Rhamnetin (BioDeep_00000396881)

Main id: BioDeep_00000002499

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy- (9CI)

化学式: C16H12O7 (316.0583)
中文名称: 鼠李素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(OC)=CC2OC(C3C=C(O)C(O)=CC=3)=C(O)C(=O)C=2C(O)=C1
InChI: InChI=1/C16H12O7/c1-22-8-5-11(19)13-12(6-8)23-16(15(21)14(13)20)7-2-3-9(17)10(18)4-7/h2-6,17-19,21H,1H3

描述信息

Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate.
Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available.
A monomethoxyflavone that is quercetin methylated at position 7.
2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products.
Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

同义名列表

68 个代谢物同义名

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-; 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-; 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4H-chromen-4-one; 2-(3,4-dihydroxy-phenyl)-3,5-dihydroxy-7-methoxy-chromen-4-one; 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-chromen-4-one; 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxychromen-4-one; 5-18-05-00495 (Beilstein Handbook Reference); Flavone, 3,3,4,5-tetrahydroxy-7-methoxy-; FLAVONE, 7-METHOXY-3,3,4,5-TETRAHYDROXY-; Flavone,3,4,5-tetrahydroxy-7-methoxy-; 3,5,3,4-tetrahydroxy-7-methoxyflavone; 3,3,4,5-tetrahydroxy-7-methoxyflavone; 3,5,3,4-Tetrahydroxy-7-methoxyflaone; 3,4,5-Tetrahydroxy-7-methoxyflavone; Rhamnetin - Tech grade ca 50\\%; Rhamnetin, analytical standard; JGUZGNYPMHHYRK-UHFFFAOYSA-N; quercetin 7-methyl ether; 7-O-Methyl Quercetin; 7-O-methylquercetin; .beta.-Rhamnocitrin; 7-methoxy-quercetin; 7-methoxyquercetin; 7-methylquercetin; beta-rhamnocitrin; Spectrum3_001343; Spectrum2_000642; Spectrum5_000464; Spectrum4_001872; RHAMNETIN [MI]; DivK1c_006559; KBio2_004233; KBio1_001503; NCI60_001648; KBio2_001665; KBio2_006801; KBio3_002345; Rhamnetin; J8G; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy- (9CI); 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4-chromenone; 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-chromone; Flavone, 3,3,4,5-tetrahydroxy-7-methoxy- (8CI); Flavonoid;.beta.-Rhamnocitrin; SDCCGMLS-0066624.P001; EINECS 201-974-1; NCGC00095624-01; SpecPlus_000463; Spectrum_001185; NCGC00095624-02; SPECTRUM310031; BSPBio_003125; KBioSS_001665; KBioGR_002367; SPBio_000643; BRN 0047741; AIDS-003059; 17799_FLUKA; CCRIS 3792; AIDS003059; C.I. 75690; NSC 19802; ST5331696; NSC19802; 90-19-7; C10176; Rhamnetin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

266 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, ANXA5, CASP3, CAT, EGFR, MAPK14, MAPK8, NQO1, PIK3CA, PPARG, PTGS2, SRC, TP53, TYR
Peripheral membrane protein 3 ANXA5, GORASP1, PTGS2
Endosome membrane 2 EGFR, NOTCH1
Endoplasmic reticulum membrane 3 EGFR, NOTCH1, PTGS2
Nucleus 10 AKT1, CASP3, EGFR, MAPK14, MAPK8, NOTCH1, NQO1, PPARG, SRC, TP53
cytosol 12 AKT1, ANXA5, CASP3, CAT, MAPK14, MAPK8, NOTCH1, NQO1, PIK3CA, PPARG, SRC, TP53
dendrite 1 NQO1
centrosome 1 TP53
nucleoplasm 8 AKT1, CASP3, MAPK14, MAPK8, NOTCH1, PPARG, SRC, TP53
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 5 AKT1, EGFR, NOTCH1, SRC, TNF
Lipid-anchor 1 SRC
Cytoplasmic side 1 GORASP1
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 2 EGFR, SRC
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 GORASP1
Synapse 2 MAPK8, NQO1
cell cortex 1 AKT1
cell junction 2 EGFR, SRC
cell surface 3 EGFR, NOTCH1, TNF
glutamatergic synapse 6 AKT1, CASP3, EGFR, MAPK14, NOTCH1, SRC
Golgi apparatus 1 GORASP1
Golgi membrane 3 EGFR, GORASP1, NOTCH1
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 SRC
neuronal cell body 4 CASP3, NQO1, SRC, TNF
postsynapse 1 AKT1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 NQO1
Lysosome 3 GAA, SRC, TYR
acrosomal vesicle 1 NOTCH1
endosome 1 EGFR
plasma membrane 8 AKT1, EGFR, GAA, KNG1, NOTCH1, PIK3CA, SRC, TNF
Membrane 8 AKT1, ANXA5, CAT, EGFR, GAA, NOTCH1, NQO1, TP53
apical plasma membrane 2 EGFR, NOTCH1
axon 1 MAPK8
basolateral plasma membrane 1 EGFR
caveola 2 PTGS2, SRC
extracellular exosome 5 ANXA5, CAT, GAA, KNG1, SRC
Lysosome membrane 1 GAA
endoplasmic reticulum 3 NOTCH1, PTGS2, TP53
extracellular space 4 EGFR, IL6, KNG1, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 5 EGFR, PIK3CA, PPARG, SRC, TYR
Schaffer collateral - CA1 synapse 1 NOTCH1
adherens junction 1 NOTCH1
intercalated disc 1 PIK3CA
mitochondrion 4 CAT, MAPK14, SRC, TP53
protein-containing complex 5 AKT1, CAT, EGFR, PTGS2, TP53
intracellular membrane-bounded organelle 4 CAT, GAA, PPARG, TYR
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 EGFR, NOTCH1, TYR
Secreted 2 GAA, IL6
extracellular region 8 ANXA5, CAT, GAA, IL6, KNG1, MAPK14, NOTCH1, TNF
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 1 TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
nuclear membrane 1 EGFR
external side of plasma membrane 2 ANXA5, TNF
microtubule cytoskeleton 1 AKT1
nucleolus 1 TP53
Melanosome membrane 1 TYR
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 SRC
Mitochondrion inner membrane 1 SRC
Membrane raft 3 EGFR, SRC, TNF
Cell junction, focal adhesion 1 SRC
Cytoplasm, cytoskeleton 2 SRC, TP53
focal adhesion 4 ANXA5, CAT, EGFR, SRC
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 ANXA5, KNG1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 SRC
receptor complex 3 EGFR, NOTCH1, PPARG
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 PPARG, TP53
Late endosome membrane 1 NOTCH1
phagocytic cup 1 TNF
podosome 1 SRC
Secreted, extracellular space 1 KNG1
spindle pole 1 MAPK14
actin filament 1 SRC
blood microparticle 1 KNG1
site of double-strand break 1 TP53
tertiary granule membrane 1 GAA
Melanosome 1 TYR
germ cell nucleus 1 TP53
replication fork 1 TP53
dendritic growth cone 1 SRC
basal plasma membrane 1 EGFR
synaptic membrane 2 EGFR, SRC
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 3 IL6, KNG1, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 KNG1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
postsynaptic density membrane 1 NOTCH1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 TP53
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
postsynaptic specialization, intracellular component 1 SRC
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
autolysosome lumen 1 GAA
dendritic filopodium 1 SRC
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Notch 1 intracellular domain]: Nucleus 1 NOTCH1
MAML1-RBP-Jkappa- ICN1 complex 1 NOTCH1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ö Bozkurt, S Yılmaz, Ş Alpa, M Nisari, A H Yay, T Ertekin, A Tokpınar, U Kökbaş, Ö Al, A Bozkurt, I Alkan, E Unur. Investigation of the effect of rhamnetin on mice injected with solid and ehrlich ascites tumor. Medical oncology (Northwood, London, England). 2023 Mar; 40(4):124. doi: 10.1007/s12032-023-01981-3. [PMID: 36947317]
  • Maya Rajan, Vinaya Chandran, Linu Mathew. Influence of methyl jasmonate and salicylic acid on Rhamnetin production in adventitious root cultures of Baccharoides anthelmintica (L.) Moench. Natural product research. 2022 Aug; 36(16):4182-4186. doi: 10.1080/14786419.2021.1961251. [PMID: 34350783]
  • Débora Lima Medeiros, Edson Thiago Gomes Lima, Jefferson Campos Silva, Mônica Alves Medeiros, Elayne Bessa Ferreira Pinheiro. Rhamnetin: a review of its pharmacology and toxicity. The Journal of pharmacy and pharmacology. 2022 Jun; 74(6):793-799. doi: 10.1093/jpp/rgab163. [PMID: 34931654]
  • Xiaoan Li, Tiantian Guo, Qian Feng, Tiantian Bai, Lei Wu, Yubo Liu, Xu Zheng, Jianzhong Jia, Jin Pei, Shaoping Wu, Yiming Song, Yongmin Zhang. Progress of thrombus formation and research on the structure-activity relationship for antithrombotic drugs. European journal of medicinal chemistry. 2022 Jan; 228(?):114035. doi: 10.1016/j.ejmech.2021.114035. [PMID: 34902735]
  • Chien-Chung Yang, Li-Der Hsiao, Ya-Fang Shih, Zih-Yao Yu, Chuen-Mao Yang. Anti-Inflammatory Effects of Rhamnetin on Bradykinin-Induced Matrix Metalloproteinase-9 Expression and Cell Migration in Rat Brain Astrocytes. International journal of molecular sciences. 2022 Jan; 23(2):. doi: 10.3390/ijms23020609. [PMID: 35054789]
  • Jiang Tao Zhou, Kai Da Ren, Jing Hou, Jie Chen, Guan'e Yang. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Molecular medicine reports. 2021 11; 24(5):. doi: 10.3892/mmr.2021.12439. [PMID: 34523697]
  • M Wang, Y Wu, W Li. Rhamnetin ameliorates macrophage-mediated inflammation and pro-atherosclerosis pathways in apolipoprotein E-deficient mice. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2021 Apr; 72(2):. doi: 10.26402/jpp.2021.2.10. [PMID: 34374661]
  • Wenzhong Shi, Lili Liu, Jian Li, Lu Qu, Xu Pang, Haiyang Yu, Yi Zhang, Tao Wang. Bioactive flavonoids from Flos Sophorae. Journal of natural medicines. 2017 Jul; 71(3):513-522. doi: 10.1007/s11418-017-1084-7. [PMID: 28357634]
  • Lei Bi, Chun-jie Guan, Guan-e Yang, Fei Yang, Hong-yu Yan, Qing-shan Li. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Microbiological research. 2016 Apr; 185(?):1-12. doi: 10.1016/j.micres.2016.01.002. [PMID: 26946373]
  • Joseph A Lutz, Manish Kulshrestha, Dennis T Rogers, John M Littleton. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia. 2014 Oct; 98(?):11-21. doi: 10.1016/j.fitote.2014.06.012. [PMID: 24972350]
  • Hum Nath Jnawali, Eunjung Lee, Ki-Woong Jeong, Areum Shin, Yong-Seok Heo, Yangmee Kim. Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. Journal of natural products. 2014 Feb; 77(2):258-63. doi: 10.1021/np400803n. [PMID: 24397781]
  • Arijit Mondal, D Rajalingam, Tapan Kumar Maity. Anti-inflammatory effect of O-methylated flavonol 2-(3,4-dihydroxy-phenyl)-3,5-dihydroxy-7-methoxy-chromen-4-one obtained from Cassia sophera Linn in rats. Journal of ethnopharmacology. 2013 May; 147(2):525-9. doi: 10.1016/j.jep.2013.01.021. [PMID: 23454604]
  • So-Young Ji, Kyeong-Mi Choi, Youn-Sun Lee, Ji-Yeon Yu, Dong-Mi Shin, Seunghyun Lee, Kwang-Sik Yoo, Yong-Moon Lee, Yeo-Pyo Yun, Hwan-Soo Yoo. Rhamnetin-induced suppression of clonal expansion during early stage of adipogenesis. Archives of pharmacal research. 2012 Jun; 35(6):1083-9. doi: 10.1007/s12272-012-0616-7. [PMID: 22870818]
  • Savio S Elo Manga, Anastasie E Tih, Bintou Abderamane, Raphael T Ghogomu, Alain Blond, Bernard Bodo. Flavonoid glycosides and their p-coumaroyl esters from Campylospermum calanthum leaves. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2012 May; 67(5-6):233-43. doi: 10.1515/znc-2012-5-601. [PMID: 22888527]
  • Liang Chen, Lei Wang, Qingwen Zhang, Shengyuan Zhang, Wencai Ye. [Non-alkaloid chemical constituents from Coptis chinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 May; 37(9):1241-4. doi: 10.4268/cjcmm20120915. [PMID: 22803368]
  • Sadaf Naeem, Peter Hylands, David Barlow. Construction of an Indonesian herbal constituents database and its use in Random Forest modelling in a search for inhibitors of aldose reductase. Bioorganic & medicinal chemistry. 2012 Feb; 20(3):1251-8. doi: 10.1016/j.bmc.2011.12.033. [PMID: 22261024]
  • Arijit Mondal, Sanjay Kumar Karan, Tanushree Singha, D Rajalingam, Tapan Kumar Maity. Evaluation of Hepatoprotective Effect of Leaves of Cassia sophera Linn. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):436139. doi: 10.1155/2012/436139. [PMID: 22690244]
  • Li Zhang, Chen-chen Zhu, Zhong-xiang Zhao, Chao-zhan Lin. [Simultaneous determination of seven flavonoids in Nervilia fordii with HPLC]. Yao xue xue bao = Acta pharmaceutica Sinica. 2011 Oct; 46(10):1237-40. doi: . [PMID: 22242457]
  • Xing-Cui Li, Chao Liu, Li-Xin Yang, Ruo-Yun Chen. Phenolic compounds from the aqueous extract of Acacia catechu. Journal of Asian natural products research. 2011 Sep; 13(9):826-30. doi: 10.1080/10286020.2011.597384. [PMID: 21830887]
  • Zhen Jiang, Qing-Hong Yu, Yan Cheng, Xing-Jie Guo. Simultaneous quantification of eight major constituents in Herba Siegesbeckiae by liquid chromatography coupled with electrospray ionization time-of-flight tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2011 Jun; 55(3):452-7. doi: 10.1016/j.jpba.2011.02.023. [PMID: 21411260]
  • Taha S El-Alfy, Shahira M Ezzat, Ahmed K Hegazy, Aziza M M Amer, Gehan M Kamel. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacognosy magazine. 2011 Apr; 7(26):109-15. doi: 10.4103/0973-1296.80667. [PMID: 21716619]
  • Kyung-Hea Lee, Eunju Park, Hye-Jin Lee, Myeong-Ok Kim, Yong-Jun Cha, Jung-Mi Kim, Hyeran Lee, Min-Jeong Shin. Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. Nutrition research and practice. 2011 Feb; 5(1):28-33. doi: 10.4162/nrp.2011.5.1.28. [PMID: 21487493]
  • Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. International journal of molecular sciences. 2011 Jan; 12(1):506-69. doi: 10.3390/ijms12010506. [PMID: 21340000]
  • Ming-Chih Shih, Cheng-Ming Chang, Sue-Ming Kang, Min-Lang Tsai. Effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of Moringa oleifera. International journal of molecular sciences. 2011; 12(9):6077-88. doi: 10.3390/ijms12096077. [PMID: 22016645]
  • Ayako Kumagai, Nanao Horike, Yudai Satoh, Tatsuya Uebi, Tsutomu Sasaki, Yumi Itoh, Yoshiyuki Hirata, Kozue Uchio-Yamada, Kazuo Kitagawa, Shinichi Uesato, Hidehisa Kawahara, Hiroshi Takemori, Yasuo Nagaoka. A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PloS one. 2011; 6(10):e26148. doi: 10.1371/journal.pone.0026148. [PMID: 22022544]
  • Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Flavonoids from the aerial parts of Diplomorpha canescens. Chemical & pharmaceutical bulletin. 2010 Jun; 58(6):859-61. doi: 10.1248/cpb.58.859. [PMID: 20523001]
  • Li-Wen Tian, Ying Pei, Ying-Jun Zhang, Yi-Fei Wang, Chong-Ren Yang. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. Journal of natural products. 2009 Jun; 72(6):1057-60. doi: 10.1021/np800760p. [PMID: 19422205]
  • Mohamed S Marzouk, Fatma A Moharram, Rabab A El Dib, Siham M El-Shenawy, Ahmed F Tawfike. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts. Molecules (Basel, Switzerland). 2009 Apr; 14(4):1456-67. doi: 10.3390/molecules14041456. [PMID: 19384277]
  • Na Sha, Shu-Hong Guan, Zhi-Qiang Lu, Guang-Tong Chen, Hui-Lian Huang, Fu-Bo Xie, Qing-Xi Yue, Xuan Liu, De-An Guo. Cytotoxic constituents of chinese propolis. Journal of natural products. 2009 Apr; 72(4):799-801. doi: 10.1021/np900118z. [PMID: 19278239]
  • Ai-Lin Liu, Shi-Hui Shu, Hai-Lin Qin, Simon Ming Yuen Lee, Yi-Tao Wang, Guan-Hua Du. In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta medica. 2009 Mar; 75(4):337-9. doi: 10.1055/s-0028-1112208. [PMID: 19148862]
  • H Jiang, J R Hu, W Q Zhan, X Liu. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity. Natural product research. 2009; 23(10):953-9. doi: 10.1080/14786410902906934. [PMID: 19521909]
  • H Jiang, W Q Zhan, X Liu, S X Jiang. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Natural product research. 2008 Dec; 22(18):1650-6. doi: 10.1080/14786410701875686. [PMID: 19085423]
  • Bruno B Silva, Pedro L Rosalen, Jaime A Cury, Masaharu Ikegaki, Vinícius C Souza, Alessandro Esteves, Severino M Alencar. Chemical composition and botanical origin of red propolis, a new type of brazilian propolis. Evidence-based complementary and alternative medicine : eCAM. 2008 Sep; 5(3):313-6. doi: 10.1093/ecam/nem059. [PMID: 18830449]
  • Jayabalan Nirmal, Chidambaram Saravana Babu, Thanukrishnan Harisudhan, Muthiah Ramanathan. Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress. BMC complementary and alternative medicine. 2008 Apr; 8(?):15. doi: 10.1186/1472-6882-8-15. [PMID: 18435835]
  • Shi-Hui Shu, Jing-Lan Han, Guan-Hua Du, Hai-Lin Qin. [A new flavonoid from heartwood of Caesalpinia sappan]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Apr; 33(8):903-5. doi: . [PMID: 18619348]
  • Jyh-Horng Wu, Chih-Yu Huang, Yu-Tang Tung, Shang-Tzen Chang. Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. Journal of agricultural and food chemistry. 2008 Jan; 56(2):328-32. doi: 10.1021/jf072314c. [PMID: 18163556]
  • Jing-Quan Yuan, Jun-Shan Yang, Jian-Hua Miao. [Studies on flavonoids of Eupatorium odoratum L]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Jun; 30(6):657-60. doi: ". [PMID: 17918432]
  • Henrik T Simonsen, Anne Adsersen, Louise Berthelsen, Søren B Christensen, Alfonso Guzmán, Per Mølgaard. Ethnopharmacological evaluation of radal (leaves of Lomatia hirsuta) and isolation of 2-methoxyjuglone. BMC complementary and alternative medicine. 2006 Aug; 6(?):29. doi: 10.1186/1472-6882-6-29. [PMID: 16945129]
  • T-Z Li, W-D Zhang, G-J Yang, W-Y Liu, R-H Liu, C Zhang, H-S Chen. New flavonol glycosides and new xanthone from Polygala japonica. Journal of Asian natural products research. 2006 Jul; 8(5):401-9. doi: 10.1080/10286020500172558. [PMID: 16864455]
  • René Torres, Francesca Faini, Brenda Modak, Francisco Urbina, Cecilia Labbé, Juan Guerrero. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry. 2006 May; 67(10):984-7. doi: 10.1016/j.phytochem.2006.03.016. [PMID: 16684545]
  • Jose M Scervino, María A Ponce, Rosa Erra-Bassells, Horst Vierheilig, Juan A Ocampo, Alicia Godeas. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. Journal of plant physiology. 2005 Jun; 162(6):625-33. doi: 10.1016/j.jplph.2004.08.010. [PMID: 16008085]
  • Jian-guang Luo, Ling-yi Kong. [Study on flavonoids from leaf of Ipomoea batatas]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(7):516-8. doi: . [PMID: 16011096]
  • Nicolai Berardini, Ramona Fezer, Jürgen Conrad, Uwe Beifuss, Reinhold Carle, Andreas Schieber. Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin. Journal of agricultural and food chemistry. 2005 Mar; 53(5):1563-70. doi: 10.1021/jf0484069. [PMID: 15740041]
  • Shin-Kyo Chung, Young-Chan Kim, Yoshiaki Takaya, Kenji Terashima, Masatake Niwa. Novel flavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. Journal of agricultural and food chemistry. 2004 Jul; 52(15):4664-8. doi: 10.1021/jf049526j. [PMID: 15264897]
  • María A Ponce, José M Scervino, Rosa Erra-Balsells, Juan A Ocampo, Alicia M Godeas. Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry. 2004 Jul; 65(13):1925-30. doi: 10.1016/j.phytochem.2004.06.005. [PMID: 15279999]
  • Jeffrey D Weidenhamer, John T Romeo. Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. Journal of chemical ecology. 2004 May; 30(5):1067-82. doi: 10.1023/b:joec.0000028468.97851.7a. [PMID: 15274449]
  • Young-Kyoon Kim, Young Sup Kim, Sang Un Choi, Shi Yong Ryu. Isolation of flavonol rhamnosides from Loranthus tanakae and cytotoxic effect of them on human tumor cell lines. Archives of pharmacal research. 2004 Jan; 27(1):44-7. doi: 10.1007/bf02980044. [PMID: 14969337]
  • Kwang-Geun Lee, Takayuki Shibamoto, Gary R Takeoka, Sung-Eun Lee, Jeong-Han Kim, Byeoung-Soo Park. Inhibitory effects of plant-derived flavonoids and phenolic acids on malonaldehyde formation from ethyl arachidonate. Journal of agricultural and food chemistry. 2003 Nov; 51(24):7203-7. doi: 10.1021/jf0345447. [PMID: 14611194]
  • Andreas Schieber, Nicolai Berardini, Reinhold Carle. Identification of flavonol and xanthone glycosides from mango (Mangifera indica L. Cv. "Tommy Atkins") peels by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of agricultural and food chemistry. 2003 Aug; 51(17):5006-11. doi: 10.1021/jf030218f. [PMID: 12903961]
  • Helena D Smolarz. Comparative study on the free flavonoid aglycones in herbs of different species of Polygonum L. Acta poloniae pharmaceutica. 2002 Mar; 59(2):145-8. doi: . [PMID: 12365607]
  • Andreas Schieber, Petra Keller, Petra Streker, Iris Klaiber, Reinhold Carle. Detection of isorhamnetin glycosides in extracts of apples (Malus domestica cv. "Brettacher") by HPLC-PDA and HPLC-APCI-MS/MS. Phytochemical analysis : PCA. 2002 Mar; 13(2):87-94. doi: 10.1002/pca.630. [PMID: 12018028]
  • Fredrik Ollila, Katrin Halling, Pia Vuorela, Heikki Vuorela, J Peter Slotte. Characterization of flavonoid--biomembrane interactions. Archives of biochemistry and biophysics. 2002 Mar; 399(1):103-8. doi: 10.1006/abbi.2001.2759. [PMID: 11883909]
  • F Bucar, M Resch, R Bauer, M Burits, E Knauder, M Schubert-Zsilavecz. 5-Methylflavasperone and rhamnetin from Guiera senegalensis and their antioxidative and 5-lipoxygenase inhibitory activity. Die Pharmazie. 1998 Dec; 53(12):875-8. doi: . [PMID: 9879572]
  • K Igarashi, M Ohmuma. Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Bioscience, biotechnology, and biochemistry. 1995 Apr; 59(4):595-601. doi: 10.1271/bbb.59.595. [PMID: 7772823]
  • M E Wall, M C Wani, G Manikumar, P Abraham, H Taylor, T J Hughes, J Warner, R McGivney. Plant antimutagenic agents, 2. Flavonoids. Journal of natural products. 1988 Nov; 51(6):1084-91. doi: 10.1021/np50060a006. [PMID: 3069957]
  • . . . . doi: . [PMID: 21343428]
  • . . . . doi: . [PMID: 15596008]