511x-10-39
. [PMID: 21356098] - Shi Wei Tan, Rajesh Ramasamy, Maha Abdullah, Sharmili Vidyadaran. Inhibitory effects of palm α-, γ- and δ-tocotrienol on lipopolysaccharide-induced nitric oxide production in BV2 microglia.
Cellular immunology.
2011; 271(2):205-9. doi:
10.1016/j.cellimm.2011.07.012
. [PMID: 21839427] - N Zaiden, W N Yap, S Ong, C H Xu, V H Teo, C P Chang, X W Zhang, K Nesaretnam, S Shiba, Y L Yap. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion.
Journal of atherosclerosis and thrombosis.
2010 Oct; 17(10):1019-32. doi:
10.5551/jat.4911
. [PMID: 20702976] - Mudit Mudit, Fathy A Behery, Vikram B Wali, Paul W Sylvester, Khalid A El Sayed. Synthesis of fluorescent analogues of the anticancer natural products 4-hydroxyphenylmethylene hydantoin and delta-tocotrienol.
Natural product communications.
2010 Oct; 5(10):1623-6. doi:
. [PMID: 21121261]
- Fengjuan Li, Wenjuan Tan, Zhanfang Kang, Chi-Wai Wong. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors.
Atherosclerosis.
2010 Jul; 211(1):278-82. doi:
10.1016/j.atherosclerosis.2010.01.015
. [PMID: 20138624] - Francesco Mazzini, Michele Betti, Thomas Netscher, Francesco Galli, Piero Salvadori. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds.
Chirality.
2009 May; 21(5):519-24. doi:
10.1002/chir.20630
. [PMID: 18655162] - Kazim Husain, Rony A Francois, Sean Z Hutchinson, Anthony M Neuger, Richard Lush, Domenico Coppola, Said Sebti, Mokenge P Malafa. Vitamin E delta-tocotrienol levels in tumor and pancreatic tissue of mice after oral administration.
Pharmacology.
2009; 83(3):157-63. doi:
10.1159/000190792
. [PMID: 19142032] - Constantina Constantinou, John Anthony Hyatt, Panayiota S Vraka, Andreas Papas, Konstantinos A Papas, Constantinos Neophytou, Vicky Hadjivassiliou, Andreas I Constantinou. Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives.
Nutrition and cancer.
2009; 61(6):864-74. doi:
10.1080/01635580903285130
. [PMID: 20155628] - Khalid A El Sayed, Surat Laphookhieo, Muhammad Yousaf, Justin A Prestridge, Amit B Shirode, Vikram B Wali, Paul W Sylvester. Semisynthetic and biotransformation studies of (1S,2E,4S,6R,7E,11E)-2,7,11-cembratriene-4,6-diol.
Journal of natural products.
2008 Jan; 71(1):117-22. doi:
10.1021/np0704351
. [PMID: 18177013] - Siew Ping Yap, Kah Hay Yuen. Influence of lipolysis and droplet size on tocotrienol absorption from self-emulsifying formulations.
International journal of pharmaceutics.
2004 Aug; 281(1-2):67-78. doi:
10.1016/j.ijpharm.2004.05.015
. [PMID: 15288344] - Eun-Kyoung Seo, Nam-Cheol Kim, Mansukh C Wani, Monroe E Wall, Hernán A Navarro, Jason P Burgess, Kazuko Kawanishi, Leonardus B S Kardono, Soedarsono Riswan, William C Rose, Craig R Fairchild, Norman R Farnsworth, A Douglas Kinghorn. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzophenones from Cratoxylum sumatranum.
Journal of natural products.
2002 Mar; 65(3):299-305. doi:
10.1021/np010395f
. [PMID: 11908969] - P W Sylvester, B S McIntyre, A Gapor, K P Briski. Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase C(alpha) activation.
Cell proliferation.
2001 Dec; 34(6):347-57. doi:
10.1046/j.1365-2184.2001.00221.x
. [PMID: 11736999] - H Nakamura, F Furukawa, A Nishikawa, M Miyauchi, H Y Son, T Imazawa, M Hirose. Oral toxicity of a tocotrienol preparation in rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2001 Aug; 39(8):799-805. doi:
10.1016/s0278-6915(01)00025-4
. [PMID: 11434987] - S P Yap, K H Yuen, J W Wong. Pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under different food status.
The Journal of pharmacy and pharmacology.
2001 Jan; 53(1):67-71. doi:
10.1211/0022357011775208
. [PMID: 11206194] - T M Black, P Wang, N Maeda, R A Coleman. Palm tocotrienols protect ApoE +/- mice from diet-induced atheroma formation.
The Journal of nutrition.
2000 Oct; 130(10):2420-6. doi:
10.1093/jn/130.10.2420
. [PMID: 11015467] - B S McIntyre, K P Briski, M A Tirmenstein, M W Fariss, A Gapor, P W Sylvester. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells.
Lipids.
2000 Feb; 35(2):171-80. doi:
10.1007/bf02664767
. [PMID: 10757548] - E Katsanidis, P B Addis. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue.
Free radical biology & medicine.
1999 Dec; 27(11-12):1137-40. doi:
10.1016/s0891-5849(99)00205-1
. [PMID: 10641704] - J P Kamat, H D Sarma, T P Devasagayam, K Nesaretnam, Y Basiron. Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes.
Molecular and cellular biochemistry.
1997 May; 170(1-2):131-7. doi:
10.1023/a:1006853419214
. [PMID: 9144327] - N Guthrie, A Gapor, A F Chambers, K K Carroll. Inhibition of proliferation of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast cancer cells by palm oil tocotrienols and tamoxifen, alone and in combination.
The Journal of nutrition.
1997 Mar; 127(3):544S-548S. doi:
10.1093/jn/127.3.544s
. [PMID: 9082043] - K C Hayes, A Pronczuk, J S Liang. Differences in the plasma transport and tissue concentrations of tocopherols and tocotrienols: observations in humans and hamsters.
Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.).
1993 Mar; 202(3):353-9. doi:
10.3181/00379727-202-43546
. [PMID: 8437992]