Indolin-2-one (BioDeep_00000002320)
Secondary id: BioDeep_00000173063, BioDeep_00000397445
human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C8H7NO (133.0528)
中文名称: 2-吲哚酮, 羟吲哚
谱图信息:
最多检出来源 Homo sapiens(feces) 23.02%
Last reviewed on 2024-09-14.
Cite this Page
Indolin-2-one. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/indolin-2-one (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002320). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1C2=CC=CC=C2NC1=O
InChI: InChI=1S/C8H7NO/c10-8-5-6-3-1-2-4-7(6)9-8/h1-4H,5H2,(H,9,10)
描述信息
1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole.
CONFIDENCE standard compound; INTERNAL_ID 2508
COVID info from PDB, Protein Data Bank
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.
Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.
同义名列表
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:31697
- KEGG: C12312
- PubChem: 321710
- HMDB: HMDB0061918
- Metlin: METLIN34541
- ChEMBL: CHEMBL40823
- MetaCyc: CPD-6361
- chemspider: 284794
- CAS: 59-48-3
- MoNA: AU250802
- MoNA: AU250804
- MoNA: AU250801
- MoNA: AU250803
- MoNA: AU250806
- PMhub: MS000002339
- PubChem: 582703
- PDB-CCD: W6P
- 3DMET: B04450
- NIKKAJI: J1.393E
- medchemexpress: HY-Y0061
- LOTUS: LTS0063329
- wikidata: Q2018788
分类词条
相关代谢途径
Reactome(5)
代谢反应
153 个相关的代谢反应过程信息。
Reactome(65)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Miscellaneous substrates:
ARA + H+ + Oxygen + TPNH ⟶ 19HETE + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
BioCyc(2)
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indolin-2-one ⟶ 3-hydroxyindolin-2-one + H2O + an oxidized [NADPH-hemoprotein reductase]
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indolin-2-one ⟶ 3-hydroxyindolin-2-one + H2O + an oxidized [NADPH-hemoprotein reductase]
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(86)
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- superpathway of benzoxazinoid glucosides biosynthesis:
2-oxoglutarate + DIBOA-Glc + O2 ⟶ CO2 + TRIBOA-β-D-glucoside + succinate
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- superpathway of benzoxazinoid glucosides biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
H+ + NAD(P)H + O2 + indole ⟶ H2O + NAD(P)+ + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate ⟶ D-glyceraldehyde 3-phosphate + indole
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- superpathway of benzoxazinoid glucosides biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + indole ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + indolin-2-one
- DIBOA-glucoside biosynthesis:
DIBOA + UDP-α-D-glucose ⟶ DIBOA-Glc + UDP
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 5073 - Penicillium: 10.1515/ZNC-1998-1-212
- 33090 - Plants: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zhi-Feng Hao, Shi-Jie Zhu, Yong-Jia Hao, Wen-Hui Zhang, Ying Zhou, You-Ping Tian, Chuan-Wen Lei. Enantioselective Synthesis of Bispiro[indanedione-oxindole-cyclopropane]s through Organocatalytic [2+1] Cycloaddition.
The Journal of organic chemistry.
2022 Aug; ?(?):. doi:
10.1021/acs.joc.2c01009
. [PMID: 35960861] - Alberto Campos-López, Jaime A Uribe-López, Verna Cázares-Ordoñez, Roberto Garibay-Orijel, Norma A Valdez-Cruz, Mauricio A Trujillo-Roldán. Quercetin and 1-methyl-2-oxindole mimic root signaling that promotes spore germination and mycelial growth of Gigaspora margarita.
Mycorrhiza.
2022 Mar; 32(2):177-191. doi:
10.1007/s00572-022-01074-5
. [PMID: 35194685] - Saeed Ali Syed, Ahmed Bari, Mohammed S Aldughaim, Md Abdur Rashid, Mohammad Hossain Shariare, Mohsin Kazi. Analysis of a '3-(Naphthalen-1-ylimino) Indoline-2-one' compound and Its Antimicrobial Assessment Using Lipid-based Self-nanoemulsifying Formulations.
Molecules (Basel, Switzerland).
2020 Dec; 26(1):. doi:
10.3390/molecules26010015
. [PMID: 33375132] - Wen-Hui Zhang, Shuang Chen, Xiong-Li Liu, Bing-Lin, Xiong-Wei Liu, Ying Zhou. Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo.
Bioorganic & medicinal chemistry letters.
2020 09; 30(17):127410. doi:
10.1016/j.bmcl.2020.127410
. [PMID: 32738990] - Silvana Alvarenga-Venutolo, Catalina Rosales-López, Luis Sánchez-Chinchilla, Rodrigo Muñoz-Arrieta, Francisco Aguilar-Cascante. Seasonality effect on the composition of oxindole alkaloids from distinct organs of Uncaria tomentosa from the Caribbean region of Costa Rica.
Phytochemistry.
2018 Jul; 151(?):26-31. doi:
10.1016/j.phytochem.2018.03.008
. [PMID: 29631104] - Irfan Khan, Koteswara Rao Garikapati, Anver Basha Shaik, Venkata Krishna Kanth Makani, Abdul Rahim, Mohd Adil Shareef, V Ganga Reddy, Manika Pal-Bhadra, Ahmed Kamal, C Ganesh Kumar. Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2-c] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis.
European journal of medicinal chemistry.
2018 Jan; 144(?):104-115. doi:
10.1016/j.ejmech.2017.12.010
. [PMID: 29268127] - Mona Nazemi Moghaddam, Razieh Jalal, Zohreh Zeraatkar. Synthesis and antiproliferative and apoptosis-inducing activity of novel 3-substituted-3-hydroxy-2-oxindole compounds.
In vitro cellular & developmental biology. Animal.
2018 Jan; 54(1):61-70. doi:
10.1007/s11626-017-0204-8
. [PMID: 29124512] - Ming-Cheng Yang, Cheng Peng, Hua Huang, Lei Yang, Xiang-Hong He, Wei Huang, Hai-Lei Cui, Gu He, Bo Han. Organocatalytic Asymmetric Synthesis of Spiro-oxindole Piperidine Derivatives That Reduce Cancer Cell Proliferation by Inhibiting MDM2-p53 Interaction.
Organic letters.
2017 12; 19(24):6752-6755. doi:
10.1021/acs.orglett.7b03516
. [PMID: 29210587] - Chandra Kumar Elechalawar, Kathyayani Sridharan, Abhishek Pal, Mohammed Tanveer Ahmed, Mohammed Yousuf, Susanta Sekhar Adhikari, Rajkumar Banerjee. Cationic folate-mediated liposomal delivery of bis-arylidene oxindole induces efficient melanoma tumor regression.
Biomaterials science.
2017 Aug; 5(9):1898-1909. doi:
10.1039/c7bm00405b
. [PMID: 28715002] - Lei Wang, Jin-Feng Wang, Xia Mao, Li Jiao, Xiao-Jun Wang. Gelsedine-type oxindole alkaloids from Gelsemium elegans and the evaluation of their cytotoxic activity.
Fitoterapia.
2017 Jul; 120(?):131-135. doi:
10.1016/j.fitote.2017.06.005
. [PMID: 28596027] - Bing Lin, Zhi-Yong Chen, Huan-Huan Liu, Qi-Di Wei, Ting-Ting Feng, Ying Zhou, Can Wang, Xiong-Li Liu, Wei-Cheng Yuan. Alcohols as Substrates and Solvents for the Construction of 3-Alkoxylated-2-Oxindoles by Direct Alkoxylation of 3-Halooxindoles.
Molecules (Basel, Switzerland).
2017 May; 22(5):. doi:
10.3390/molecules22050801
. [PMID: 28505098] - Wenzhi Yang, Yibei Zhang, Huiqin Pan, Changliang Yao, Jinjun Hou, Shuai Yao, Luying Cai, Ruihong Feng, Wanying Wu, Dean Guo. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla.
Journal of pharmaceutical and biomedical analysis.
2017 Feb; 134(?):352-360. doi:
10.1016/j.jpba.2016.10.021
. [PMID: 27843099] - Hui-Qin Pan, Wen-Zhi Yang, Dan Zhao, Cheng Luo, Chang-Liang Yao, Xiao-Jian Shi, Yi-Bei Zhang, Shi-You Li, Ying Bi, Zhen Wang, Shuai Yao, Wan-Ying Wu, De-An Guo. New monoterpenoid oxindole alkaloid derivatives from the stems of Uncaria hirsuta Havil. and their cytotoxicity and tandem mass spectrometric fragmentation.
Fitoterapia.
2017 Jan; 116(?):85-92. doi:
10.1016/j.fitote.2016.11.013
. [PMID: 27889541] - Maninder Kaur, Manjinder Singh, Navriti Chadha, Om Silakari. Oxindole: A chemical prism carrying plethora of therapeutic benefits.
European journal of medicinal chemistry.
2016 Nov; 123(?):858-894. doi:
10.1016/j.ejmech.2016.08.011
. [PMID: 27543880] - Samuel Kaiser, Ânderson Ramos Carvalho, Vanessa Pittol, Fabrícia Dietrich, Fabiana Manica, Michel Mansur Machado, Luis Flávio Souza de Oliveira, Ana Maria Oliveira Battastini, George González Ortega. Genotoxicity and cytotoxicity of oxindole alkaloids from Uncaria tomentosa (cat's claw): Chemotype relevance.
Journal of ethnopharmacology.
2016 Aug; 189(?):90-8. doi:
10.1016/j.jep.2016.05.026
. [PMID: 27180878] - Wei Huang, Lulu Cai, Can Chen, Xin Xie, Qiong Zhao, Xing Zhao, Hong-yun Zhou, Bo Han, Cheng Peng. Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors.
Journal of biomolecular structure & dynamics.
2016; 34(2):341-51. doi:
10.1080/07391102.2015.1031178
. [PMID: 25808617] - Silvia Sánchez-Rojo, Carlos M Cerda-García-Rojas, Fernando Esparza-García, Javier Plasencia, Héctor M Poggi-Varaldo, Teresa Ponce-Noyola, Ana C Ramos-Valdivia. Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants.
Biotechnology letters.
2015 Dec; 37(12):2489-96. doi:
10.1007/s10529-015-1931-0
. [PMID: 26272395] - Bharathi Avula, Satyanarayanaraju Sagi, Yan-Hong Wang, Mei Wang, Zulfiqar Ali, Troy J Smillie, Jerry Zweigenbaum, Ikhlas A Khan. Identification and Characterization of Indole and Oxindole Alkaloids from Leaves of Mitragyna speciosa Korth Using Liquid Chromatography-Accurate QToF Mass Spectrometry.
Journal of AOAC International.
2015 Jan; 98(1):13-21. doi:
10.5740/jaoacint.14-110
. [PMID: 25857873] - Jun Xu, Li-Dong Shao, Dashan Li, Xu Deng, Yu-Chen Liu, Qin-Shi Zhao, Chengfeng Xia. Construction of tetracyclic 3-spirooxindole through cross-dehydrogenation of pyridinium: applications in facile synthesis of (±)-corynoxine and (±)-corynoxine B.
Journal of the American Chemical Society.
2014 Dec; 136(52):17962-5. doi:
10.1021/ja5121343
. [PMID: 25496352] - Mei Wang, Emily J Carrell, Zulfiqar Ali, Bharathi Avula, Cristina Avonto, Jon F Parcher, Ikhlas A Khan. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in Mitragyna speciosa (kratom) plants.
Journal of separation science.
2014 Jun; 37(12):1411-8. doi:
10.1002/jssc.201301389
. [PMID: 24659356] - Hai-Bo Wang, Wen Qi, Lin Zhang, Dan Yuan. Qualitative and quantitative analyses of alkaloids in Uncaria species by UPLC-ESI-Q-TOF/MS.
Chemical & pharmaceutical bulletin.
2014; 62(11):1100-9. doi:
10.1248/cpb.c14-00481
. [PMID: 25366313] - Gaozhi Chen, Lili Jiang, Lili Dong, Zhe Wang, Fengli Xu, Ting Ding, Lili Fu, Qilu Fang, Zhiguo Liu, Xiaoou Shan, Guang Liang. Synthesis and biological evaluation of novel indole-2-one and 7-aza-2-oxindole derivatives as anti-inflammatory agents.
Drug design, development and therapy.
2014; 8(?):1869-92. doi:
10.2147/dddt.s65997
. [PMID: 25378906] - Samuel Kaiser, Fabrícia Dietrich, Pedro Ernesto de Resende, Simone Gasparin Verza, Renata Cougo Moraes, Fernanda Bueno Morrone, Ana Maria Oliveira Batastini, George González Ortega. Cat's claw oxindole alkaloid isomerization induced by cell incubation and cytotoxic activity against T24 and RT4 human bladder cancer cell lines.
Planta medica.
2013 Oct; 79(15):1413-20. doi:
10.1055/s-0033-1350742
. [PMID: 23975868] - Limin Yang, Danqun Huo, Kun He, Suyi Zhang, Changjun Hou. Role of tryptophan in the active site of plant esterase: chemical modification and fluorometric studies.
Applied biochemistry and biotechnology.
2013 Jun; 170(4):909-24. doi:
10.1007/s12010-013-0203-5
. [PMID: 23619794] - Ileana Vera-Reyes, Ariana A Huerta-Heredia, Teresa Ponce-Noyola, Isvett Josefina Flores-Sanchez, Fernando Esparza-García, Carlos M Cerda-García-Rojas, Gabriela Trejo-Tapia, Ana C Ramos-Valdivia. Strictosidine-related enzymes involved in the alkaloid biosynthesis of Uncaria tomentosa root cultures grown under oxidative stress.
Biotechnology progress.
2013 May; 29(3):621-30. doi:
10.1002/btpr.1723
. [PMID: 23606578] - Changsheng Yao, Zhaoxin Xiao, Rui Liu, Tuanjie Li, Weihui Jiao, Chenxia Yu. N-Heterocyclic-carbene-catalyzed reaction of α-bromo-α,β-unsaturated aldehyde or α,β-dibromoaldehyde with isatins: an efficient synthesis of spirocyclic oxindole-dihydropyranones.
Chemistry (Weinheim an der Bergstrasse, Germany).
2013 Jan; 19(2):456-9. doi:
10.1002/chem.201202655
. [PMID: 23225526] - Mouhssin Oufir, Chethan Sampath, Veronika Butterweck, Matthias Hamburger. Development and full validation of an UPLC-MS/MS method for the determination of an anti-allergic indolinone derivative in rat plasma, and application to a preliminary pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Aug; 902(?):27-34. doi:
10.1016/j.jchromb.2012.06.009
. [PMID: 22770782] - Gustavo Bertol, Luzia Franco, Brás Heleno de Oliveira. HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimisation by factorial design.
Phytochemical analysis : PCA.
2012 Mar; 23(2):143-51. doi:
10.1002/pca.1335
. [PMID: 21809407] - Sunil Sarda, Chris Page, Kathryn Pickup, Timothy Schulz-Utermoehl, Ian Wilson. Diclofenac metabolism in the mouse: novel in vivo metabolites identified by high performance liquid chromatography coupled to linear ion trap mass spectrometry.
Xenobiotica; the fate of foreign compounds in biological systems.
2012 Feb; 42(2):179-94. doi:
10.3109/00498254.2011.607865
. [PMID: 21955289] - Martin Kubeš, Haibing Yang, Gregory L Richter, Yan Cheng, Ewa Młodzińska, Xia Wang, Joshua J Blakeslee, Nicola Carraro, Jan Petrášek, Eva Zažímalová, Klára Hoyerová, Wendy Ann Peer, Angus S Murphy. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis.
The Plant journal : for cell and molecular biology.
2012 Feb; 69(4):640-54. doi:
10.1111/j.1365-313x.2011.04818.x
. [PMID: 21992190] - Gang Chen, Jing Yang, Suo Gao, Hongping He, Shunlin Li, Yingtong Di, Ying Chang, Yang Lu, Xiaojiang Hao. Spiro[pyrrolidine-2,3'-oxindole] derivatives synthesized by novel regionselective 1,3-dipolar cycloadditions.
Molecular diversity.
2012 Feb; 16(1):151-6. doi:
10.1007/s11030-011-9342-1
. [PMID: 22134725] - Jialin Qu, Tianxing Gong, Bin Ma, Lin Zhang, Yoshihiro Kano, Dan Yuan. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.
Chemical & pharmaceutical bulletin.
2012; 60(1):23-30. doi:
10.1248/cpb.60.23
. [PMID: 22223371] - M E M Dolman, Stefan Harmsen, Ebel H E Pieters, Rolf W Sparidans, Marie Lacombe, Bálint Szokol, László Orfi, György Kéri, Gert Storm, Wim E Hennink, Robbert J Kok. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells.
International journal of nanomedicine.
2012; 7(?):417-33. doi:
10.2147/ijn.s26485
. [PMID: 22334775] - Joo-Hark Yi, Hyun-Jong Shin, Ho-Jung Kim. V2 receptor antagonist; tolvaptan.
Electrolyte & blood pressure : E & BP.
2011 Dec; 9(2):50-4. doi:
10.5049/ebp.2011.9.2.50
. [PMID: 22438856] - Fatimah Salim, Nor Hadiani Ismail, Khalijah Awang, Rohaya Ahmad. Rauniticine-allo-oxindole B and rauniticinic-allo acid B, new heteroyohimbine-type oxindole alkaloids from the stems of Malaysian Uncaria longiflora var. pteropoda.
Molecules (Basel, Switzerland).
2011 Aug; 16(8):6541-8. doi:
10.3390/molecules16086541
. [PMID: 21818057] - Kou Wang, Xiao-Yu Zhou, Yuan-Yuan Wang, Ming-Ming Li, Yin-Shan Li, Li-Yan Peng, Xiao Cheng, Yan Li, Yi-Ping Wang, Qin-Shi Zhao. Macrophyllionium and macrophyllines A and B, oxindole alkaloids from Uncaria macrophylla.
Journal of natural products.
2011 Jan; 74(1):12-5. doi:
10.1021/np1004938
. [PMID: 21070010] - Radosław Pilarski, Beata Filip, Joanna Wietrzyk, Mieczysław Kuraś, Krzysztof Gulewicz. Anticancer activity of the Uncaria tomentosa (Willd.) DC. preparations with different oxindole alkaloid composition.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2010 Dec; 17(14):1133-9. doi:
10.1016/j.phymed.2010.04.013
. [PMID: 20576410] - Mainen J Moshi, Donald F Otieno, Pamela K Mbabazi, Anke Weisheit. Ethnomedicine of the Kagera Region, north western Tanzania. Part 2: The medicinal plants used in Katoro Ward, Bukoba District.
Journal of ethnobiology and ethnomedicine.
2010 Jul; 6(?):19. doi:
10.1186/1746-4269-6-19
. [PMID: 20663166] - Oliviero Riggio, Guido Mannaioni, Lorenzo Ridola, Stefania Angeloni, Manuela Merli, Vincenzo Carlà, Filippo Maria Salvatori, Flavio Moroni. Peripheral and splanchnic indole and oxindole levels in cirrhotic patients: a study on the pathophysiology of hepatic encephalopathy.
The American journal of gastroenterology.
2010 Jun; 105(6):1374-81. doi:
10.1038/ajg.2009.738
. [PMID: 20125128] - Ijaz Ahmad, Fozia Ijaz, Itrat Fatima, Nisar Ahmad, Shilin Chen, Nighat Afza, Abdul Malik. Xanthine oxidase/tyrosinase inhibiting, antioxidant, and antifungal oxindole alkaloids from Isatis costata.
Pharmaceutical biology.
2010 Jun; 48(6):716-21. doi:
10.3109/13880200903271298
. [PMID: 20645747] - Wei Wang, Chao-Mei Ma, Masao Hattori. Metabolism of isorhynchophylline in rats detected by LC-MS.
Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.
2010; 13(1):27-37. doi:
10.18433/j33g60
. [PMID: 20456828] - Torsten Kniess, Ralf Bergmann, Manuela Kuchar, Jörg Steinbach, Frank Wuest. Synthesis and radiopharmacological investigation of 3-[4'-[(18)F]fluorobenzylidene]indolin-2-one as possible tyrosine kinase inhibitor.
Bioorganic & medicinal chemistry.
2009 Nov; 17(22):7732-42. doi:
10.1016/j.bmc.2009.09.038
. [PMID: 19822433] - Vivian Chagas da Silveira, Giovanni Finoto Caramori, Mariana Pedrinha Abbott, Marcos Brown Gonçalves, Helena Maria Petrilli, Ana Maria da Costa Ferreira. Oxindole-Schiff base copper(II) complexes interactions with human serum albumin: spectroscopic, oxidative damage, and computational studies.
Journal of inorganic biochemistry.
2009 Oct; 103(10):1331-41. doi:
10.1016/j.jinorgbio.2009.05.015
. [PMID: 19595461] - Dong-Jun Tang, Bo-Xiao Tang, Jin-Heng Li. Selective synthesis of 3-aryl quinolin-2(1H)-ones and 3-(1-arylmethylene)oxindoles involving a 2-fold arene C-H activation process.
The Journal of organic chemistry.
2009 Sep; 74(17):6749-55. doi:
10.1021/jo901314t
. [PMID: 19653624] - Luca Costantino, Daniela Barlocco. Ghrelin receptor modulators and their therapeutic potential.
Future medicinal chemistry.
2009 Apr; 1(1):157-77. doi:
10.4155/fmc.09.9
. [PMID: 21426074] - Mieczysław Kuraś, Radosław Pilarski, Julita Nowakowska, Alicja Zobel, Krzysztof Brzost, Justyna Antosiewicz, Krzysztof Gulewicz. Effect of Alkaloid-Free and Alkaloid-Rich preparations from Uncaria tomentosa bark on mitotic activity and chromosome morphology evaluated by Allium Test.
Journal of ethnopharmacology.
2009 Jan; 121(1):140-7. doi:
10.1016/j.jep.2008.10.023
. [PMID: 19027059] - B Billemont, J Medioni, L Taillade, D Helley, J B Meric, O Rixe, S Oudard. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib.
British journal of cancer.
2008 Nov; 99(9):1380-2. doi:
10.1038/sj.bjc.6604709
. [PMID: 18841151] - Katrin Schullehner, Regina Dick, Florian Vitzthum, Wilfried Schwab, Wolfgang Brandt, Monika Frey, Alfons Gierl. Benzoxazinoid biosynthesis in dicot plants.
Phytochemistry.
2008 Nov; 69(15):2668-77. doi:
10.1016/j.phytochem.2008.08.023
. [PMID: 18929374] - Shi Tang, Peng Peng, Ping Zhong, Jin-Heng Li. Palladium-catalyzed C-H functionalization of N-arylpropiolamides with aryliodonium salts: selective synthesis of 3-(1-arylmethylene)oxindoles.
The Journal of organic chemistry.
2008 Jul; 73(14):5476-80. doi:
10.1021/jo8008808
. [PMID: 18557647] - E García Prado, M D García Gimenez, R De la Puerta Vázquez, J L Espartero Sánchez, M T Sáenz Rodríguez. Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2007 Apr; 14(4):280-4. doi:
10.1016/j.phymed.2006.12.023
. [PMID: 17296291] - Itrat Fatima, Ijaz Ahmad, Itrat Anis, Abdul Malik, Nighat Afza. Isatinones A and B, new antifungal oxindole alkaloids from Isatis costata.
Molecules (Basel, Switzerland).
2007 Feb; 12(2):155-62. doi:
10.3390/12020155
. [PMID: 17846565] - Tobias Mohn, Olivier Potterat, Matthias Hamburger. Quantification of active principles and pigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS.
Planta medica.
2007 Feb; 73(2):151-6. doi:
10.1055/s-2007-967105
. [PMID: 17236114] - Hai-Hong Li, Xiu-Hua Zheng, Jin-Zhi Tan, Li-Li Chen, Hong Liu, Xiao-Min Luo, Xu Shen, Li-Ping Lin, Kai-Xian Chen, Jian Ding, Hua-Liang Jiang. Design, synthesis, antitumor evaluations and molecular modeling studies of novel 3,5-substituted indolin-2-one derivatives.
Acta pharmacologica Sinica.
2007 Jan; 28(1):140-52. doi:
10.1111/j.1745-7254.2007.00473.x
. [PMID: 17184594] - Toshinori Kagata, Shizuka Saito, Hideyuki Shigemori, Ayumi Ohsaki, Haruaki Ishiyama, Takaaki Kubota, Jun'ichi Kobayashi. Paratunamides A-D, oxindole alkaloids from Cinnamodendron axillare.
Journal of natural products.
2006 Oct; 69(10):1517-21. doi:
10.1021/np0602968
. [PMID: 17067176] - Richa Pandey, Subhash C Singh, Madan M Gupta. Heteroyohimbinoid type oxindole alkaloids from Mitragyna parvifolia.
Phytochemistry.
2006 Oct; 67(19):2164-9. doi:
10.1016/j.phytochem.2006.06.017
. [PMID: 16872649] - Hironori Fujiwara, Koh Iwasaki, Katsutoshi Furukawa, Takashi Seki, Mei He, Masahiro Maruyama, Naoki Tomita, Yukitsuka Kudo, Makoto Higuchi, Takaomi C Saido, Sumihiro Maeda, Akihiko Takashima, Masahiko Hara, Yasushi Ohizumi, Hiroyuki Arai. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's beta-amyloid proteins.
Journal of neuroscience research.
2006 Aug; 84(2):427-33. doi:
10.1002/jnr.20891
. [PMID: 16676329] - Mark J S Miller, Salahuddin Ahmed, Paul Bobrowski, Tariq M Haqqi. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1beta.
BMC complementary and alternative medicine.
2006 Apr; 6(?):13. doi:
10.1186/1472-6882-6-13
. [PMID: 16603065] - Thomas Mammone, Christina Akesson, David Gan, Vincent Giampapa, Ronald W Pero. A water soluble extract from Uncaria tomentosa (Cat's Claw) is a potent enhancer of DNA repair in primary organ cultures of human skin.
Phytotherapy research : PTR.
2006 Mar; 20(3):178-83. doi:
10.1002/ptr.1827
. [PMID: 16521105] - Richard E Staub, Bruce Onisko, Leonard F Bjeldanes. Fate of 3,3'-diindolylmethane in cultured MCF-7 human breast cancer cells.
Chemical research in toxicology.
2006 Mar; 19(3):436-42. doi:
10.1021/tx050325z
. [PMID: 16544949] - Kinzo Matsumoto, Ryo Morishige, Yukihisa Murakami, Michihisa Tohda, Hiromitsu Takayama, Iwao Sakakibara, Hiroshi Watanabe. Suppressive effects of isorhynchophylline on 5-HT2A receptor function in the brain: behavioural and electrophysiological studies.
European journal of pharmacology.
2005 Jul; 517(3):191-9. doi:
10.1016/j.ejphar.2005.05.015
. [PMID: 15963493] - Sofia Jürgensen, Sílvia Dalbó, Paul Angers, Adair Roberto Soares Santos, Rosa Maria Ribeiro-do-Valle. Involvement of 5-HT2 receptors in the antinociceptive effect of Uncaria tomentosa.
Pharmacology, biochemistry, and behavior.
2005 Jul; 81(3):466-77. doi:
10.1016/j.pbb.2005.04.004
. [PMID: 15907989] - Yezhou Sheng, Christina Akesson, Kristin Holmgren, Carl Bryngelsson, Vincent Giamapa, Ronald W Pero. An active ingredient of Cat's Claw water extracts identification and efficacy of quinic acid.
Journal of ethnopharmacology.
2005 Jan; 96(3):577-84. doi:
10.1016/j.jep.2004.10.002
. [PMID: 15619581] - Julien Fiot, Béatrice Baghdikian, Laurent Boyer, Valérie Mahiou, Nadine Azas, Monique Gasquet, Pierre Timon-David, Guy Balansard, Evelyne Ollivier. HPLC quantification of uncarine D and the anti-plasmodial activity of alkaloids from leaves of Mitragyna inermis (Willd.) O. Kuntze.
Phytochemical analysis : PCA.
2005 Jan; 16(1):30-3. doi:
10.1002/pca.806
. [PMID: 15688953] - Luis G Valerio, Gustavo F Gonzales. Toxicological aspects of the South American herbs cat's claw (Uncaria tomentosa) and Maca (Lepidium meyenii) : a critical synopsis.
Toxicological reviews.
2005; 24(1):11-35. doi:
10.2165/00139709-200524010-00002
. [PMID: 16042502] - Ricardo Reyes-Chilpa, Jesús Rivera, Martha Oropeza, Pilar Mendoza, Badia Amekraz, Christopher Jankowski, Maria Campos. Methanol extracts of Hamelia patens containing oxindole alkaloids relax KCl-induced contraction in rat myometrium.
Biological & pharmaceutical bulletin.
2004 Oct; 27(10):1617-20. doi:
10.1248/bpb.27.1617
. [PMID: 15467206] - Dwight D Flammia, Henry R Bateman, Joseph J Saady, Erik D Christensen. Tissue distribution of molidone in a multidrug overdose.
Journal of analytical toxicology.
2004 Sep; 28(6):533-6. doi:
10.1093/jat/28.6.533
. [PMID: 15516311] - Giuditta Cuccuru, Cinzia Lanzi, Giuliana Cassinelli, Graziella Pratesi, Monica Tortoreto, Giovanna Petrangolini, Ettore Seregni, Antonia Martinetti, Diletta Laccabue, Chiara Zanchi, Franco Zunino. Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma.
Journal of the National Cancer Institute.
2004 Jul; 96(13):1006-14. doi:
10.1093/jnci/djh184
. [PMID: 15240784] - Ji Ma, Sidney M Hecht. Javaniside, a novel DNA cleavage agent from Alangium javanicum having an unusual oxindole skeleton.
Chemical communications (Cambridge, England).
2004 May; ?(10):1190-1. doi:
10.1039/b402925a
. [PMID: 15136832] - Mariko Kitajima, Akiko Urano, Noriyuki Kogure, Hiromitsu Takayama, Norio Aimi. New oxindole alkaloids and iridoid from Carolina jasmine (Gelsemium sempervirens Ait. f.).
Chemical & pharmaceutical bulletin.
2003 Oct; 51(10):1211-4. doi:
10.1248/cpb.51.1211
. [PMID: 14519934] - Mariko Kitajima, Noriyuki Kogure, Kentaro Yamaguchi, Hiromitsu Takayama, Norio Aimi. Structure reinvestigation of gelsemoxonine, a constituent of Gelsemium elegans, reveals a novel, azetidine-containing indole alkaloid.
Organic letters.
2003 Jun; 5(12):2075-8. doi:
10.1021/ol0344725
. [PMID: 12790532] - M Sandoval, N N Okuhama, X J Zhang, L A Condezo, J Lao, F M Angeles', R A Musah, P Bobrowski, M J S Miller. Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2002 May; 9(4):325-37. doi:
10.1078/0944-7113-00117
. [PMID: 12120814] - Piyasena Hewawasam, Valentin K Gribkoff, Yadagiri Pendri, Steven I Dworetzky, Nicholas A Meanwell, Eduardo Martinez, Christopher G Boissard, Debra J Post-Munson, Joanne T Trojnacki, Krishnaswamy Yeleswaram, Lorraine M Pajor, Jay Knipe, Qi Gao, Robert Perrone, John E Starrett. The synthesis and characterization of BMS-204352 (MaxiPost) and related 3-fluorooxindoles as openers of maxi-K potassium channels.
Bioorganic & medicinal chemistry letters.
2002 Apr; 12(7):1023-6. doi:
10.1016/s0960-894x(02)00101-4
. [PMID: 11909708] - C Serradeil-Le Gal, J Wagnon, G Valette, G Garcia, M Pascal, J P Maffrand, G Le Fur. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.
Progress in brain research.
2002; 139(?):197-210. doi:
10.1016/s0079-6123(02)39017-4
. [PMID: 12436936] - Ji-Dong Gu, Yanzhen Fan, Hanchang Shi. Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms.
Marine pollution bulletin.
2002; 45(1-12):379-84. doi:
10.1016/s0025-326x(02)00091-7
. [PMID: 12398409] - J Nagamine, R Nagata, H Seki, N Nomura-Akimaru, Y Ueki, K Kumagai, M Taiji, H Noguchi. Pharmacological profile of a new orally active growth hormone secretagogue, SM-130686.
The Journal of endocrinology.
2001 Dec; 171(3):481-9. doi:
10.1677/joe.0.1710481
. [PMID: 11739014] - M Ganzera, I Muhammad, R A Khan, I A Khan. Improved method for the determination of oxindole alkaloids in Uncaria tomentosa by high performance liquid chromatography.
Planta medica.
2001 Jul; 67(5):447-50. doi:
10.1055/s-2001-15824
. [PMID: 11488460] - G W Krystal, S Honsawek, D Kiewlich, C Liang, S Vasile, L Sun, G McMahon, K E Lipson. Indolinone tyrosine kinase inhibitors block Kit activation and growth of small cell lung cancer cells.
Cancer research.
2001 May; 61(9):3660-8. doi:
. [PMID: 11325836]
- Y Yamasaki, K Miyoshi, N Oda, M Watanabe, H Miyake, J Chan, X Wang, L Sun, C Tang, G McMahon, K E Lipson. Weekly dosing with the platelet-derived growth factor receptor tyrosine kinase inhibitor SU9518 significantly inhibits arterial stenosis.
Circulation research.
2001 Mar; 88(6):630-6. doi:
10.1161/01.res.88.6.630
. [PMID: 11282898] - P B Bergqvist, R Carpenedo, G Apelqvist, F Moroni, F Bengtsson. Plasma and brain levels of oxindole in experimental chronic hepatic encephalopathy: effects of systemic ammonium acetate and L-tryptophan.
Pharmacology & toxicology.
1999 Sep; 85(3):138-43. doi:
10.1111/j.1600-0773.1999.tb00081.x
. [PMID: 10522754] - R Carpenedo, V Carlà, G Moneti, A Chiarugi, F Moroni. Identification and measurement of oxindole (2-indolinone) in the mammalian brain and other rat organs.
Analytical biochemistry.
1997 Jan; 244(1):74-9. doi:
10.1006/abio.1996.9854
. [PMID: 9025911]