Rubiadin (BioDeep_00000017275)

 

Secondary id: BioDeep_00000002791, BioDeep_00000406563

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

化学式: C15H10O4 (254.0579)
中文名称: 甲基异茜草素, 茜草素
谱图信息: 最多检出来源 Viridiplantae(plant) 14.87%

分子结构信息

SMILES: C12C(O)=C(C)C(O)=CC=1C(=O)C1=C(C=CC=C1)C2=O
InChI: InChI=1S/C15H10O4/c1-7-11(16)6-10-12(13(7)17)15(19)9-5-3-2-4-8(9)14(10)18/h2-6,16-17H,1H3

描述信息

Rubiadin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. It has a role as an antibacterial agent, an antioxidant, a hepatoprotective agent and a plant metabolite.
Rubiadin is a natural product found in Coprosma tenuicaulis, Prismatomeris tetrandra, and other organisms with data available.
A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis.
Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].
Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

同义名列表

18 个代谢物同义名

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-; 1,3-dihydroxy-2-methyl-anthracene-9,10-dione; 1,3-dihydroxy-2-methylanthracene-9,10-dione; 1,3-dihydroxy-2-methyl-9,10-anthracenedione; 1,3-dihydroxy-2-methylanthra-9,10-quinone; 1,3-dihydroxy-2-methyl-9,10-anthraquinone; ANTHRAQUINONE, 1,3-DIHYDROXY-2-METHYL-; 1,3-Dihydroxy-2-methylanthraquinone"; 1,3-dihydroxy-2-methylanthraquinone; Rubiadin, analytical standard; 2-Methylxanthopurpurin; UNII-CY0UH3X06R; RUBIADIN [MI]; CY0UH3X06R; Rubiadine; A1-06841; Rubiadin; Rubiadin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

148 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AIMP2, ANXA5, AR, BCL2, CA2, CAPN1, CASP3, CASP8, CTNNB1, HEY1, HPGDS
Peripheral membrane protein 1 ANXA5
Endoplasmic reticulum membrane 2 BCL2, CYP1A2
Nucleus 10 AIMP2, AR, BCL2, CASP3, CASP8, CTNNB1, H2AX, HEY1, PARP1, PCNA
cytosol 13 AIMP2, ANXA5, AR, BCL2, CA2, CAPN1, CASP3, CASP8, CTNNB1, GPT, GSR, HPGDS, PARP1
nuclear body 2 PARP1, PCNA
centrosome 3 CTNNB1, H2AX, PCNA
nucleoplasm 9 AR, CASP3, CASP8, CTNNB1, H2AX, HEY1, HPGDS, PARP1, PCNA
Cell membrane 4 CA2, CAPN1, CTNNB1, TNF
lamellipodium 2 CASP8, CTNNB1
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 1 TNF
glutamatergic synapse 2 CASP3, CTNNB1
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 2 AIMP2, PARP1
Lysosome 2 CAPN1, SGSH
plasma membrane 5 AR, CA2, CAPN1, CTNNB1, TNF
Membrane 7 AIMP2, ANXA5, AR, BCL2, CAPN1, CTNNB1, PARP1
basolateral plasma membrane 1 CTNNB1
extracellular exosome 9 ANXA5, CA2, CAPN1, CTNNB1, GPT, GSR, H2AX, PCNA, SGSH
endoplasmic reticulum 1 BCL2
extracellular space 1 TNF
lysosomal lumen 1 SGSH
perinuclear region of cytoplasm 1 CTNNB1
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 5 BCL2, CAPN1, CASP8, GSR, PARP1
protein-containing complex 5 AR, BCL2, CASP8, CTNNB1, PARP1
intracellular membrane-bounded organelle 2 CYP1A2, HPGDS
Microsome membrane 1 CYP1A2
postsynaptic density 1 CASP3
extracellular region 3 ANXA5, CAPN1, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, CASP8
mitochondrial matrix 1 GSR
transcription regulator complex 2 CTNNB1, PARP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 ANXA5, GSR, TNF
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 PARP1
Wnt signalosome 1 CTNNB1
apical part of cell 2 CA2, CTNNB1
cell-cell junction 1 CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 ANXA5, CAPN1, CTNNB1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 2 AR, H2AX
Zymogen granule membrane 1 ANXA5
chromatin 4 AR, HEY1, PARP1, PCNA
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Chromosome 2 H2AX, PARP1
cytoskeleton 1 CASP8
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 PARP1
spindle pole 1 CTNNB1
nuclear replication fork 2 PARP1, PCNA
chromosome, telomeric region 2 PARP1, PCNA
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 2 H2AX, PARP1
nuclear envelope 1 PARP1
Endomembrane system 1 CTNNB1
Cornified envelope 1 CAPN1
euchromatin 1 CTNNB1
cell body 1 CASP8
replication fork 2 H2AX, PCNA
myelin sheath 2 BCL2, CA2
ficolin-1-rich granule lumen 1 CAPN1
male germ cell nucleus 2 H2AX, PCNA
XY body 1 H2AX
beta-catenin-TCF complex 1 CTNNB1
condensed nuclear chromosome 1 H2AX
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
nuclear lamina 1 PCNA
protein-DNA complex 2 CTNNB1, PARP1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
nucleosome 1 H2AX
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
catenin complex 1 CTNNB1
site of DNA damage 2 H2AX, PARP1
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
calpain complex 1 CAPN1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hafidha Mehallah, Noureddine Djebli, Pham Ngoc Khanh, Nguyen Xuan Ha, Vu Thi Ha, Tran Thu Huong, Do Dinh Tung, Nguyen Manh Cuong. In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases. Journal of ethnopharmacology. 2024 Jun; 328(?):118051. doi: 10.1016/j.jep.2024.118051. [PMID: 38493905]
  • Le Trung Hieu, Nguyen Thi Hoa, Adam Mechler, Quan V Vo. The Theoretical and Experimental Insights into the Radical Scavenging Activity of Rubiadin. The journal of physical chemistry. B. 2023 Dec; 127(51):11045-11053. doi: 10.1021/acs.jpcb.3c06366. [PMID: 38103025]
  • Martyna Nowak-Perlak, Piotr Ziółkowski, Marta Woźniak. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Oct; 119(?):155035. doi: 10.1016/j.phymed.2023.155035. [PMID: 37603973]
  • Suizhen Cai, Yuyu Chen, Jiawei Chen, Wen Wei, Jinquan Pan, Haojie Wu. Rubiadin-1-methyl ether inhibits BECN1 transcription and Beclin1-dependent autophagy during osteoclastogenesis by inhibiting NF-κB p65 activation. Experimental biology and medicine (Maywood, N.J.). 2023 Sep; ?(?):15353702231198071. doi: 10.1177/15353702231198071. [PMID: 37750211]
  • Tinku, Mohd Mujeeb, Abdul Ahad, Mohd Aqil, Waseem Ahmad Siddiqui, Abul Kalam Najmi, Mymoona Akhtar, Apeksha Shrivastava, Abdul Qadir, Thasleem Moolakkadath. Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: formulation optimization, molecular docking, and in vivo biological evaluation. Drug delivery and translational research. 2022 03; 12(3):615-628. doi: 10.1007/s13346-021-00971-0. [PMID: 34013457]
  • Romina Chitsaz, Atefeh Zarezadeh, Jinous Asgarpanah, Parvaneh Najafizadeh, Zahra Mousavi. Rubiadin exerts an acute and chronic anti-inflammatory effect in rodents. Brazilian journal of biology = Revista brasleira de biologia. 2021; 83(?):e243775. doi: 10.1590/1519-6984.243775. [PMID: 34909834]
  • Juan Francisco Micheloud, Laura S Aguirre, Juliana Marioni, Maria Laura Mugas, José Luis Cabrera, Olga Gladys Martinez, Silvina Carola Gallardo, Eduardo Juan Gimeno, Susana Carolina Núñez-Montoya. Experimental poisoning by Heterophyllaea pustulata Hook. f. (Rubiaceae) in goats. Clinical, biochemical and toxicological aspects. Toxicon : official journal of the International Society on Toxinology. 2019 Jul; 165(?):56-61. doi: 10.1016/j.toxicon.2019.04.015. [PMID: 31029636]
  • Yu-Qiong He, Qi Zhang, Yi Shen, Ting Han, Quan-Long Zhang, Jian-Hua Zhang, Bing Lin, Hong-Tao Song, Hsien-Yeh Hsu, Lu-Ping Qin, Hai-Liang Xin, Qiao-Yan Zhang. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochemical and biophysical research communications. 2018 12; 506(4):927-931. doi: 10.1016/j.bbrc.2018.10.100. [PMID: 30392907]
  • Zheng Peng, Gang Fang, Fenghui Peng, Zhiyu Pan, Zhengying Su, Wei Tian, Danrong Li, Huaxin Hou. Effects of Rubiadin isolated from Prismatomeris connata on anti-hepatitis B virus activity in vitro. Phytotherapy research : PTR. 2017 Dec; 31(12):1962-1970. doi: 10.1002/ptr.5945. [PMID: 29044868]
  • Natalia Belen Rumie Vittar, Laura Comini, Ivana Maria Fernadez, Elizabeth Agostini, Susana Nuñez-Montoya, Jose Luis Cabrera, Viviana Alicia Rivarola. Photochemotherapy using natural anthraquinones: Rubiadin and Soranjidiol sensitize human cancer cell to die by apoptosis. Photodiagnosis and photodynamic therapy. 2014 Jun; 11(2):182-92. doi: 10.1016/j.pdpdt.2014.02.002. [PMID: 24561303]
  • Yuji Ishii, Kaoru Inoue, Shinji Takasu, Meilan Jin, Kohei Matsushita, Ken Kuroda, Kiyoshi Fukuhara, Akiyoshi Nishikawa, Takashi Umemura. Determination of lucidin-specific DNA adducts by liquid chromatography with tandem mass spectrometry in the livers and kidneys of rats given lucidin-3-O-primeveroside. Chemical research in toxicology. 2012 May; 25(5):1112-8. doi: 10.1021/tx300084p. [PMID: 22494063]
  • Ming-sheng Lan, Chao Luo, Chang-heng Tan, Lu Chen, Song Wei, Da-yuan Zhu. [Study on chemical constituents of the ethyl acetate extract from Blumea aromatica]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Feb; 35(2):229-31. doi: . [PMID: 22822668]
  • Cui-Li Zhang, Tao Zeng, Xiu-Lan Zhao, Li-Hua Yu, Zhen-Ping Zhu, Ke-Qin Xie. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. International journal of biological sciences. 2012; 8(3):363-74. doi: 10.7150/ijbs.3796. [PMID: 22393308]
  • Leilei Bao, Luping Qin, Lei Liu, Yanbin Wu, Ting Han, Liming Xue, Qiaoyan Zhang. Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro. Chemico-biological interactions. 2011 Nov; 194(2-3):97-105. doi: 10.1016/j.cbi.2011.08.013. [PMID: 21945525]
  • Feng Zhao, Sujuan Wang, Xiuli Wu, Yang Yu, Zhenggang Yue, Bo Liu, Sheng Lin, Chenggen Zhu, Yongchun Yang, Jiangong Shi. [Anthraquinones from the roots of Knoxia valerianoides]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Nov; 36(21):2980-6. doi: . [PMID: 22308688]
  • Abderrahmane Baghiani, Noureddine Charef, Meriem Djarmouni, Haythem A Saadeh, Lekhmici Arrar, Mohammad S Mubarak. Free radical scanvenging and antioxidant effects of some anthraquinone derivatives. Medicinal chemistry (Shariqah (United Arab Emirates)). 2011 Nov; 7(6):639-44. doi: 10.2174/157340611797928424. [PMID: 22313303]
  • L R Comini, I M Fernandez, N B Rumie Vittar, S C Núñez Montoya, J L Cabrera, V A Rivarola. Photodynamic activity of anthraquinones isolated from Heterophyllaea pustulata Hook f. (Rubiaceae) on MCF-7c3 breast cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011 Sep; 18(12):1093-5. doi: 10.1016/j.phymed.2011.05.008. [PMID: 21665453]
  • Ziming Lv, Qingjian Zhang, Ruoyun Chen, Dequan Yu. [Alkaloids and anthraquinones from branches and leaves of uvaria kurzii]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 May; 36(9):1190-2. doi: . [PMID: 21842647]
  • Che Puteh Osman, Nor Hadiani Ismail, Rohaya Ahmad, Norizan Ahmat, Khalijah Awang, Faridahanim Mohd Jaafar. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules (Basel, Switzerland). 2010 Oct; 15(10):7218-26. doi: 10.3390/molecules15107218. [PMID: 20966871]
  • Xi Chen. Protective effects of quercetin on liver injury induced by ethanol. Pharmacognosy magazine. 2010 Apr; 6(22):135-41. doi: 10.4103/0973-1296.62900. [PMID: 20668581]
  • M Usai, M Marchetti. Anthraquinone distribution in the hypogeal apparatus of Rubia peregrina L. growing wild in Sardinia. Natural product research. 2010 Apr; 24(7):626-32. doi: 10.1080/14786410902884842. [PMID: 20401794]
  • Nam Hee Yoo, Dae Sik Jang, Yun Mi Lee, Il Ha Jeong, Jung-Hee Cho, Joo-Hwan Kim, Jin Sook Kim. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Archives of pharmacal research. 2010 Feb; 33(2):209-14. doi: 10.1007/s12272-010-0204-7. [PMID: 20195820]
  • Yuji Ishii, Toshiya Okamura, Tomoki Inoue, Kiyoshi Fukuhara, Takashi Umemura, Akiyoshi Nishikawa. Chemical structure determination of DNA bases modified by active metabolites of lucidin-3-O-primeveroside. Chemical research in toxicology. 2010 Jan; 23(1):134-41. doi: 10.1021/tx900314c. [PMID: 20000472]
  • Kaoru Inoue, Midori Yoshida, Miwa Takahashi, Hitoshi Fujimoto, Makoto Shibutani, Masao Hirose, Akiyoshi Nishikawa. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium-term multi-organ bioassay. Cancer science. 2009 Dec; 100(12):2261-7. doi: 10.1111/j.1349-7006.2009.01342.x. [PMID: 19793347]
  • Kaoru Inoue, Midori Yoshida, Miwa Takahashi, Hitoshi Fujimoto, Kuniyoshi Ohnishi, Koichi Nakashima, Makoto Shibutani, Masao Hirose, Akiyoshi Nishikawa. Possible contribution of rubiadin, a metabolite of madder color, to renal carcinogenesis in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2009 Apr; 47(4):752-9. doi: 10.1016/j.fct.2009.01.003. [PMID: 19167447]
  • Wei Xiang, Qi-Shi Song, Hong-Jie Zhang, Shi-Ping Guo. Antimicrobial anthraquinones from Morinda angustifolia. Fitoterapia. 2008 Dec; 79(7-8):501-4. doi: 10.1016/j.fitote.2008.04.008. [PMID: 18621113]
  • Susana C Núñez Montoya, Laura R Comini, Belén Rumie Vittar, Ivana M Fernández, Viviana A Rivarola, José L Cabrera. Phototoxic effects of Heterophyllaea pustulata (Rubiaceae). Toxicon : official journal of the International Society on Toxinology. 2008 Jun; 51(8):1409-15. doi: 10.1016/j.toxicon.2008.03.011. [PMID: 18513778]
  • Wei-Hua Huang, You-Bin Li, Jian-Qin Jiang. [Chemical constituents from Hedyotis diffusa]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Mar; 33(5):524-6. doi: ". [PMID: 18536374]
  • Pittaya Tuntiwachwuttikul, Yuttapon Butsuri, Piyanut Sukkoet, Uma Prawat, Walter Charles Taylor. Anthraquinones from the roots of Prismatomeris malayana. Natural product research. 2008; 22(11):962-8. doi: 10.1080/14786410701650261. [PMID: 18629711]
  • Muhammad K Saeed, Yulin Deng, Rongji Dai. Attenuation of Biochemical Parameters in Streptozotocin-induced Diabetic Rats by Oral Administration of Extracts and Fractions of Cephalotaxus sinensis. Journal of clinical biochemistry and nutrition. 2008 Jan; 42(?):21-8. doi: 10.3164/jcbn2008004. [PMID: 18231626]
  • Ye Deng, Young-Won Chin, Heebyung Chai, William J Keller, A Douglas Kinghorn. Anthraquinones with quinone reductase-inducing activity and benzophenones from Morinda citrifolia (noni) roots. Journal of natural products. 2007 Dec; 70(12):2049-52. doi: 10.1021/np070501z. [PMID: 18076142]
  • Shan-qin Yuan, Yi-min Zhao. [Chemical constituents of Knoxia valerianoides]. Yao xue xue bao = Acta pharmaceutica Sinica. 2006 Aug; 41(8):735-7. doi: ". [PMID: 17039778]
  • Ismene Jäger, Christoph Hafner, Claudia Welsch, Klaus Schneider, Hassan Iznaguen, Johannes Westendorf. The mutagenic potential of madder root in dyeing processes in the textile industry. Mutation research. 2006 Jun; 605(1-2):22-9. doi: 10.1016/j.mrgentox.2006.01.007. [PMID: 16678474]
  • Guntupalli M Mohana Rao, Chandana V Rao, Palpu Pushpangadan, Annie Shirwaikar. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. Journal of ethnopharmacology. 2006 Feb; 103(3):484-90. doi: 10.1016/j.jep.2005.08.073. [PMID: 16213120]
  • Jian-shuang Jiang, Zi-ming Feng, Pei-cheng Zhang. [Chemical constituents from root of Prismatomeris tetrandra]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Nov; 30(22):1751-3. doi: . [PMID: 16468371]
  • Kwanjai Kanokmedhakul, Somdej Kanokmedhakul, Ruchanee Phatchana. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans. Journal of ethnopharmacology. 2005 Sep; 100(3):284-8. doi: 10.1016/j.jep.2005.03.018. [PMID: 15885942]
  • Rohaya Ahmad, Khozirah Shaari, Nordin Hj Lajis, Ahmad Sazali Hamzah, Nor Hadiani Ismail, Mariko Kitajima. Anthraquinones from Hedyotis capitellata. Phytochemistry. 2005 May; 66(10):1141-7. doi: 10.1016/j.phytochem.2005.02.023. [PMID: 15924918]
  • Ranjana Bhuyan, C N Saikia. Isolation of colour components from native dye-bearing plants in northeastern India. Bioresource technology. 2005 Feb; 96(3):363-72. doi: 10.1016/j.biortech.2004.02.032. [PMID: 15474939]
  • S C Nuñez Montoya, A M Agnese, C Pérez, I N Tiraboschi, J L Cabrera. Pharmacological and toxicological activity of Heterophyllaea pustulata anthraquinone extracts. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2003; 10(6-7):569-74. doi: 10.1078/094471103322331854. [PMID: 13678245]
  • Y B Tripathi, M Sharma. Comparison of the antioxidant action of the alcoholic extract of Rubia cordifolia with rubiadin. Indian journal of biochemistry & biophysics. 1998 Oct; 35(5):313-6. doi: . [PMID: 10410466]
  • Y B Tripathi, M Sharma, M Manickam. Rubiadin, a new antioxidant from Rubia cordifolia. Indian journal of biochemistry & biophysics. 1997 Jun; 34(3):302-6. doi: . [PMID: 9425750]
  • Y Kawasaki, Y Goda, K Yoshihira. The mutagenic constituents of Rubia tinctorum. Chemical & pharmaceutical bulletin. 1992 Jun; 40(6):1504-9. doi: 10.1248/cpb.40.1504. [PMID: 1394669]
  • B Blömeke, B Poginsky, C Schmutte, H Marquardt, J Westendorf. Formation of genotoxic metabolites from anthraquinone glycosides, present in Rubia tinctorum L. Mutation research. 1992 Feb; 265(2):263-72. doi: 10.1016/0027-5107(92)90055-7. [PMID: 1370725]