Docetaxel (BioDeep_00000002562)

   

human metabolite Endogenous blood metabolite PANOMIX_OTCML-2023 Chemicals and Drugs


代谢物信息卡片


Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aR,6R,9S,11S,12S,12aS,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,4a,6,11-tetrahydroxy-8,12a,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR)-, hydrate (1:3)

化学式: C43H53NO14 (807.3466)
中文名称: 多烯紫杉醇
谱图信息: 最多检出来源 Homo sapiens(otcml) 3.54%

Reviewed

Last reviewed on 2024-08-09.

Cite this Page

Docetaxel. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/docetaxel (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000002562). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)OC12COC1CC(O)C1(C)C(=O)C(O)C3=C(C)C(OC(=O)C(O)C(N=C(O)OC(C)(C)C)c4ccccc4)CC(O)(C(OC(=O)c4ccccc4)C21)C3(C)C
InChI: InChI=1S/C43H53NO14/c1-22-26(55-37(51)32(48)30(24-15-11-9-12-16-24)44-38(52)58-39(3,4)5)20-43(53)35(56-36(50)25-17-13-10-14-18-25)33-41(8,34(49)31(47)29(22)40(43,6)7)27(46)19-28-42(33,21-54-28)57-23(2)45/h9-18,26-28,30-33,35,46-48,53H,19-21H2,1-8H3,(H,44,52)/t26-,27-,28+,30-,31+,32+,33-,35-,41+,42-,43+/m0/s1

描述信息

Docetaxel (sold under the brand name Taxotere) is a clinically well-established anti-mitotic chemotherapy medication (that is, it interferes with cell division). It is used mainly for the treatment of breast, ovarian, prostate, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of 1 mole docetaxel per mole tubulin in microtubules. Docetaxel has been FDA-approved to treat patients who have locally advanced, or metastatic breast, or non-small-cell lung cancer who have undergone anthracycline-based chemotherapy and failed to stop cancer progression or relapsed. Docetaxel has a European approval for use in hormone-refractory prostate cancer. Docetaxel is a chemotherapeutic agent and is a cytotoxic compound. It is effectively a biologically damaging drug. As with all chemotherapy, adverse effects are common and many varying side-effects have been documented. Because docetaxel is a cell-cycle specific agent, it is cytotoxic to all dividing cells in the body. This includes tumour cells as well as hair follicles, bone marrow, and other germ cells. For this reason, common chemotherapy side effects such as alopecia occur (this can sometimes be permanent). The drug company Sanofi Aventis claims that they do not routinely keep this data. A survey being conducted in northwest France aims to establish exactly how many patients are being disfigured in this way. Independent studies show it could be as high as 6.3\\\% which puts this ASE in the common and frequent classification. Docetaxel is mainly metabolized in the liver by the cytochrome P450 CYP3A4 and CYP3A5 subfamilies of isoenzymes. Metabolism is principally oxidative and at the tert-butylpropionate side chain, resulting first in an alcohol docetaxel (M2), which is then cyclized to three further metabolites (M1, M3, and M4). M1 and M3 are two diastereomeric hydroxyoxazolidinones and M4 is an oxazolidinedione. Phase II trials of 577 patients showed that docetaxel clearance is related to body surface area and plasma levels of hepatic enzyme alpha-1-acid glycoprotein. Docetaxel is of the chemotherapy drug class taxane and is a semi-synthetic analogue of paclitaxel (Taxol), an extract from the bark of the rare Pacific yew tree Taxus brevifolia. Due to the scarcity of paclitaxel, extensive research was carried out which lead to the formulation of docetaxel, an esterified product of 10-deacetylbaccatin III. It was extracted from the renewable and readily available European yew tree. Drug interactions may be the result of altered pharmacokinetics or pharmacodynamics due to one of the drugs involved. Cisplatin, dexamethasone, doxorubicin, etoposide, and vinblastine are all potentially co-administered with docetaxel and did not modify docetaxel plasma binding in phase II studies. Cisplatin is known to have a complex interaction with some CYPs and has, in some events, been shown to reduce docetaxel clearance by up to 25\\\%. Anticonvulsants induce some metabolic pathways relevant to docetaxel. CYP450 and CYP3A show increased expression in response to the use of anticonvulsants and the metabolism of docetaxel metabolite M4 is processed by these CYPs. A corresponding increase in clearance of M4 by 25\\\% is observed in patients taking phenytoin and phenobarbital, common anticonvulsants. STAMPEDE is a UK-based six-arm, five-stage, open-label randomized controlled trial involving more than 3000 men. Arms C and E of this trial involve administering docetaxel to men starting long-term hormone therapy for the first time. This could be newly diagnosed metastatic, non-metastatic, or high-risk, previously-treated prostate cancer. The trial tests the value of the drug earlier in the treatment pathway instead of waiting until it has become androgen-independent.
Docetaxel anhydrous is a tetracyclic diterpenoid that is paclitaxel with the N-benzyloxycarbonyl group replaced by N-tert-butoxycarbonyl, and the acetoxy group at position 10 replaced by a hydroxy group. It has a role as an antineoplastic agent, a photosensitizing agent and an antimalarial. It is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It derives from a hydride of a taxane.
Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high affinity in a 1:1 stoichiometric ratio
Docetaxel anhydrous is a Microtubule Inhibitor. The physiologic effect of docetaxel anhydrous is by means of Microtubule Inhibition.
Docetaxel is an antineoplastic agent that has a unique mechanism of action as an inhibitor of cellular mitosis and that currently plays a central role in the therapy of many solid tumors including breast and lung cancer. Docetaxel therapy is frequently associated with serum enzyme elevations which are usually transient and mild, but more importantly has been linked to rapid onset, severe hypersensitivity reactions that can be associated with acute hepatic necrosis, liver failure and death.
Docetaxel is a natural product found in Penicillium ubiquetum with data available.
Docetaxel is a semi-synthetic, second-generation taxane derived from a compound found in the European yew tree, Taxus baccata. Docetaxel displays potent and broad antineoplastic properties; it binds to and stabilizes tubulin, thereby inhibiting microtubule disassembly which results in cell- cycle arrest at the G2/M phase and cell death. This agent also inhibits pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and displays immunomodulatory and pro-inflammatory properties by inducing various mediators of the inflammatory response. Docetaxel has been studied for use as a radiation-sensitizing agent. (NCI04)
Docetaxel Anhydrous is the anhydrous form of docetaxel, a semisynthetic side-chain analogue of paclitaxel with antineoplastic property. Docetaxel binds specifically to the beta-tubulin subunit of microtubules and thereby antagonizes the disassembly of the microtubule proteins. This results in the persistence of aberrant microtubule structures and results in cell-cycle arrest and subsequent cell death.
Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of one mole docetaxel per mole tubulin in microtubules.
A semisynthetic analog of PACLITAXEL used in the treatment of locally advanced or metastatic BREAST NEOPLASMS and NON-SMALL CELL LUNG CANCER.
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators
D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
Same as: D07866
Docetaxel (RP-56976) is a microtubule?depolymerization inhibitor, with an IC50 of 0.2 μM. Docetaxel attenuates the effects of?bcl-2 and bcl-xL gene expression. Docetaxel arrests the cell cycle at G2/M and leads to cell apoptosis. Docetaxel has anti-cancer activity[1][3].

同义名列表

77 个代谢物同义名

Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aR,6R,9S,11S,12S,12aS,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,4a,6,11-tetrahydroxy-8,12a,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR)-, hydrate (1:3); Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,1313-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, trihydrate, (alphaR,betaS)-; Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR,betaS)-; Benzenepropanoic acid,1-dimethylethoxy)carbonyl]amino]-.alpha.-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-(acetyloxy)-12-(benzyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, (.alpha.R,.beta.S); [2aR-[2a?,4?,4a?,6?,9?(?R*,?S*),11?,12?,12a?,12b?]]-?-[[(1,1-Dimethylethoxy)carbonyl]amino]-?-hydroxy-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester benzenepropanoic acid; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl (aR,bS)-b-[[(1,1-dimethylethoxy)carbonyl]amino]-a-hydroxybenzenepropanoate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12b-acetoxy-9-(((2R,3S)-3-((tert-butoxycarbonyl)amino)-2-hydroxy-3-phenylpropanoyl)oxy)-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxet-12-yl benzoate; Benzenepropanoic acid, beta-(((1,1-dimethylethoxy)carbonyl)amino)-alpha-hydroxy-, 12b-(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; [(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-acetyloxy-1,9,12-trihydroxy-15-[(2R,3S)-2-hydroxy-3-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylpropanoyl]oxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-2-yl] benzoate; (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-(acetyloxy)-15-{[(2R,3S)-3-{[(tert-butoxy)carbonyl]amino}-2-hydroxy-3-phenylpropanoyl]oxy}-1,9,12-trihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl benzoate; (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4-(acetyloxy)-15-{[(2R,3S)-3-[(tert-butoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoyl]oxy}-1,9,12-trihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl benzoate; (2beta,5beta,7alpha,8alpha,10alpha,13alpha)-4-(acetyloxy)-13-({(2R,3S)-3-[(tert-butoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoyl}oxy)-1,7,10-trihydroxy-9-oxo-5,20-epoxytax-11-en-2-yl benzoate; (2alpha,5beta,7beta,10beta,13alpha)-4-(acetyloxy)-13-({(2R,3S)-3-[(tert-butoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoyl}oxy)-1,7,10-trihydroxy-9-oxo-5,20-epoxytax-11-en-2-yl benzoate; (1S,2S,3R,4S,5R,7S,8S,10R,13S)-4-Acetoxy-2-benzoyloxy-5,20-epoxy-1,7,10-trihydroxy-9-oxotax-11-en-13-yl (2R,3S)-3-(1,1-dimethylethyl)oxycarbonylamino-2-hydroxy-3-phenylpropanoate; (2R,3S)-N-CARBOXY-3-PHENYLISOSERINE, N-TERT-BUTYL ESTER, 13-ESTER WITH 5.BETA.,20-EPOXY-1,2.ALPHA.,4,7.BETA.,10.BETA.,13.ALPHA.-HEXAHYDROXYTAX-11-EN-9-ONE 4-ACETATE 2-BENZOATE; 4-(acetyloxy)-13alpha-({(2R,3S)-3-[(tert-butoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoyl}oxy)-1,7beta,10beta-trihydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate; 4-(acetyloxy)-13alpha-(((2R,3S)-3-((tert-butoxycarbonyl)amino)-2-hydroxy-3-phenylpropanoyl)oxy)-1,7beta,10beta-trihydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate; (2R,3S)-N-CARBOXY-3-PHENYLISOSERINE, N-TERT-BUTYL ESTER, 13-ESTER WITH 5beta,20-EPOXY-1,2alpha,4,7beta,10beta,13alpha-HEXAHYDROXYTAX-11-EN-9-ONE 4-ACETATE 2-BENZOATE; [acetoxy-[(2R,3S)-3-(tert-butoxycarbonylamino)-2-hydroxy-3-phenyl-propanoyl]oxy-trihydroxy-tetramethyl-oxo-[?]yl] benzoate; Anhydrous Docetaxel, European Pharmacopoeia (EP) Reference Standard; N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetylpaclitaxel; N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol; N Debenzoyl N tert butoxycarbonyl 10 deacetyltaxol; N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyltaxol; N-debenzoyl-N-Boc-10-deacetyl taxol; DOCETAXEL TRIHYDRATE (EP MONOGRAPH); Docetaxel, purum, >=97.0\\% (HPLC); DOCETAXEL ANHYDROUS [WHO-DD]; ZDZOTLJHXYCWBA-VCVYQWHSSA-N; ZDZOTLJHXYCWBA-VCVYQWHSSA-; DOCETAXEL (USP MONOGRAPH); DOCETAXEL (USP IMPURITY); DOCETAXEL (EP MONOGRAPH); Docetaxolum [INN-Latin]; DOCETAXEL TEVA PHARMA; Docetaxel, Trihydrate; docetaxel trihydrate; Docetaxel, anhydrous; Docetaxolum (Latin); Docetaxel (JAN/INN); docetaxel anhydrous; Docetaxel Winthrop; DOCETAXEL (USP-RS); Taxotere (Aventis); docetaxel hydrate; Docetaxel Accord; Docetaxel- Bio-X; DOCETAXEL [HSDB]; DOCETAXEL [JAN]; DOCETAXEL MYLAN; UNII-15H5577CQD; Taxoltere metro; Docetaxel [INN]; DOCETAXEL [MI]; Tox21_112781_1; Docetaxel Teva; Docetaxel Kabi; Docetaxel (TN); Taxotere (TN); Tox21_112781; Tox21_113088; Docetaxolum; docetaxelum; Docetaxel; docetaxol; Docefrez; Taxotere; CHEMBL92; taxotel; Docecad; L01CD02; Taxoel; EmDOC; TXL; LSM-4270; RP-56976; Docetaxel anhydrous



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(1)

  • Docetaxel Action Pathway: Adenosine triphosphate + Docetaxel + Water ⟶ Adenosine diphosphate + Docetaxel + Phosphate

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BRAF, BRCA1, CD34, CDKN2A, CLU, CYP3A4, DMPK, MAPK14, MAPK8, PDGFRA
Peripheral membrane protein 2 CLU, CYP1B1
Endoplasmic reticulum membrane 6 CYP17A1, CYP19A1, CYP1B1, CYP3A4, DMPK, PDGFRA
Mitochondrion membrane 1 CLU
Nucleus 9 BRAF, BRCA1, BRCA2, CDKN2A, CLU, MAPK14, MAPK8, PARP1, PDGFRA
cytosol 8 BRAF, BRCA2, CDKN2A, CLU, DMPK, MAPK14, MAPK8, PARP1
mitochondrial membrane 1 CLU
nuclear body 2 BRCA1, PARP1
centrosome 1 BRCA2
nucleoplasm 7 BRCA1, BRCA2, CDKN2A, MAPK14, MAPK8, PARP1, PDGFRA
Cell membrane 4 ABCC1, BRAF, DMPK, PDGFRA
Cytoplasmic side 2 CLU, DMPK
Multi-pass membrane protein 3 ABCC1, ABCC2, CYP19A1
Synapse 2 CLU, MAPK8
cell junction 1 PDGFRA
cell surface 2 ABCC2, CLU
glutamatergic synapse 2 BRAF, MAPK14
Golgi apparatus 2 CLU, PDGFRA
mitochondrial inner membrane 1 CLU
neuronal cell body 1 CYP17A1
postsynapse 1 BRAF
Cytoplasm, cytosol 3 CLU, DMPK, PARP1
Lysosome 1 CD34
Presynapse 1 BRAF
plasma membrane 7 ABCC1, ABCC2, BRAF, BRCA1, CD34, DMPK, PDGFRA
Membrane 10 ABCC1, ABCC2, BRCA1, BRCA2, CD34, CYP19A1, CYP1B1, CYP3A4, PARP1, PDGFRA
apical plasma membrane 3 ABCC1, ABCC2, CD34
axon 2 CYP17A1, MAPK8
basolateral plasma membrane 1 ABCC1
extracellular exosome 2 ABCC1, CLU
endoplasmic reticulum 3 CLU, CYP17A1, CYP19A1
extracellular space 3 CLU, GNRH1, IL6
perinuclear region of cytoplasm 2 CD34, CLU
intercellular canaliculus 1 ABCC2
mitochondrion 6 BRAF, CDKN2A, CLU, CYP1B1, MAPK14, PARP1
protein-containing complex 6 BRCA1, BRCA2, CDKN2A, CLU, PARP1, PDGFRA
intracellular membrane-bounded organelle 4 BRAF, CLU, CYP1B1, CYP3A4
Microsome membrane 4 CYP17A1, CYP19A1, CYP1B1, CYP3A4
Single-pass type I membrane protein 2 CD34, PDGFRA
Secreted 2 CLU, IL6
extracellular region 5 CD34, CLU, GNRH1, IL6, MAPK14
Mitochondrion outer membrane 1 DMPK
mitochondrial outer membrane 1 DMPK
mitochondrial matrix 1 CDKN2A
transcription regulator complex 1 PARP1
Cell projection, cilium 1 PDGFRA
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BRCA2
nuclear membrane 1 DMPK
external side of plasma membrane 2 CD34, PDGFRA
nucleolus 2 CDKN2A, PARP1
Apical cell membrane 1 ABCC2
Cytoplasm, perinuclear region 1 CLU
collagen-containing extracellular matrix 1 CLU
secretory granule 1 BRCA2
lateral plasma membrane 1 ABCC1
nuclear speck 1 MAPK14
Nucleus outer membrane 1 DMPK
nuclear outer membrane 1 DMPK
receptor complex 1 PDGFRA
neuron projection 1 BRAF
cilium 1 PDGFRA
chromatin 1 PARP1
Chromosome 2 BRCA1, PARP1
[Isoform 5]: Cytoplasm 1 BRCA1
Nucleus, nucleolus 2 CDKN2A, PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 2 BRCA2, PARP1
blood microparticle 1 CLU
site of double-strand break 1 PARP1
intercellular bridge 1 CD34
nuclear envelope 1 PARP1
microvillus 1 PDGFRA
lateral element 2 BRCA1, BRCA2
Nucleus, nucleoplasm 1 CDKN2A
cell body 1 BRAF
ubiquitin ligase complex 1 BRCA1
basal plasma membrane 2 ABCC1, CD34
[Isoform 4]: Cytoplasm 1 CLU
Microsome 1 CLU
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 1 IL6
male germ cell nucleus 1 BRCA1
platelet alpha granule lumen 1 CLU
XY body 1 BRCA1
Sarcoplasmic reticulum membrane 1 DMPK
Single-pass type IV membrane protein 1 DMPK
ribonucleoprotein complex 1 BRCA1
protein-DNA complex 1 PARP1
apical dendrite 1 CLU
basal dendrite 1 MAPK8
intracellular non-membrane-bounded organelle 1 BRCA1
DNA repair complex 2 BRCA1, BRCA2
BRCA1-C complex 1 BRCA1
site of DNA damage 1 PARP1
spherical high-density lipoprotein particle 1 CLU
[Isoform 1]: Secreted 1 CLU
interleukin-6 receptor complex 1 IL6
neurofibrillary tangle 1 CLU
Cytoplasmic vesicle, secretory vesicle, chromaffin granule 1 CLU
chromaffin granule 1 CLU
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
[Isoform 6]: Cytoplasm 1 CLU
perinuclear endoplasmic reticulum lumen 1 CLU
senescence-associated heterochromatin focus 1 CDKN2A
glomerular endothelium fenestra 1 CD34
BRCA1-A complex 1 BRCA1
BRCA1-B complex 1 BRCA1
BRCA1-BARD1 complex 1 BRCA1
gamma-tubulin ring complex 1 BRCA1
nuclear ubiquitin ligase complex 2 BRCA1, BRCA2
BRCA2-MAGE-D1 complex 1 BRCA2
[Isoform smARF]: Mitochondrion 1 CDKN2A


文献列表

  • Lin Chen, Yu-Xin Xu, Yuan-Shuo Wang, Ying-Ying Ren, Yi-Min Chen, Cheng Zheng, Tian Xie, Ying-Jie Jia, Jian-Liang Zhou. Integrative Chinese-Western medicine strategy to overcome docetaxel resistance in prostate cancer. Journal of ethnopharmacology. 2024 Sep; 331(?):118265. doi: 10.1016/j.jep.2024.118265. [PMID: 38677579]
  • Xingxiang Pu, Zemin Xiao, Jia Li, Zhijun Wu, Zhongxia Ma, Jie Weng, Maoliang Xiao, Yanhua Chen, Yongqing Cao, Peiguo Cao, Qianzhi Wang, Yan Xu, Kang Li, Bolin Chen, Fang Xu, Liyu Liu, Yi Kong, Hui Zhang, Huaxin Duan, Lin Wu. Anlotinib plus docetaxel vs. docetaxel alone for advanced non-small-cell lung cancer patients who failed first-line treatment: A multicenter, randomized phase II trial. Lung cancer (Amsterdam, Netherlands). 2024 May; 191(?):107538. doi: 10.1016/j.lungcan.2024.107538. [PMID: 38552544]
  • Allice Santos Cruz Veras, Victor Rogério Garcia Batista, Rafael Ribeiro Correia, Maria Eduarda de Almeida Tavares, Rafael Jesus Gonçalves Rubira, Elaine Rufo Tavares, Inês Cristina Giometti, Raul Cavalcante Maranhão, Giovana Rampazzo Teixeira. Integrated aerobic exercise with LDE-docetaxel treatment: a novel approach to combat prostate cancer progression. Scientific reports. 2024 04; 14(1):9626. doi: 10.1038/s41598-024-60138-y. [PMID: 38671015]
  • Haohui Lin, Manhon Chung, Jingchun Sun, Yi Yang, Li Zhang, Xiaohua Pan, Minghui Wei, Sa Cai, Yu Pan. Ganoderma spore lipid ameliorates docetaxel, cisplatin, and 5-fluorouracil chemotherapy-induced damage to bone marrow mesenchymal stem cells and hematopoiesis. BMC complementary medicine and therapies. 2024 Apr; 24(1):158. doi: 10.1186/s12906-024-04445-x. [PMID: 38610025]
  • Poonam Yadav, Kajal Rana, Viviani Nardini, Ali Khan, Trishna Pani, Animesh Kar, Dolly Jain, Ruchira Chakraborty, Ragini Singh, Somesh K Jha, Devashish Mehta, Harsh Sharma, Ravi Datta Sharma, S V S Deo, Sagar Sengupta, Veena S Patil, Lúcia Helena Faccioli, Ujjaini Dasgupta, Avinash Bajaj. Engineered nanomicelles inhibit the tumour progression via abrogating the prostaglandin-mediated immunosuppression. Journal of controlled release : official journal of the Controlled Release Society. 2024 Apr; 368(?):548-565. doi: 10.1016/j.jconrel.2024.03.009. [PMID: 38462044]
  • Junguo Feng, Xiufang Zhang, Duxing Li, Menglin Zhang, Ting Liu. Effect of docetaxel + tigio capsule on serum tumor markers and immune level in patients with advanced cervical cancer. Panminerva medica. 2024 Mar; 66(1):83-84. doi: 10.23736/s0031-0808.21.04581-x. [PMID: 34761890]
  • Yang Liu, Jia-Yu Cai, Yang Liu, Lu Zhang, Rui-Bo Guo, Xue-Tao Li, Ling-Yue Ma, Liang Kong. Borneol-modified docetaxel plus tetrandrine micelles for treatment of drug-resistant brain glioma. Drug development and industrial pharmacy. 2024 Jan; ?(?):1-15. doi: 10.1080/03639045.2024.2302886. [PMID: 38235554]
  • Jianyun Xie, Linjie Lu, Jiali Zhang, Qirui Li, Weidong Chen. CircTHSD4 promotes the malignancy and docetaxel (DTX) resistance in prostate cancer by regulating miR-203/HMGA2 axis. Oncology research. 2024; 32(3):529-544. doi: 10.32604/or.2023.031511. [PMID: 38361751]
  • Yinan Wang, WeiYi Cheng, Jingjing Zhu, Li He, WeiYe Ren, Dandan Bao, Ji-Gang Piao. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Jan; 170(?):116084. doi: 10.1016/j.biopha.2023.116084. [PMID: 38157645]
  • Xianchao Sun, Ying Zhang, Shiyong Xin, Liang Jin, Qiong Cao, Hong Wang, Keyi Wang, Xiang Liu, Chaozhi Tang, Weiyi Li, Ziyao Li, Xiaofei Wen, Guosheng Yang, Changcheng Guo, Zhiyu Liu, Lin Ye. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer science. 2023 Dec; ?(?):. doi: 10.1111/cas.16040. [PMID: 38115797]
  • Zhiya Zhang, Yin Liao, Peiyou Zhao, Xinwei Chen, Yunfei Liu, Ji Wu, Hongbin Zuo. Hypoxia-based critical gene biomarkers as prognostic reporters for gastric adenocarcinoma. Environmental toxicology. 2023 Dec; ?(?):. doi: 10.1002/tox.24064. [PMID: 38073300]
  • Tamara Zwain, Jane Elizabeth Alder, Suha Zwayen, Andrew Shaw, Andrea J Burrow, Kamalinder K Singh. Overcoming biological barriers BBB/BBTB by designing PUFA functionalised lipid-based nanocarriers for glioblastoma targeted therapy. Biomaterials advances. 2023 Dec; 155(?):213660. doi: 10.1016/j.bioadv.2023.213660. [PMID: 37976832]
  • Farzaneh Motafeghi, Parham Mortazavi, Amir Hossein Salman Mahiny, Mohammad Mehdi Abtahi, Mohammad Shokrzadeh. The role of ginger's extract and N-acetylcysteine against docetaxel-induced oxidative stress and genetic disorder. Drug and chemical toxicology. 2023 Nov; 46(4):617-624. doi: 10.1080/01480545.2022.2075377. [PMID: 35575100]
  • Thomas McKaig, Keiran Logan, Heather Nesbitt, Bridgeen Callan, Stephanie McKeown, Joe M O'Sullivan, Paul Kelly, Declan O'Rourke, Anthony P McHale, John F Callan. Ultrasound targeted microbubble destruction using docetaxel and Rose Bengal loaded Microbubbles for targeted Chemo-Sonodynamic therapy treatment of prostate cancer. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2023 Nov; 192(?):196-205. doi: 10.1016/j.ejpb.2023.10.012. [PMID: 37858804]
  • Fangqian Sui, Zengjun Fang, Lingjun Li, Xinhuan Wan, Yongqing Zhang, Xiaoqing Cai. pH-triggered 'PEG' sheddable and folic acid-targeted nanoparticles for docetaxel delivery in breast cancer treatment. International journal of pharmaceutics. 2023 Sep; 644(?):123293. doi: 10.1016/j.ijpharm.2023.123293. [PMID: 37541534]
  • Yu Ri Seo, Junghyeon Lee, Han Suk Ryu, EunHee G Kim, So Hyun Kim, Jieun Jeong, Hyeryeon Jung, YeoJin Jung, Han Byeol Kim, Yeon Hui Jo, Yeong Dong Kim, Min-Sun Jin, Yong Yook Lee, Kristine M Kim, Eugene C Yi. Lateral interactions between CD276 and CD147 are essential for stemness in breast cancer: a novel insight from proximal proteome analysis. Scientific reports. 2023 08; 13(1):14242. doi: 10.1038/s41598-023-41416-7. [PMID: 37648771]
  • Qianqian Chen, Jinhe Zhang, Mutu Huang, Peiqi Wang, Xiao Zhang, Mingjun Ma. Construction of 131I-RGDyC-PEG-PAMAM-DTX targeted drug delivery system and study of its physicochemical properties and biological activity. Hellenic journal of nuclear medicine. 2023 Aug; ?(?):. doi: 10.1967/s002449912574. [PMID: 37527047]
  • Mingxiao Liu, Di Zhang, Dongqiang Wang, Xiaodong Wu, Ying Zhang, Jigang Yin, Guan Zhu. Cost-effective In vivo and In vitro Mouse Models for Evaluating Anti-Cryptosporidial Drug Efficacy: Assessing Vorinostat, Docetaxel and Baicalein. The Journal of infectious diseases. 2023 Jul; ?(?):. doi: 10.1093/infdis/jiad243. [PMID: 37418629]
  • Yingqiu Song, Shaobing Wang. Melatonin synergistically enhances docetaxel induced endoplasmic reticulum stress to promote apoptosis by suppressing NF-κB activation in cervical cancer. Medical oncology (Northwood, London, England). 2023 Jul; 40(8):219. doi: 10.1007/s12032-023-02087-6. [PMID: 37395921]
  • Swati Korake, C Bothiraja, Atmaram Pawar. Design, development, and in-vitro/in-vivo evaluation of Docetaxel-loaded PEGylated Solid Lipid Nanoparticles in Prostate Cancer Therapy. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2023 Jun; ?(?):. doi: 10.1016/j.ejpb.2023.05.020. [PMID: 37270157]
  • Bingye Shi, Wei Zhang, Tao Wang, Zhenyu Cui. The therapeutic and prognostic role of cuproptosis-related genes in triple negative breast cancer. BMC bioinformatics. 2023 May; 24(1):223. doi: 10.1186/s12859-023-05348-3. [PMID: 37259036]
  • Iera Hernandez-Unzueta, Aitor Benedicto, Uxue Telleria, Eduardo Sanz, Joana Márquez. Improving the Antitumor Effect of Chemotherapy with Ocoxin as a Novel Adjuvant Agent to Treat Prostate Cancer. Nutrients. 2023 May; 15(11):. doi: 10.3390/nu15112536. [PMID: 37299500]
  • Bao Liu, Qian Yang, Ying Cheng, Miao Liu, Qifeng Ji, Bangle Zhang, Zhifu Yang, Siyuan Zhou, Daozhou Liu. Calcium phosphate hybrid micelles inhibit orthotopic bone metastasis from triple negative breast cancer by simultaneously killing cancer cells and reprogramming the microenvironment of bone resorption and immunosuppression. Acta biomaterialia. 2023 May; ?(?):. doi: 10.1016/j.actbio.2023.05.038. [PMID: 37236576]
  • Shruti Rawal, Shubham Khot, Vivek Bora, Bhoomika Patel, Mayur M Patel. Surface-modified nanoparticles of docetaxel for chemotherapy of lung cancer: An intravenous to oral switch. International journal of pharmaceutics. 2023 Apr; 636(?):122846. doi: 10.1016/j.ijpharm.2023.122846. [PMID: 36921744]
  • Siyan Zhang, Xingyao Zhang, Dong Zhang, Liang Wei, Bin Xiong, Qi Meng, Shougang Jiang. Synergistic effect of docetaxel and gambogic acid on bone metastasis of lung cancer. Bulletin du cancer. 2023 Mar; ?(?):. doi: 10.1016/j.bulcan.2023.02.007. [PMID: 36890055]
  • Mohamed Dawoud, Mariam Mojally, Randa Abdou, Hany G Attia. Comparative study on the performance of monoolein cubic nanoparticles and trimyristin solid lipid nanoparticles as carriers for docetaxel. Pharmaceutical development and technology. 2023 Mar; 28(3-4):277-287. doi: 10.1080/10837450.2023.2191274. [PMID: 36919494]
  • Mehrdad Hashemi, Mohammad Arad Zandieh, Yasmin Talebi, Parham Rahmanian, Sareh Sadat Shafiee, Melina Maghsodlou Nejad, Roghayeh Babaei, Farzaneh Hasani Sadi, Romina Rajabi, Zahra Oryan Abkenar, Shamin Rezaei, Jun Ren, Noushin Nabvavi, Ramin Khorrami, Mohsen Rashidi, Kiavash Hushmandi, Maliheh Entezari, Afshin Taheriazam. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Feb; 160(?):114392. doi: 10.1016/j.biopha.2023.114392. [PMID: 36804123]
  • Ian Geddes Berlin, Charity Conlin Jennings, Spencer Shin, Jason Kenealey. Utilizing mixture design response surface methodology to determine effective combinations of plant derived compounds as prostate cancer treatments. Cancer reports (Hoboken, N.J.). 2023 Feb; ?(?):e1790. doi: 10.1002/cnr2.1790. [PMID: 36772872]
  • Xingkang Jiang, Yong Xu, Ranlu Liu, Shanqi Guo. Exosomal lincROR promotes docetaxel resistance in prostate cancer through a β-catenin/HIF-1α positive feedback loop. Molecular cancer research : MCR. 2023 Feb; ?(?):. doi: 10.1158/1541-7786.mcr-22-0458. [PMID: 36763128]
  • Bin Lai, Xi Ouyang, Shengxun Mao, Jiaqin Cao, Honglang Li, Song Li, Jiwei Wang. Target tumor therapy in human gastric cancer cells through the combination of docetaxel-loaded cationic lipid microbubbles and ultrasound-triggered microbubble destruction. Functional & integrative genomics. 2023 Feb; 23(1):59. doi: 10.1007/s10142-022-00952-7. [PMID: 36757623]
  • Jiling Feng, Zhichao Xi, Xue Jiang, Yang Li, Wan Najbah Nik Nabil, Mengfan Liu, Zejia Song, Xiaoqiong Chen, Hua Zhou, Qihan Dong, Hongxi Xu. Saikosaponin A enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. Cancer letters. 2023 Feb; 554(?):216011. doi: 10.1016/j.canlet.2022.216011. [PMID: 36442771]
  • Andrew Hillowe, Chris Gordon, Liqun Wang, Robert C Rizzo, Lloyd C Trotman, Iwao Ojima, Agnieszka Bialkowska, Martin Kaczocha. Fatty acid binding protein 5 regulates docetaxel sensitivity in taxane-resistant prostate cancer cells. PloS one. 2023; 18(10):e0292483. doi: 10.1371/journal.pone.0292483. [PMID: 37796964]
  • Hongjun Zhao, Tong Wu, Zehao Luo, Qinyao Huang, Sihua Zhu, Chunling Li, Zubing Zhang, Jiahao Zhang, Jianwen Zeng, Yuying Zhang. Construction and validation of a fatty acid metabolism-related gene signature for predicting prognosis and therapeutic response in patients with prostate cancer. PeerJ. 2023; 11(?):e14854. doi: 10.7717/peerj.14854. [PMID: 36778142]
  • Fabiola Vieira de Carvalho, Ligia Nunes de Morais Ribeiro, Ludmilla David de Moura, Gustavo Henrique Rodrigues da Silva, Hery Mitsutake, Talita Cesarim Mendonça, Gabriela Geronimo, Marcia Cristina Breitkreitz, Eneida de Paula. Docetaxel Loaded in Copaiba Oil-Nanostructured Lipid Carriers as a Promising DDS for Breast Cancer Treatment. Molecules (Basel, Switzerland). 2022 Dec; 27(24):. doi: 10.3390/molecules27248838. [PMID: 36557969]
  • Xiangyu Zhang, Qingbin Liu, Tingting Zhang, Pei Gao, Hui Wang, Lu Yao, Jingwen Huang, Shulong Jiang. Bone-targeted nanoplatform enables efficient modulation of bone tumor microenvironment for prostate cancer bone metastasis treatment. Drug delivery. 2022 Dec; 29(1):889-905. doi: 10.1080/10717544.2022.2050845. [PMID: 35285760]
  • Ju Jin, Darren C Holland, Anthony R Carroll, Matthew Zunk. Echiumin E, an Aryl Dihydronaphthalene Lignan from the Australian Invasive Plant Paterson's Curse (Echium plantagineum). Journal of natural products. 2022 10; 85(10):2474-2479. doi: 10.1021/acs.jnatprod.2c00151. [PMID: 36126331]
  • Mitra Behroozaghdam, Maryam Dehghani, Amirhossein Zabolian, Davood Kamali, Salar Javanshir, Farzaneh Hasani Sadi, Mehrdad Hashemi, Teimour Tabari, Mohsen Rashidi, Sepideh Mirzaei, Atefeh Zarepour, Ali Zarrabi, Danielle De Greef, Anupam Bishayee. Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cellular and molecular life sciences : CMLS. 2022 Oct; 79(11):539. doi: 10.1007/s00018-022-04551-4. [PMID: 36194371]
  • Hongchang Li, Xianhao Sun, Jindong Li, Weiyan Liu, Gaofeng Pan, Anwei Mao, Jiazhe Liu, Qing Zhang, Longhua Rao, Xiaofeng Xie, Xia Sheng. Hypoxia induces docetaxel resistance in triple-negative breast cancer via the HIF-1α/miR-494/Survivin signaling pathway. Neoplasia (New York, N.Y.). 2022 10; 32(?):100821. doi: 10.1016/j.neo.2022.100821. [PMID: 35985176]
  • Ann Mari Holsæter, Kristina Wizgird, Iselin Karlsen, Jeanette Frimand Hemmingsen, Martin Brandl, Nataša Škalko-Basnet. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition-A formulation screening study. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2022 Oct; 177(?):106267. doi: 10.1016/j.ejps.2022.106267. [PMID: 35872073]
  • Jiwei Zhang, Shengli Li, Jianian Zhang, Wen Zhang, Jiawen Jiang, Hao Wu, Enjiang Wu, Yutao Feng, Li Yang, Zhe Li. Docetaxel resistance-derived LINC01085 contributes to the immunotherapy of hormone-independent prostate cancer by activating the STING/MAVS signaling pathway. Cancer letters. 2022 10; 545(?):215829. doi: 10.1016/j.canlet.2022.215829. [PMID: 35868534]
  • Wucheng Wen, Pengbo Guo, Hui Yi Xue, Ho Lun Wong. Development of local injectable, bone-targeting nanocarriers of triptolide for treatment of bone-only metastasis. International journal of pharmaceutics. 2022 Sep; 625(?):122092. doi: 10.1016/j.ijpharm.2022.122092. [PMID: 35985525]
  • Jiaxuan Xia, Shuya Zhang, Ru Zhang, Anni Wang, Ying Zhu, Meichen Dong, Shaojie Ma, Chao Hong, Shengyao Liu, Dan Wang, Jianxin Wang. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. Journal of nanobiotechnology. 2022 Sep; 20(1):414. doi: 10.1186/s12951-022-01623-2. [PMID: 36109762]
  • Chu-Tong Tian, Jing-Jing Guo, Yi-Fan Miao, He-Lin Wang, Qing Ye, Chun-Lin Guo, Ming-Yang Zhang, Zhong-Gui He, Jin Sun. Long chain triglyceride-lipid formulation promotes the oral absorption of the lipidic prodrugs through coincident intestinal behaviors. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2022 Jul; 176(?):122-132. doi: 10.1016/j.ejpb.2022.05.015. [PMID: 35643367]
  • T Elumalai, C Barker, T Elliott, J Malik, A Tran, A Hudson, Y P Song, K Patel, J Lyons, P Hoskin, A Choudhury, H Mistry. Translation of Prognostic and Pharmacodynamic Biomarkers from Trial to Non-trial Patients with Metastatic Castration-resistant Prostate Cancer Treated with Docetaxel. Clinical oncology (Royal College of Radiologists (Great Britain)). 2022 07; 34(7):e291-e297. doi: 10.1016/j.clon.2022.01.040. [PMID: 35314092]
  • Weibo Zhong, Kaihui Wu, Zining Long, Xumin Zhou, Chuanfan Zhong, Shuo Wang, Houhua Lai, Yufei Guo, Daojun Lv, Jianming Lu, Xiangming Mao. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome. 2022 06; 10(1):94. doi: 10.1186/s40168-022-01289-w. [PMID: 35710492]
  • Elisa Aranda, José A Teruel, Antonio Ortiz, María Dolores Pérez-Cárceles, Francisco J Aranda. Interaction of Docetaxel with Phosphatidylcholine Membranes: A Combined Experimental and Computational Study. The Journal of membrane biology. 2022 06; 255(2-3):277-291. doi: 10.1007/s00232-022-00219-z. [PMID: 35175383]
  • Marit A C Vermunt, Merel van Nuland, Lisa T van der Heijden, Hilde Rosing, Jos H Beijnen, Andries M Bergman. Comparison of docetaxel pharmacokinetics between castration-resistant and hormone-sensitive metastatic prostate cancer patients. Cancer chemotherapy and pharmacology. 2022 Jun; 89(6):785-793. doi: 10.1007/s00280-022-04433-3. [PMID: 35467095]
  • Lianhua Song, Xiao-Wen Chen, Yu Liu, Hao Wang, Jian-Qi Li. Synthetic polymer material modified by d-peptide and its targeted application in the treatment of non-small cell lung cancer. International journal of pharmaceutics. 2022 May; 619(?):121651. doi: 10.1016/j.ijpharm.2022.121651. [PMID: 35288222]
  • M C Cursano, V Conteduca, E Scarpi, G Gurioli, C Casadei, S Gargiulo, A Altavilla, C Lolli, B Vincenzi, G Tonini, D Santini, U De Giorgi. Grade group system and plasma androgen receptor status in the first line treatment for metastatic castration resistant prostate cancer. Scientific reports. 2022 05; 12(1):7319. doi: 10.1038/s41598-022-10751-6. [PMID: 35513478]
  • Liying Wang, Xinru You, Chunlei Dai, Yifen Fang, Jun Wu. Development of poly(p-coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials science. 2022 May; 10(9):2263-2274. doi: 10.1039/d2bm00027j. [PMID: 35362499]
  • Yiting Shen, Mingyu Wang, Hong Wang, Juan Zhou, Jinghua Chen. Multifunctional Human Serum Albumin Fusion Protein as a Docetaxel Nanocarrier for Chemo-photothermal Synergetic Therapy of Ovarian Cancer. ACS applied materials & interfaces. 2022 May; 14(17):19907-19917. doi: 10.1021/acsami.2c03687. [PMID: 35441508]
  • Lirui Jia, Ying Liu, Meng Li, Yongjun Wang, Zhonggui He. Direct comparison of two kinds of linoleic acid-docetaxel derivatives: in vitro cytotoxicity and in vivo antitumor activity. Drug delivery and translational research. 2022 05; 12(5):1209-1218. doi: 10.1007/s13346-021-01010-8. [PMID: 34309802]
  • Leonardo Delello Di Filippo, Jonatas Lobato Duarte, Juliana Hofstätter Azambuja, Rubia Isler Mancuso, Marcela Tavares Luiz, Victor Hugo Sousa Araújo, Ingrid Delbone Figueiredo, Lucas Barretto-de-Souza, Rafael Miguel Sábio, Estela Sasso-Cerri, Amanda Martins Baviera, Carlos C Crestani, Sara Teresinha Ollala Saad, Marlus Chorilli. Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression. International journal of pharmaceutics. 2022 Apr; 618(?):121682. doi: 10.1016/j.ijpharm.2022.121682. [PMID: 35307470]
  • Brijesh Shah, Xiaowei Dong. Design and Evaluation of Two-Step Biorelevant Dissolution Methods for Docetaxel Oral Formulations. AAPS PharmSciTech. 2022 Apr; 23(5):113. doi: 10.1208/s12249-022-02256-2. [PMID: 35441281]
  • Blossom Mak, Hui-Ming Lin, Edmond M Kwan, Heidi Fettke, Ben Tran, Ian D Davis, Kate Mahon, Martin R Stockler, Karen Briscoe, Gavin Marx, Alison Zhang, Megan Crumbaker, Winston Tan, Kevin Huynh, Thomas G Meikle, Natalie A Mellett, Andrew J Hoy, Pan Du, Jianjun Yu, Shidong Jia, Anthony M Joshua, David J Waugh, Lisa M Butler, Manish Kohli, Peter J Meikle, Arun A Azad, Lisa G Horvath. Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC medicine. 2022 03; 20(1):112. doi: 10.1186/s12916-022-02298-0. [PMID: 35331214]
  • Haisong Tan, Yanlei Liu, Nan Hou, Shengsheng Cui, Bin Liu, Shanshan Fan, Guopeng Yu, Chao Han, Dachao Zheng, Wenzhi Li, Yushan Liu, Bin Xu, Zhong Wang, Daxiang Cui. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta biomaterialia. 2022 03; 141(?):408-417. doi: 10.1016/j.actbio.2022.01.012. [PMID: 35032718]
  • Alexane Lere-Chevaleyre, Maureen Bernadach, Céline Lambert, Lucie Cassagnes, Mathilde Puechmaille, Thierry Mom, Laurent Gilain, Michel Lapeyre, Yves Boirie, Julian Biau, Nicolas Saroul. Toxicity of induction chemotherapy in head and neck cancer: The central role of skeletal muscle mass. Head & neck. 2022 03; 44(3):681-690. doi: 10.1002/hed.26954. [PMID: 34918416]
  • Xingkang Jiang, Shanqi Guo, Shuo Wang, Yangyi Zhang, Haojie Chen, Yong Wang, Ranlu Liu, Yuanjie Niu, Yong Xu. EIF4A3-Induced circARHGAP29 Promotes Aerobic Glycolysis in Docetaxel-Resistant Prostate Cancer through IGF2BP2/c-Myc/LDHA Signaling. Cancer research. 2022 Mar; 82(5):831-845. doi: 10.1158/0008-5472.can-21-2988. [PMID: 34965937]
  • Aleena Banerji, Anna R Wolfson, Lacey B Robinson, Aubree E McMahon, Amelia S Cogan, Rebecca R Saff, Kimberly G Blumenthal. COVID-19 vaccines tolerated in patients with paclitaxel and docetaxel allergy. Allergy. 2022 03; 77(3):1048-1051. doi: 10.1111/all.15178. [PMID: 34779000]
  • Xiangwei Yang, Hong Chen, Duanya Xu, Xianju Chen, Yamei Li, Jun Tian, Dongwen Wang, Jun Pang. Efficacy and safety of Androgen Deprivation Therapy (ADT) combined with modified docetaxel chemotherapy versus ADT combined with standard docetaxel chemotherapy in patients with metastatic castration-resistant prostate cancer: study protocol for a multicentre prospective randomized controlled trial. BMC cancer. 2022 Feb; 22(1):177. doi: 10.1186/s12885-022-09276-y. [PMID: 35172779]
  • Dávid Keresztes, Anita Csizmarik, Nikolett Nagy, Orsolya Módos, Tamás Fazekas, Thilo Bracht, Barbara Sitek, Kathrin Witzke, Martin Puhr, Sabina Sevcenco, Gero Kramer, Shahrokh Shariat, Zsófia Küronya, László Takács, Ilona Tornyi, József Lázár, Boris Hadaschik, András Lászik, Miklós Szűcs, Péter Nyirády, Tibor Szarvas. Comparative proteome analysis identified CD44 as a possible serum marker for docetaxel resistance in castration-resistant prostate cancer. Journal of cellular and molecular medicine. 2022 02; 26(4):1332-1337. doi: 10.1111/jcmm.17141. [PMID: 34970839]
  • Zahra Shakib, Asma Mahmoudi, Seyedeh Alia Moosavian, Bizhan Malaekeh-Nikouei. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor. Drug development and industrial pharmacy. 2022 Feb; 48(2):69-78. doi: 10.1080/03639045.2022.2095398. [PMID: 35758194]
  • Shuichi Hironaka, Ryo Sadachi, Nozomu Machida, Satoru Iwasa, Yasuhide Yamada, Mitsuru Sasako, Takaki Yoshikawa, Narikazu Boku, Masanori Terashima. Association of renal function with the safety and efficacy of cisplatin plus S-1 therapy and docetaxel plus cisplatin plus S-1 therapy in patients with advanced gastric cancer: an exploratory analysis of JCOG1013. Japanese journal of clinical oncology. 2022 Jan; 52(1):14-23. doi: 10.1093/jjco/hyab160. [PMID: 34668562]
  • Ning Wang, Fengying Xiao, Hua Shao, Shuai Shi, Yanling Zhou. Clinical Efficacy of Yiqi Yangyin Decoction Combined with Docetaxel on Advanced Ovarian Cancer and the Effect on the Levels of Serum Markers VEGF, HE4, and CA125. Journal of healthcare engineering. 2022; 2022(?):8401202. doi: 10.1155/2022/8401202. [PMID: 35368946]
  • Xiaowei Wang, Yaxuan Gu, Qi Li, Yapeng Xu, Yifan Shi, Zheran Wang, Mingyu Xia, Ji Li, Dongkai Wang. Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property. Colloids and surfaces. B, Biointerfaces. 2022 Jan; 209(Pt 2):112164. doi: 10.1016/j.colsurfb.2021.112164. [PMID: 34735859]
  • Qi Gao, Caifeng Zhang, Zhichao Dong, Yan Guo, Li Zhang. Effect and Prognosis Factors of Combining Laparoscopic Radical Resection of Colon Adenocarcinoma with Docetaxel Therapy in Treating Middle and Advanced Colon Adenocarcinoma. Computational intelligence and neuroscience. 2022; 2022(?):6122261. doi: 10.1155/2022/6122261. [PMID: 35669650]
  • Mohamed Dawoud, Randa Abdou. Ion exchange column technique as a novel method for evaluating the release of docetaxel from different lipid nanoparticles. Drug delivery and translational research. 2022 01; 12(1):282-293. doi: 10.1007/s13346-021-00937-2. [PMID: 33768474]
  • Masaya Jimbo, Jack R Andrews, Mohamed E Ahmed, Ayca Dundar, R Jeffrey Karnes, Alan H Bryce, Ayse T Kendi, Eugene D Kwon, Val J Lowe, Michael S Bold. Prognostic role of 11C-choline PET/CT scan in patients with metastatic castrate resistant prostate cancer undergoing primary docetaxel chemotherapy. The Prostate. 2022 01; 82(1):41-48. doi: 10.1002/pros.24246. [PMID: 34633087]
  • Na Qi, Shangqian Zhang, Xiantai Zhou, Wenjuan Duan, Duan Gao, Jianfang Feng, Aimin Li. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. Journal of nanobiotechnology. 2021 Dec; 19(1):446. doi: 10.1186/s12951-021-01180-0. [PMID: 34949198]
  • Srikant Tiwari, Abhaya Bisaria, Harmeet Kaur, Nisarg Joshi, Jaykumar Sejpal, Mujtaba A Khan. Biweekly DoceAqualip in mCRPC patients beyond 20 cycles: A case series. Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2021 Dec; 27(8):2030-2034. doi: 10.1177/10781552211008223. [PMID: 33853469]
  • Hyunho Han, Hyung Ho Lee, Kwibok Choi, Young Jun Moon, Ji Eun Heo, Won Sik Ham, Won Sik Jang, Koon Ho Rha, Nam Hoon Cho, Filippo G Giancotti, Young-Deuk Choi. Prostate epithelial genes define therapy-relevant prostate cancer molecular subtype. Prostate cancer and prostatic diseases. 2021 12; 24(4):1080-1092. doi: 10.1038/s41391-021-00364-x. [PMID: 33903734]
  • Dun-Chang Mo, Lang Qin, Lin-Jing Ye. Neoadjuvant Docetaxel, Oxaliplatin, and S-1 in Resectable Advanced Gastric Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2021 12; 39(34):3883-3884. doi: 10.1200/jco.21.01528. [PMID: 34591655]
  • Shruti Gamya Dash, Srinivas Kantevari, Santosh Kumar Guru, Pradeep Kumar Naik. Combination of docetaxel and newly synthesized 9-Br-trimethoxybenzyl-noscapine improve tubulin binding and enhances antitumor activity in breast cancer cells. Computers in biology and medicine. 2021 12; 139(?):104996. doi: 10.1016/j.compbiomed.2021.104996. [PMID: 34753081]
  • Lucia Micheli, Giulia Collodel, Elena Moretti, Daria Noto, Andrea Menchiari, Daniela Cerretani, Sergio Crispino, Cinzia Signorini. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox report : communications in free radical research. 2021 Dec; 26(1):18-28. doi: 10.1080/13510002.2021.1884802. [PMID: 33563132]
  • Ying Wang, Mimi Guo, Dingmei Lin, Dajun Liang, Ling Zhao, Ruizhi Zhao, Yan Wang. Docetaxel-loaded exosomes for targeting non-small cell lung cancer: preparation and evaluation in vitro and in vivo. Drug delivery. 2021 Dec; 28(1):1510-1523. doi: 10.1080/10717544.2021.1951894. [PMID: 34263685]
  • Uyanga Batbold, Jun-Jen Liu. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC. Molecules (Basel, Switzerland). 2021 Nov; 26(23):. doi: 10.3390/molecules26237200. [PMID: 34885780]
  • Mohammad Khedri, Nima Beheshtizadeh, Reza Maleki, Thomas J Webster, Sima Rezvantalab. Improving the self-assembly of bioresponsive nanocarriers by engineering doped nanocarbons: a computational atomistic insight. Scientific reports. 2021 11; 11(1):21538. doi: 10.1038/s41598-021-00817-2. [PMID: 34728678]
  • Valerie Carpenter, Tareq Saleh, So Min Lee, Graeme Murray, Jason Reed, Andrew Souers, Anthony C Faber, Hisashi Harada, David A Gewirtz. Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical pharmacology. 2021 11; 193(?):114765. doi: 10.1016/j.bcp.2021.114765. [PMID: 34536356]
  • Wei Zou, Stephanie J Yaung, Frederike Fuhlbrück, Marcus Ballinger, Eric Peters, John F Palma, David S Shames, David Gandara, Yuqiu Jiang, Namrata S Patil. ctDNA Predicts Overall Survival in Patients With NSCLC Treated With PD-L1 Blockade or With Chemotherapy. JCO precision oncology. 2021 11; 5(?):827-838. doi: 10.1200/po.21.00057. [PMID: 34994614]
  • Hongwen Cao, Dan Wang, Peng Sun, Lei Chen, Yigeng Feng, Renjie Gao. Zhoushi Qi Ling decoction represses docetaxel resistance and glycolysis of castration-resistant prostate cancer via regulation of SNHG10/miR-1271-5p/TRIM66 axis. Aging. 2021 10; 13(19):23096-23107. doi: 10.18632/aging.203602. [PMID: 34613933]
  • FengLi Wang, ChenYang Zhao, Xin Wen, Qingshan Zheng, Lujin Li. Factors affecting the efficacy and safety of docetaxel combined with platinum in the treatment of advanced non-small cell lung cancer. Expert review of clinical pharmacology. 2021 Oct; 14(10):1295-1303. doi: 10.1080/17512433.2021.1976638. [PMID: 34488513]
  • Yifang Zou, Fang Xiao, Liu Song, Bingxue Sun, Dandan Sun, Di Chu, Limei Wang, Shulan Han, Zhuo Yu, Caitriona M O'Driscoll, Jianfeng Guo. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. International journal of pharmaceutics. 2021 Sep; 606(?):120888. doi: 10.1016/j.ijpharm.2021.120888. [PMID: 34271152]
  • Saurabh Sharma, Sudeep Pukale, Deepak Kumar Sahel, Prabhjeet Singh, Anupama Mittal, Deepak Chitkara. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Materials science & engineering. C, Materials for biological applications. 2021 Sep; 128(?):112305. doi: 10.1016/j.msec.2021.112305. [PMID: 34474856]
  • Thomas Heineman, Megan Baumgart, Charvi Nanavati, Nash Gabrail, Scott A Van Wart, Donald E Mager, Daniel C Maneval, Anas M Fathallah, Rose E Sekulovich. Safety and pharmacokinetics of docetaxel in combination with pegvorhyaluronidase alfa in patients with non-small cell lung cancer. Clinical and translational science. 2021 09; 14(5):1875-1885. doi: 10.1111/cts.13041. [PMID: 33982408]
  • Alberto Martini, Anish B Parikh, John P Sfakianos, Francesco Montorsi, Matthew D Galsky, William K Oh, Che-Kai Tsao. Predicting toxicity-related docetaxel discontinuation and overall survival in metastatic castration-resistant prostate cancer: a pooled analysis of open phase 3 clinical trial data. Prostate cancer and prostatic diseases. 2021 09; 24(3):743-749. doi: 10.1038/s41391-021-00326-3. [PMID: 33531652]
  • Motohiro Fujiwara, Takeshi Yuasa, Shotaro Yasuoka, Yoshinobu Komai, Tomohiko Oguchi, Ryo Fujiwara, Noboru Numao, Shinya Yamamoto, Junji Yonese. Serum and hematologic responses after three cycles of cabazitaxel therapy as predictors of survival in castration-resistant prostate cancer. Cancer chemotherapy and pharmacology. 2021 09; 88(3):525-531. doi: 10.1007/s00280-021-04304-3. [PMID: 34110449]
  • J Yang, Y Zeng, X Wu, Z Wang. [Effect of DR5-mediated docetaxel-loaded lipid microbubble combined with ultrasoundtargeted microbubble destruction on HepG2 cell proliferation and apoptosis]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2021 Aug; 41(8):1220-1225. doi: 10.12122/j.issn.1673-4254.2021.08.14. [PMID: 34549714]
  • Ioannis Lamprou, Avgi Tsolou, Christos Kakouratos, Achilleas G Mitrakas, Erasmia T Xanthopoulou, Katerina Kassela, Ioannis Karakasiliotis, Christos E Zois, Alexandra Giatromanolaki, Michael I Koukourakis. Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Medical oncology (Northwood, London, England). 2021 Aug; 38(10):116. doi: 10.1007/s12032-021-01566-y. [PMID: 34410522]
  • G C Bai, Y Song, J Jin, W Yu, Z S He. [Clinical efficacy of docetaxel combined with carboplatin in patients with metastatic castration-resistant prostate cancer]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences. 2021 Aug; 53(4):686-691. doi: NULL. [PMID: 34393229]
  • Amin Mahoutforoush, Atefeh Solouk, Hamed Hamishehkar, Masoumeh Haghbin Nazarpak, Soheil Abbaspour-Ravasjani. Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents. Life sciences. 2021 Aug; 279(?):119576. doi: 10.1016/j.lfs.2021.119576. [PMID: 33965376]
  • Paula Kappler, Michael A Morgan, Philipp Ivanyi, Stefan J Brunotte, Arnold Ganser, Christoph W M Reuter. Prognostic role of docetaxel-induced suppression of free testosterone serum levels in metastatic prostate cancer patients. Scientific reports. 2021 08; 11(1):16457. doi: 10.1038/s41598-021-95874-y. [PMID: 34385568]
  • Eman Ghonaim, Sahar El-Haggar, Suzy Gohar. Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial. Medical oncology (Northwood, London, England). 2021 Aug; 38(9):108. doi: 10.1007/s12032-021-01558-y. [PMID: 34357466]
  • Mi-So Jeong, Kang-Wook Lee, Yu-Jeong Choi, Yun-Gyeong Kim, Hyun-Ha Hwang, Seo-Yeon Lee, Se-Eun Jung, Sun-Ah Park, Jin-Hee Lee, Yong-Joon Joo, Sung-Gook Cho, Seong-Gyu Ko. Synergistic Antitumor Activity of SH003 and Docetaxel via EGFR Signaling Inhibition in Non-Small Cell Lung Cancer. International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168405. [PMID: 34445110]
  • Patrycja Zawilska, Magdalena Machowska, Krzysztof Wisniewski, Grzegorz Grynkiewicz, Rafal Hrynyk, Ryszard Rzepecki, Jerzy Gubernator. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2021 Aug; 163(?):105838. doi: 10.1016/j.ejps.2021.105838. [PMID: 33845119]
  • Semini Sumanasuriya, George Seed, Harry Parr, Rossitza Christova, Lorna Pope, Claudia Bertan, Diletta Bianchini, Pasquale Rescigno, Ines Figueiredo, Jane Goodall, Gemma Fowler, Penelope Flohr, Niven Mehra, Antje Neeb, Jan Rekowski, Mario Eisenberger, Oliver Sartor, Stéphane Oudard, Christine Geffriaud-Ricouard, Ayse Ozatilgan, Mustapha Chadjaa, Sandrine Macé, Chris Lord, Joe Baxter, Stephen Pettitt, Maryou Lambros, Adam Sharp, Joaquin Mateo, Suzanne Carreira, Wei Yuan, Johann S de Bono. Elucidating Prostate Cancer Behaviour During Treatment via Low-pass Whole-genome Sequencing of Circulating Tumour DNA. European urology. 2021 08; 80(2):243-253. doi: 10.1016/j.eururo.2021.05.030. [PMID: 34103179]
  • Sarina A Piha-Paul, Kyaw Z Thein, Paul De Souza, Richard Kefford, Tara Gangadhar, Christopher Smith, Shelly Schuster, William C Zamboni, Claire E Dees, Ben Markman. First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Investigational new drugs. 2021 08; 39(4):1047-1056. doi: 10.1007/s10637-021-01081-x. [PMID: 33594602]
  • Marit A C Vermunt, Debbie G J Robbrecht, Lot A Devriese, Julie M Janssen, Bas Thijssen, Marianne Keessen, Maarten van Eijk, Rob Kessels, Ferry A L M Eskens, Jos H Beijnen, Niven Mehra, Andries M Bergman. ModraDoc006, an oral docetaxel formulation in combination with ritonavir (ModraDoc006/r), in metastatic castration-resistant prostate cancer patients: A phase Ib study. Cancer reports (Hoboken, N.J.). 2021 08; 4(4):e1367. doi: 10.1002/cnr2.1367. [PMID: 33709626]
  • Hong Wang, Wanghao Chen, Guojian Wu, Jun Kong, Shaofei Yuan, Lukui Chen. A Magnetic T7 Peptide&AS1411 Aptamer-Modified Microemulsion for Triple Glioma-Targeted Delivery of Shikonin and Docetaxel. Journal of pharmaceutical sciences. 2021 08; 110(8):2946-2954. doi: 10.1016/j.xphs.2021.03.018. [PMID: 33785350]
  • Meng Cheng, Qiaoming Liu, Tiantian Gan, Yuanying Fang, Pengfei Yue, Yongbing Sun, Yi Jin, Jianfang Feng, Liangxing Tu. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154481. [PMID: 34361634]