2,3-DI-Phytanyl-glycerol (BioDeep_00000855896)

   


代谢物信息卡片


2,3-DI-Phytanyl-glycerol

化学式: C43H88O3 (652.6733)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)CCCC(C)CCCC(C)CCCC(C)CCOCC(CO)OCCC(C)CCCC(C)CCCC(C)CCCC(C)C
InChI: InChI=1S/C43H88O3/c1-35(2)17-11-19-37(5)21-13-23-39(7)25-15-27-41(9)29-31-45-34-43(33-44)46-32-30-42(10)28-16-26-40(8)24-14-22-38(6)20-12-18-36(3)4/h35-44H,11-34H2,1-10H3/t37-,38-,39-,40-,41-,42-,43-/m1/s1

描述信息

同义名列表

1 个代谢物同义名

2,3-DI-Phytanyl-glycerol



数据库引用编号

3 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ACE2, FDPS, GGPS1, ITPR3, PGP, TLR3, TLR4, TLR9
Peripheral membrane protein 1 CTSB
Endosome membrane 3 TLR3, TLR4, TLR9
Endoplasmic reticulum membrane 5 B3GLCT, CD4, ITPR3, TLR3, TLR9
Nucleus 1 SMC1A
cytosol 3 FDPS, GGPS1, SMC1A
phagocytic vesicle 1 TLR9
nucleoplasm 5 ATP2B1, FDPS, GGPS1, ITPR3, SMC1A
Cell membrane 7 ACE2, ATP2B1, CD4, CD8A, CTLA4, PDCD1, TLR4
Early endosome membrane 1 TLR9
Multi-pass membrane protein 2 ATP2B1, ITPR3
Golgi apparatus membrane 1 TLR9
Synapse 1 ATP2B1
cell surface 2 ACE2, TLR4
glutamatergic synapse 1 ATP2B1
Golgi apparatus 1 CTLA4
Golgi membrane 2 TLR3, TLR9
lysosomal membrane 1 TLR3
neuronal cell body 1 ITPR3
presynaptic membrane 1 ATP2B1
Lysosome 2 CTSB, TLR9
endosome 1 TLR9
plasma membrane 10 ACE2, ATP2B1, CD4, CD8A, CTLA4, ITPR3, PDCD1, TLR3, TLR4, TLR9
synaptic vesicle membrane 1 ATP2B1
Membrane 8 ACE2, ATP2B1, FDPS, ITPR3, PDCD1, TLR3, TLR4, TLR9
apical plasma membrane 3 ACE2, CTSB, TLR9
basolateral plasma membrane 2 ATP2B1, TLR9
brush border 1 ITPR3
extracellular exosome 4 ACE2, ATP2B1, CTSB, RETN
endoplasmic reticulum 2 ITPR3, TLR9
extracellular space 6 ACE2, COL2A1, CSF3, CTSB, RETN, TLR3
lysosomal lumen 1 CSF3
perinuclear region of cytoplasm 4 CTLA4, CTSB, GGPS1, TLR4
intracellular membrane-bounded organelle 1 ATP2B1
Single-pass type I membrane protein 7 ACE2, CD4, CD8A, CTLA4, TLR3, TLR4, TLR9
Secreted 4 ACE2, COL2A1, CSF3, RETN
extracellular region 7 ACE2, CD8A, COL2A1, CSF3, CTSB, RETN, TLR9
Single-pass membrane protein 1 TLR3
[Isoform 2]: Secreted 1 CD8A
mitochondrial matrix 1 FDPS
Extracellular side 1 CTSB
Cell projection, cilium 1 ACE2
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 6 CD4, CD8A, CTLA4, CTSB, PDCD1, TLR4
Secreted, extracellular space, extracellular matrix 1 COL2A1
Z disc 1 GGPS1
nucleolus 1 ITPR3
Early endosome 3 CD4, TLR3, TLR4
apical part of cell 1 ITPR3
Single-pass type II membrane protein 1 B3GLCT
Apical cell membrane 2 ACE2, CTSB
Cytoplasm, perinuclear region 1 GGPS1
Membrane raft 2 ACE2, CD4
extracellular matrix 1 TLR3
Peroxisome 1 FDPS
basement membrane 1 COL2A1
collagen trimer 1 COL2A1
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 2 COL2A1, CTSB
lateral plasma membrane 1 ATP2B1
nuclear outer membrane 1 ITPR3
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 3 CD8A, ITPR3, TLR4
cilium 1 ACE2
cell projection 1 ATP2B1
phagocytic cup 1 TLR4
Chromosome 1 SMC1A
Secreted, extracellular space 1 CTSB
brush border membrane 1 ACE2
Basolateral cell membrane 1 ATP2B1
Chromosome, centromere, kinetochore 1 SMC1A
Melanosome 1 CTSB
Presynaptic cell membrane 1 ATP2B1
Cytoplasm, myofibril, sarcomere, Z line 1 GGPS1
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 CTSB
secretory granule membrane 1 ITPR3
endoplasmic reticulum lumen 3 ACE2, CD4, COL2A1
nuclear matrix 1 SMC1A
specific granule lumen 1 RETN
kinetochore 1 SMC1A
endocytic vesicle membrane 1 ACE2
mitotic spindle pole 1 SMC1A
azurophil granule lumen 1 RETN
immunological synapse 1 ATP2B1
clathrin-coated endocytic vesicle 1 CTLA4
condensed nuclear chromosome 1 SMC1A
chromosome, centromeric region 1 SMC1A
clathrin-coated endocytic vesicle membrane 1 CD4
platelet dense tubular network membrane 1 ITPR3
endolysosome membrane 2 TLR3, TLR9
[Isoform 1]: Cell membrane 1 CD8A
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
early phagosome 1 TLR9
cohesin complex 1 SMC1A
meiotic cohesin complex 1 SMC1A
mitotic cohesin complex 1 SMC1A
Cytoplasmic vesicle, phagosome 1 TLR9
endocytic vesicle lumen 1 CSF3
peptidase inhibitor complex 1 CTSB
T cell receptor complex 2 CD4, CD8A
transport vesicle membrane 1 ITPR3
collagen type II trimer 1 COL2A1
collagen type XI trimer 1 COL2A1
endolysosome lumen 1 CTSB
protein complex involved in cell adhesion 1 CTLA4
photoreceptor ribbon synapse 1 ATP2B1
endolysosome 1 TLR9
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
[Processed angiotensin-converting enzyme 2]: Secreted 1 ACE2
[Isoform 2]: Apical cell membrane 1 ACE2


文献列表

  • Marc A Besseling, Ellen C Hopmans, Nicole J Bale, Stefan Schouten, Jaap S Sinninghe Damsté, Laura Villanueva. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea. Scientific reports. 2020 01; 10(1):294. doi: 10.1038/s41598-019-57035-0. [PMID: 31941956]
  • Bassel Akache, Felicity C Stark, Yimei Jia, Lise Deschatelets, Renu Dudani, Blair A Harrison, Gerard Agbayani, Dean Williams, Mohammad P Jamshidi, Lakshmi Krishnan, Michael J McCluskie. Sulfated archaeol glycolipids: Comparison with other immunological adjuvants in mice. PloS one. 2018; 13(12):e0208067. doi: 10.1371/journal.pone.0208067. [PMID: 30513093]
  • Felix J Elling, Martin Könneke, Graeme W Nicol, Michaela Stieglmeier, Barbara Bayer, Eva Spieck, José R de la Torre, Kevin W Becker, Michael Thomm, James I Prosser, Gerhard J Herndl, Christa Schleper, Kai-Uwe Hinrichs. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environmental microbiology. 2017 07; 19(7):2681-2700. doi: 10.1111/1462-2920.13759. [PMID: 28419726]
  • Takeshi Mori, Keisuke Isobe, Takuya Ogawa, Tohru Yoshimura, Hisashi Hemmi. A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis. Biochemical and biophysical research communications. 2015 Oct; 466(2):186-91. doi: 10.1016/j.bbrc.2015.09.001. [PMID: 26361140]
  • Antonella Caforio, Samta Jain, Peter Fodran, Melvin Siliakus, Adriaan J Minnaard, John van der Oost, Arnold J M Driessen. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli. The Biochemical journal. 2015 Sep; 470(3):343-55. doi: 10.1042/bj20150626. [PMID: 26195826]
  • Angela Schwarm, Monika Schweigel-Röntgen, Michael Kreuzer, Sylvia Ortmann, Fiona Gill, Björn Kuhla, Ulrich Meyer, Malte Lohölter, Michael Derno. Methane emission, digestive characteristics and faecal archaeol in heifers fed diets based on silage from brown midrib maize as compared to conventional maize. Archives of animal nutrition. 2015; 69(3):159-76. doi: 10.1080/1745039x.2015.1043211. [PMID: 25963930]
  • Samta Jain, Antonella Caforio, Peter Fodran, Juke S Lolkema, Adriaan J Minnaard, Arnold J M Driessen. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chemistry & biology. 2014 Oct; 21(10):1392-1401. doi: 10.1016/j.chembiol.2014.07.022. [PMID: 25219966]
  • Philippe M Oger, Anaïs Cario. Adaptation of the membrane in Archaea. Biophysical chemistry. 2013 Dec; 183(?):42-56. doi: 10.1016/j.bpc.2013.06.020. [PMID: 23915818]
  • C A McCartney, I D Bull, T Yan, R J Dewhurst. Assessment of archaeol as a molecular proxy for methane production in cattle. Journal of dairy science. 2013 Feb; 96(2):1211-7. doi: 10.3168/jds.2012-6042. [PMID: 23261373]
  • G Dennis Sprott, Angela Yeung, Chantal J Dicaire, Siu H Yu, Dennis M Whitfield. Synthetic archaeosome vaccines containing triglycosylarchaeols can provide additive and long-lasting immune responses that are enhanced by archaetidylserine. Archaea (Vancouver, B.C.). 2012; 2012(?):513231. doi: 10.1155/2012/513231. [PMID: 23055819]
  • Lauro M de Souza, Marcelo Müller-Santos, Marcello Iacomini, Philip A J Gorin, Guilherme L Sassaki. Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui. Journal of lipid research. 2009 Jul; 50(7):1363-73. doi: 10.1194/jlr.m800478-jlr200. [PMID: 19258281]
  • Yasuhiko Matsuno, Akihiko Sugai, Hiroki Higashibata, Wakao Fukuda, Katsuaki Ueda, Ikuko Uda, Itaru Sato, Toshihiro Itoh, Tadayuki Imanaka, Shinsuke Fujiwara. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Bioscience, biotechnology, and biochemistry. 2009 Jan; 73(1):104-8. doi: 10.1271/bbb.80520. [PMID: 19129645]
  • G Dennis Sprott, Chantal J Dicaire, Jean-Philippe Côté, Dennis M Whitfield. Adjuvant potential of archaeal synthetic glycolipid mimetics critically depends on the glyco head group structure. Glycobiology. 2008 Jul; 18(7):559-65. doi: 10.1093/glycob/cwn038. [PMID: 18450974]
  • Grégory Lecollinet, Annette Gulik, Grahame Mackenzie, John W Goodby, Thierry Benvegnu, Daniel Plusquellec. Supramolecular self-assembling properties of membrane-spanning archaeal tetraether glycolipid analogues. Chemistry (Weinheim an der Bergstrasse, Germany). 2002 Feb; 8(3):585-93. doi: 10.1002/1521-3765(20020201)8:3<585::aid-chem585>3.0.co;2-5. [PMID: 11855706]
  • I Uda, A Sugai, Y H Itoh, T Itoh. Characterization of caldarchaetidylglycerol analogs, dialkyl-type and trialkyl-type, from Thermoplasma acidophilum. Lipids. 2000 Oct; 35(10):1155-7. doi: 10.1007/s11745-000-0631-x. [PMID: 11104022]
  • S M Kaneshiro, D S Clark. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. Journal of bacteriology. 1995 Jul; 177(13):3668-72. doi: 10.1128/jb.177.13.3668-3672.1995. [PMID: 7601829]