2,3-DI-Phytanyl-glycerol (BioDeep_00000855896)
代谢物信息卡片
化学式: C43H88O3 (652.6733)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(C)CCCC(C)CCCC(C)CCCC(C)CCOCC(CO)OCCC(C)CCCC(C)CCCC(C)CCCC(C)C
InChI: InChI=1S/C43H88O3/c1-35(2)17-11-19-37(5)21-13-23-39(7)25-15-27-41(9)29-31-45-34-43(33-44)46-32-30-42(10)28-16-26-40(8)24-14-22-38(6)20-12-18-36(3)4/h35-44H,11-34H2,1-10H3/t37-,38-,39-,40-,41-,42-,43-/m1/s1
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Marc A Besseling, Ellen C Hopmans, Nicole J Bale, Stefan Schouten, Jaap S Sinninghe Damsté, Laura Villanueva. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea.
Scientific reports.
2020 01; 10(1):294. doi:
10.1038/s41598-019-57035-0
. [PMID: 31941956] - Bassel Akache, Felicity C Stark, Yimei Jia, Lise Deschatelets, Renu Dudani, Blair A Harrison, Gerard Agbayani, Dean Williams, Mohammad P Jamshidi, Lakshmi Krishnan, Michael J McCluskie. Sulfated archaeol glycolipids: Comparison with other immunological adjuvants in mice.
PloS one.
2018; 13(12):e0208067. doi:
10.1371/journal.pone.0208067
. [PMID: 30513093] - Felix J Elling, Martin Könneke, Graeme W Nicol, Michaela Stieglmeier, Barbara Bayer, Eva Spieck, José R de la Torre, Kevin W Becker, Michael Thomm, James I Prosser, Gerhard J Herndl, Christa Schleper, Kai-Uwe Hinrichs. Chemotaxonomic characterisation of the thaumarchaeal lipidome.
Environmental microbiology.
2017 07; 19(7):2681-2700. doi:
10.1111/1462-2920.13759
. [PMID: 28419726] - Takeshi Mori, Keisuke Isobe, Takuya Ogawa, Tohru Yoshimura, Hisashi Hemmi. A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis.
Biochemical and biophysical research communications.
2015 Oct; 466(2):186-91. doi:
10.1016/j.bbrc.2015.09.001
. [PMID: 26361140] - Antonella Caforio, Samta Jain, Peter Fodran, Melvin Siliakus, Adriaan J Minnaard, John van der Oost, Arnold J M Driessen. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.
The Biochemical journal.
2015 Sep; 470(3):343-55. doi:
10.1042/bj20150626
. [PMID: 26195826] - Angela Schwarm, Monika Schweigel-Röntgen, Michael Kreuzer, Sylvia Ortmann, Fiona Gill, Björn Kuhla, Ulrich Meyer, Malte Lohölter, Michael Derno. Methane emission, digestive characteristics and faecal archaeol in heifers fed diets based on silage from brown midrib maize as compared to conventional maize.
Archives of animal nutrition.
2015; 69(3):159-76. doi:
10.1080/1745039x.2015.1043211
. [PMID: 25963930] - Samta Jain, Antonella Caforio, Peter Fodran, Juke S Lolkema, Adriaan J Minnaard, Arnold J M Driessen. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea.
Chemistry & biology.
2014 Oct; 21(10):1392-1401. doi:
10.1016/j.chembiol.2014.07.022
. [PMID: 25219966] - Philippe M Oger, Anaïs Cario. Adaptation of the membrane in Archaea.
Biophysical chemistry.
2013 Dec; 183(?):42-56. doi:
10.1016/j.bpc.2013.06.020
. [PMID: 23915818] - C A McCartney, I D Bull, T Yan, R J Dewhurst. Assessment of archaeol as a molecular proxy for methane production in cattle.
Journal of dairy science.
2013 Feb; 96(2):1211-7. doi:
10.3168/jds.2012-6042
. [PMID: 23261373] - G Dennis Sprott, Angela Yeung, Chantal J Dicaire, Siu H Yu, Dennis M Whitfield. Synthetic archaeosome vaccines containing triglycosylarchaeols can provide additive and long-lasting immune responses that are enhanced by archaetidylserine.
Archaea (Vancouver, B.C.).
2012; 2012(?):513231. doi:
10.1155/2012/513231
. [PMID: 23055819] - Lauro M de Souza, Marcelo Müller-Santos, Marcello Iacomini, Philip A J Gorin, Guilherme L Sassaki. Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui.
Journal of lipid research.
2009 Jul; 50(7):1363-73. doi:
10.1194/jlr.m800478-jlr200
. [PMID: 19258281] - Yasuhiko Matsuno, Akihiko Sugai, Hiroki Higashibata, Wakao Fukuda, Katsuaki Ueda, Ikuko Uda, Itaru Sato, Toshihiro Itoh, Tadayuki Imanaka, Shinsuke Fujiwara. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis.
Bioscience, biotechnology, and biochemistry.
2009 Jan; 73(1):104-8. doi:
10.1271/bbb.80520
. [PMID: 19129645] - G Dennis Sprott, Chantal J Dicaire, Jean-Philippe Côté, Dennis M Whitfield. Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure.
Glycobiology.
2008 Jul; 18(7):559-65. doi:
10.1093/glycob/cwn038
. [PMID: 18450974] - Grégory Lecollinet, Annette Gulik, Grahame Mackenzie, John W Goodby, Thierry Benvegnu, Daniel Plusquellec. Supramolecular self-assembling properties of membrane-spanning archaeal tetraether glycolipid analogues.
Chemistry (Weinheim an der Bergstrasse, Germany).
2002 Feb; 8(3):585-93. doi:
10.1002/1521-3765(20020201)8:3<585::aid-chem585>3.0.co;2-5
. [PMID: 11855706] - I Uda, A Sugai, Y H Itoh, T Itoh. Characterization of caldarchaetidylglycerol analogs, dialkyl-type and trialkyl-type, from Thermoplasma acidophilum.
Lipids.
2000 Oct; 35(10):1155-7. doi:
10.1007/s11745-000-0631-x
. [PMID: 11104022] - S M Kaneshiro, D S Clark. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii.
Journal of bacteriology.
1995 Jul; 177(13):3668-72. doi:
10.1128/jb.177.13.3668-3672.1995
. [PMID: 7601829]