Subcellular Location: cytoplasmic side of plasma membrane
Found 500 associated metabolites.
115 associated genes.
ACP1, AJAP1, AKAP5, ALOX15, ANK1, AP2A1, AP2A2, AP2B1, AP2M1, AP2S1, ASPSCR1, ATP2C2, BIRC2, CACNB4, CD2, CDH1, CDK16, CHMP4A, CHMP4B, CHMP4BP1, CHMP4C, CHMP7, CHUK, CYTH1, DIABLO, DLG1, DNAJA3, DSG1, EFCAB7, EPB41, EPN3, ESYT2, ESYT3, FADD, FARP1, FER, FERMT2, FES, G6PD, GEM, GM2A, HCK, HTRA2, IKBKB, IQGAP1, JAK1, JAK2, JAK3, JUP, KCNAB1, KCNAB2, KCNIP1, KCNK2, KIT, KRAS, LDLRAP1, LILRB4, LITAF, LYN, MAP2K2, MIEN1, MTSS1, MTSS2, MYH9, MYZAP, NCF1, NLRP10, NPHS2, NTSR1, OSBPL2, PALM, PGM5, PKP4, PRMT8, PTEN, PTP4A1, PTPN20, PTPN22, PTPN3, PTPN4, PTPN7, PTPRC, RAB21, RACGAP1, RASA3, RASGRP4, RGS1, RGS2, RGS8, RHOA, RNF31, S100A6, SAMD10, SAMD12, SHROOM4, SLC4A1, SNX18, SNX5, SOCS3, SPTA1, SPTB, STAC, STAC2, STAC3, SYAP1, SYT6, TEP1, TH, TRADD, TRAF1, TRAF2, TRAF3, TRAF5, TRAF6, TYK2
Germacrone
(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].
Naringenin
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Lupenone
Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
p-Synephrine
Synephrine is a phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. It has a role as a plant metabolite and an alpha-adrenergic agonist. It is a phenethylamine alkaloid, a member of phenols and a member of ethanolamines. It is a conjugate base of a synephrinium. Synephrine, also referred to as, p-synephrine, is naturally occurring alkaloid. It is present in approved drug products as neo-synephrine, its m-substituted analog. p-synephrine and m-synephrine are known for their longer acting adrenergic effects compared to norepinephrine. The similarity of naming between m-synephrine and the unsubstituted form, synephrine, is a source of some confusion however m-synephrine refers to a related drug more commonly known as phenylephrine. While the compounds share some chemical and pharmacological similarities, they are in fact distinct chemical entities. Synephrine is a natural product found in Citrus medica, Ephedra sinica, and other organisms with data available. Sympathetic alpha-adrenergic agonist with actions like PHENYLEPHRINE. It is used as a vasoconstrictor in circulatory failure, asthma, nasal congestion, and glaucoma. Synephrine (or oxedrine) is a drug commonly used for weight loss. While its effectiveness is widely debated, synephrine has gained significant popularity as an alternative to ephedrine, a related substance which has been made illegal or restricted in many countries due to its use as a precursor in the illicit manufacture of methamphetamine. Products containing bitter orange or synephrine: suspected cardiovascular adverse reactions [citation needed]. Synephrine is derived primarily from the fruit of Citrus aurantium, a relatively small citrus tree, of which several of its more common names include Bitter Orange, Sour Orange, and Zhi shi.; There has been some confusion surrounding synephrine and phenylephrine (neosynephrine), one of its positional isomers. The chemicals are similar in structure; the only difference is the location of the aromatic hydroxyl group. In synephrine, the hydroxyl is at the para position, whereas, in neosynephrine, it is at the meta position. Each compound has differing biological properties.; p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents A phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). 辛弗林(Synephrine),又称为辛弗林碱或对羟福林,是一种生物碱,化学结构与肾上腺素类似。它在中药中是一种重要的活性成分,尤其在某些温热性中药中含量较高,如麻黄(Ephedra sinica)。 在中医中,辛弗林具有发汗解表、宣肺平喘、利水消肿等功效,常用于治疗感冒、哮喘、风水浮肿等症状。此外,辛弗林作为一种强效的α-受体激动剂和较弱的β-受体激动剂,也具有一定的减肥和增强代谢的效果,因此在一些减肥补充剂中也有应用。 p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2].
Liquiritigenin
Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.
Kurarinone
(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone. 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available. A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1]. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].
4-Hydroxycoumarin
4-hydroxycoumarin is a hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. It is a conjugate acid of a 4-hydroxycoumarin(1-). 4-Hydroxycoumarin is a natural product found in Vitis vinifera, Ruta graveolens, and Apis cerana with data available. CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins CONFIDENCE standard compound; INTERNAL_ID 2312 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1]. 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1].
Furanodienone
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isofuranodienone is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary) Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
Ajmalicine
Ajmalicine is a monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. It has a role as an antihypertensive agent, an alpha-adrenergic antagonist and a vasodilator agent. It is a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of an ajmalicine(1+). Ajmalicine is a natural product found in Crossosoma bigelovii, Rauvolfia yunnanensis, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents INTERNAL_ID 2326; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2326 [Raw Data] CB001_Ajmalicine_pos_40eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_10eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_50eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_20eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_30eV_CB000004.txt Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].
Friedelin
Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .
1-Triacontanol
Triacontan-1-ol, also known as myricyl alcohol or triacontanyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, triacontan-1-ol is considered to be a fatty alcohol lipid molecule. Triacontan-1-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Triacontan-1-ol can be found in a number of food items such as coriander, common grape, tea, and cabbage, which makes triacontan-1-ol a potential biomarker for the consumption of these food products.
Bruceantin
Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.
Astragaloside I
Astragaloside I is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a beta-D-glucoside, a member of oxolanes and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astrasieversianin IV is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1]. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1].
(-)-Sabinene
Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
Tricetin
Tricetin is flavone hydroxylated at positions 3, 4, 5, 5 and 7. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a tricetin(1-). Tricetin is a natural product found in Punica granatum, Lathyrus pratensis, and other organisms with data available. Constituent of the seed coat of lentil (Lens culinaris). Tricetin is found in many foods, some of which are ginkgo nuts, pulses, tea, and cereals and cereal products. Tricetin is found in cereals and cereal products. Tricetin is a constituent of the seed coat of lentil (Lens culinaris) Flavone hydroxylated at positions 3, 4, 5, 5 and 7.
3,4-Dimethoxybenzaldehyde
Veratraldehyde appears as needles or chunky light peach powder. Has an odor of vanilla beans. (NTP, 1992) Veratraldehyde is a dimethoxybenzene that is benzaldehyde substituted by methoxy groups at positions 3 and 4. It is found in peppermint, ginger, raspberry, and other fruits. It has a role as an antifungal agent. It is a member of benzaldehydes and a dimethoxybenzene. 3,4-Dimethoxybenzaldehyde is a natural product found in Polygala senega, Pluchea sagittalis, and other organisms with data available. 3,4-Dimethoxybenzaldehyde is found in fruits. 3,4-Dimethoxybenzaldehyde is isolated from peppermint, raspberry, ginger and Bourbon vanilla. 3,4-Dimethoxybenzaldehyde is used in vanilla flavour Isolated from peppermint, raspberry, ginger and Bourbon vanilla. It is used in vanilla flavours. 3,4-Dimethoxybenzaldehyde is found in peppermint, herbs and spices, and fruits. CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3940; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3930; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3941; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3961; ORIGINAL_PRECURSOR_SCAN_NO 3960 Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.
p-Anisic acid
p-Anisic acid, also known as 4-anisate or draconic acid, belongs to the class of organic compounds known as p-methoxybenzoic acids and derivatives. These are benzoic acids in which the hydrogen atom at position 4 of the benzene ring is replaced by a methoxy group. p-Anisic acid is a drug. p-Anisic acid exists in all eukaryotes, ranging from yeast to humans. p-Anisic acid is a faint, sweet, and cadaverous tasting compound. Outside of the human body, p-anisic acid has been detected, but not quantified in several different foods, such as anises, cocoa beans, fennels, and german camomiles. This could make p-anisic acid a potential biomarker for the consumption of these foods. It is a white crystalline solid which is insoluble in water, highly soluble in alcohols and soluble in ether, and ethyl acetate. p-Anisic acid has antiseptic properties. It is also used as an intermediate in the preparation of more complex organic compounds. It is generally obtained by the oxidation of anethole or p-methoxyacetophenone. The term "anisic acid" often refers to this form specifically. p-Anisic acid is found naturally in anise. 4-methoxybenzoic acid is a methoxybenzoic acid substituted with a methoxy group at position C-4. It has a role as a plant metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 4-methoxybenzoate. 4-Methoxybenzoic acid is a natural product found in Chaenomeles speciosa, Annona purpurea, and other organisms with data available. Anisic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Stevia rebaudiuna Leaf (part of). Flavouring agent. Food additive listed in the EAFUS Food Additive Database (Jan. 2001) A methoxybenzoic acid substituted with a methoxy group at position C-4. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS KEIO_ID A154 p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1]. p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].
Myristicin
Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].
DUB OM HTO
Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. (NTP, 1992) Methyl oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It is functionally related to an oleic acid. Methyl oleate is a natural product found in Anchietea pyrifolia, Lepidium meyenii, and other organisms with data available. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1]. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1].
Cannabisin F
Cannabisin F is a natural product found in Mitrephora tomentosa, Mitrephora thorelii, and Cannabis sativa with data available.
Neriifolin
Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.
Fenpropimorph
Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides
2,3-Diaminopropionic acid
2,3-Diaminopropionic acid, also known as L-2,3-diaminopropanoate or Dpr, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,3-Diaminopropionic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,3-Diaminopropionic acid (2,3-diaminopropionate) is a non-proteinogenic amino acid found in certain secondary metabolites, including zwittermicin A and tuberactinomycin.2,3-Diaminopropionate is formed by the pyridoxal phosphate (PLP) mediated amination of serine. 2,3-Diaminopropionic acid exists in all living organisms, ranging from bacteria to humans. 2,3-Diaminopropionic acid is a metabolite of b-oxalyl-L-a,b-diaminopropionic acid a neurotoxic amino acid (ODAP). (PMID 5774501) COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Cholestenone
Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].
5-Methoxyindoleacetate
5-Methoxyindoleacetate, also known as 5-methoxy-IAA or 5-MIAA, belongs to the class of organic compounds known as indole-3-acetic acid derivatives. Indole-3-acetic acid derivatives are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 5-Methoxyindoleacetic acid is formed through oxidative deamination. It is identified in the urine, and the concentration is determined to be 1.3 µg/mL using GC-MS (PMID: 12908946). An increase in urinary 5-MIAA excretion was shown in patients with cancer of the stomach, rectum, and lung (PMID: 2446428). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids 5-methoxyindoleacetic acid(5-MIAA) is formed through oxidative deamination. COVID info from PDB, Protein Data Bank KEIO_ID M078; [MS2] KO009067 KEIO_ID M078 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5-Methoxyindole-3-acetic acid is a metabolite of Melatonin[1].
16a-Hydroxyestrone
16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Guanidinosuccinic acid
Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.
L-Histidinol
L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)
L-Lysine
Lysine (Lys), also known as L-lysine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Lysine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Lysine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. In humans, lysine is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. Lysine is high in foods such as wheat germ, cottage cheese and chicken. Of meat products, wild game and pork have the highest concentration of lysine. Fruits and vegetables contain little lysine, except avocados. Normal requirements for lysine have been found to be about 8 g per day or 12 mg/kg in adults. Children and infants need more, 44 mg/kg per day for an eleven to-twelve-year old, and 97 mg/kg per day for three-to six-month old. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ distinct enzymes and substrates and are found in diverse organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway. Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. Lysine is highly concentrated in muscle compared to most other amino acids. Normal lysine metabolism is dependent upon many nutrients including niacin, vitamin B6, riboflavin, vitamin C, glutamic acid and iron. Excess arginine antagonizes lysine. Several inborn errors of lysine metabolism are known, such as cystinuria, hyperdibasic aminoaciduria I, lysinuric protein intolerance, propionic acidemia, and tyrosinemia I. Most are marked by mental retardation with occasional diverse symptoms such as absence of secondary sex characteristics, undescended testes, abnormal facial structure, anemia, obesity, enlarged liver and spleen, and eye muscle imbalance. Lysine also may be a useful adjunct in the treatment of osteoporosis. Although high protein diets result in loss of large amounts of calcium in urine, so does lysine deficiency. Lysine may be an adjunct therapy because it reduces calcium losses in urine. Lysine deficiency also may result in immunodeficiency. Requirements for lysine are probably increased by stress. Lysine toxicity has not occurred with oral doses in humans. Lysine dosages are presently too small and may fail to reach the concentrations necessary to prove potential therapeutic applications. Lysine metabolites, amino caproic acid and carnitine have already shown their therapeutic potential. Thirty grams daily of amino caproic acid has been used as an initial daily dose in treating blood clotting disorders, indicating that the proper doses of lysine, its precursor, have yet to be used in medicine. Low lysine levels have been found in patients with Parkinsons, hypothyroidism, kidney disease, asthma and depression. The exact significance of these levels is unclear, yet lysine therapy can normalize the level and has been associated with improvement of some patients with these conditions. Abnormally elevated hydroxylysines have been found in virtually all chronic degenerative diseases and those treated with coumadin therapy. The levels of this stress marker may be improved by high doses of vitamin C. Lysine is particularly useful in therapy for marasmus (wasting) (http://www.dcnutrition.com). Lysine has also been sh... [Spectral] L-Lysine (exact mass = 146.10553) and Carnosine (exact mass = 226.10659) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, nutrient. Found widely in protein hydrolysates, e.g. casein, egg albumen, fibrin, gelatin, beet molasses. Flavouring agent for a variety of foods L-Lysine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-87-1 (retrieved 2024-07-01) (CAS RN: 56-87-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
Prostaglandin B1
Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).
Boldenon
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D07536 Origin: Animal; SubCategory_DNP: The sterols, Androstanes
Glutethimide
Glutethimide is only found in individuals that have used or taken this drug. It is a hypnotic and sedative. Its use has been largely superseded by other drugs. [PubChem]Glutethimide seems to be a GABA agonist which helps induced sedation. It also induces CYP 2D6. When taken with codeine, it enables the body to convert higher amounts of the codeine (higher than the average 5 - 10\\%) to morphine. The general sedative effect also adds to the power of the combination. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Dihydrobiopterin
Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.
4-Methylumbelliferone glucuronide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Oxymorphone
An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Fluazifop-butyl
CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10066; ORIGINAL_PRECURSOR_SCAN_NO 10065 CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10009; ORIGINAL_PRECURSOR_SCAN_NO 10006 CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10055; ORIGINAL_PRECURSOR_SCAN_NO 10054 CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10034; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10019; ORIGINAL_PRECURSOR_SCAN_NO 10017 CONFIDENCE standard compound; INTERNAL_ID 1256; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10046; ORIGINAL_PRECURSOR_SCAN_NO 10044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3093 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Hexaconazole
CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9950; ORIGINAL_PRECURSOR_SCAN_NO 9948 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9938; ORIGINAL_PRECURSOR_SCAN_NO 9937 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9900; ORIGINAL_PRECURSOR_SCAN_NO 9899 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9947; ORIGINAL_PRECURSOR_SCAN_NO 9942 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9988; ORIGINAL_PRECURSOR_SCAN_NO 9986
Diethylphosphate
Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
Ribose 1-phosphate
Ribose 1-phosphate, also known as alpha-D-ribofuranose 1-phosphate or 1-O-phosphono-A-D-ribofuranose, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribose 1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Ribose 1-phosphate can be found in a number of food items such as cassava, capers, pine nut, and wheat, which makes ribose 1-phosphate a potential biomarker for the consumption of these food products. Ribose 1-phosphate can be found primarily in cellular cytoplasm. Ribose 1-phosphate exists in all living species, ranging from bacteria to humans. In humans, ribose 1-phosphate is involved in several metabolic pathways, some of which include pyrimidine metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, and azathioprine action pathway. Ribose 1-phosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, gout or kelley-seegmiller syndrome, transaldolase deficiency, and UMP synthase deficiency (orotic aciduria). Ribose 1-phosphate is an intermediate in the metabolism of Pyrimidine and the metabolism of Nicotinate and nicotinamide. It is a substrate for Uridine phosphorylase 2, Phosphoglucomutase, Purine nucleoside phosphorylase and Uridine phosphorylase 1. Ribose 1-phosphate can be formed from guanosine through the action of purine nucleoside phosphorylase. Ribose 1-phosphate can also act as a ribose donor in the synthesis of xanthosine as catalyzed by the same enzyme (purine nucleoside phosphorylase). The presence of guanase, which irreversibly converts guanine to xanthine, affects the overall process of guanosine transformation. As a result of this purine pathway, guanosine is converted into xanthosine, thus overcoming the lack of guanosine deaminase in mammals. The activated ribose moiety in Ribose 1-phosphate which stems from the catabolism of purine nucleosides can be transferred to uracil and, in the presence of ATP, used for the synthesis of pyrimidine nucleotides; therefore, purine nucleosides can act as ribose donors for the salvage of pyrimidine bases. (PMID: 9133638). COVID info from COVID-19 Disease Map Corona-virus KEIO_ID R017 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
dIMP
dIMP is a deoxyribonucleoside and is considered a derivative of the nucleoside inosine, differing from the latter by the replacement of a hydroxyl group (-OH) by hydrogen (-H) at the 2 position of its ribose sugar moiety. The hydrolytic deamination of dAMP residues in DNA yields dIMP residues. The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it can pair not only with thymine but also with cytosine and therefore would result in A-T to G-C transitions after DNA replication. Hypoxanthine DNA glycosylase (EC 3.2.2.15) excises hypoxanthine from DNA containing dIMP residues in mammalian cells. (PMID: 10684927, 8016081) [HMDB] dIMP is a deoxyribonucleoside and is considered a derivative of the nucleoside inosine, differing from the latter by the replacement of a hydroxyl group (-OH) by hydrogen (-H) at the 2 position of its ribose sugar moiety. The hydrolytic deamination of dAMP residues in DNA yields dIMP residues. The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it can pair not only with thymine but also with cytosine and therefore would result in A-T to G-C transitions after DNA replication. Hypoxanthine DNA glycosylase (EC 3.2.2.15) excises hypoxanthine from DNA containing dIMP residues in mammalian cells. (PMID: 10684927, 8016081). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
resmethrin
DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10738; ORIGINAL_PRECURSOR_SCAN_NO 10736 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10738; ORIGINAL_PRECURSOR_SCAN_NO 10736 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10701; ORIGINAL_PRECURSOR_SCAN_NO 10696 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10728; ORIGINAL_PRECURSOR_SCAN_NO 10725 INTERNAL_ID 158; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10689; ORIGINAL_PRECURSOR_SCAN_NO 10685 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10714; ORIGINAL_PRECURSOR_SCAN_NO 10710 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10668; ORIGINAL_PRECURSOR_SCAN_NO 10665 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10689; ORIGINAL_PRECURSOR_SCAN_NO 10685 D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
Bromoxynil
CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4334; ORIGINAL_PRECURSOR_SCAN_NO 4332 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4314; ORIGINAL_PRECURSOR_SCAN_NO 4312 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4343; ORIGINAL_PRECURSOR_SCAN_NO 4340 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4300; ORIGINAL_PRECURSOR_SCAN_NO 4297 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4318; ORIGINAL_PRECURSOR_SCAN_NO 4315 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4333; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8440 CONFIDENCE standard compound; EAWAG_UCHEM_ID 24
Oxyphenbutazone
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].
Biperiden
A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].
Butorphanol
Butorphanol is only found in individuals that have used or taken this drug. It is a synthetic morphinan analgesic with narcotic antagonist action. It is used in the management of severe pain. [PubChem]The exact mechanism of action is unknown, but is believed to interact with an opiate receptor site in the CNS (probably in or associated with the limbic system). The opiate antagonistic effect may result from competitive inhibition at the opiate receptor, but may also be a result of other mechanisms. Butorphanol is a mixed agonist-antagonist that exerts antagonistic or partially antagonistic effects at mu opiate receptor sites, but is thought to exert its agonistic effects principally at the kappa and sigma opiate receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
Carteolol
Carteolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. [PubChem]The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Chlorprothixene
Chlorprothixene is only found in individuals that have used or taken this drug. It is a typical antipsychotic drug of the thioxanthene (tricyclic) class. Chlorprothixene exerts strong blocking effects by blocking the 5-HT2 D1, D2, D3, histamine H1, muscarinic and alpha1 adrenergic receptors. Chlorprothixene blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].
Flumetsulam
CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6616; ORIGINAL_PRECURSOR_SCAN_NO 6611 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6586; ORIGINAL_PRECURSOR_SCAN_NO 6583 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3121; ORIGINAL_PRECURSOR_SCAN_NO 3116 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6618; ORIGINAL_PRECURSOR_SCAN_NO 6616 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3118 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6624; ORIGINAL_PRECURSOR_SCAN_NO 6622 INTERNAL_ID 304; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6586; ORIGINAL_PRECURSOR_SCAN_NO 6583 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6574; ORIGINAL_PRECURSOR_SCAN_NO 6571 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3185; ORIGINAL_PRECURSOR_SCAN_NO 3182 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6622; ORIGINAL_PRECURSOR_SCAN_NO 6620 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3111; ORIGINAL_PRECURSOR_SCAN_NO 3109 CONFIDENCE standard compound; INTERNAL_ID 304; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3122; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1057
Hydroxyzine
A histamine H1 receptor antagonist that is effective in the treatment of chronic urticaria, dermatitis, and histamine-mediated pruritus. Unlike its major metabolite cetirizine, it does cause drowsiness. It is also effective as an antiemetic, for relief of anxiety and tension, and as a sedative. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8146; ORIGINAL_PRECURSOR_SCAN_NO 8142 CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8167; ORIGINAL_PRECURSOR_SCAN_NO 8166 CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8152; ORIGINAL_PRECURSOR_SCAN_NO 8147 CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8169; ORIGINAL_PRECURSOR_SCAN_NO 8167 CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8128; ORIGINAL_PRECURSOR_SCAN_NO 8124 CONFIDENCE standard compound; INTERNAL_ID 1306; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8120; ORIGINAL_PRECURSOR_SCAN_NO 8118 N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BB - Diphenylmethane derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics Hydroxyzine, a benzodiazepine antihistamine agent, acts as an orally active histamine?H1-receptor and serotonin antagonist. Hydroxyzine has anxiolytic effect and can be used for the research of generalised anxiety disorder[1].
Iervin
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2330 Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].
Sparteine
Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.
Afugan
CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9797; ORIGINAL_PRECURSOR_SCAN_NO 9795 CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9853; ORIGINAL_PRECURSOR_SCAN_NO 9851 CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9899; ORIGINAL_PRECURSOR_SCAN_NO 9895 CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9911; ORIGINAL_PRECURSOR_SCAN_NO 9909 CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9839; ORIGINAL_PRECURSOR_SCAN_NO 9837 CONFIDENCE standard compound; INTERNAL_ID 685; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9884; ORIGINAL_PRECURSOR_SCAN_NO 9882 CONFIDENCE standard compound; INTERNAL_ID 4020 CONFIDENCE standard compound; INTERNAL_ID 8475 CONFIDENCE standard compound; INTERNAL_ID 2604
Protriptyline
Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
Nordiazepam
N-demethyldiazepam, also known as nordiazepam or calmday, is a member of the class of compounds known as 1,4-benzodiazepines. 1,4-benzodiazepines are organic compounds containing a benzene ring fused to a 1,4-azepine. N-demethyldiazepam is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-demethyldiazepam can be found in common wheat, corn, and potato, which makes N-demethyldiazepam a potential biomarker for the consumption of these food products. N-demethyldiazepam can be found primarily in blood and urine, as well as in human kidney and liver tissues. N-demethyldiazepam is a non-carcinogenic (not listed by IARC) potentially toxic compound. General supportive measures should be employed, along with intravenous fluids, and an adequate airway maintained. Hypotension may be combated by the use of norepinephrine or metaraminol. Dialysis is of limited value. Flumazenil (Anexate) is a competitive benzodiazepine receptor antagonist that can be used as an antidote for benzodiazepine overdose. In particular, flumazenil is very effective at reversing the CNS depression associated with benzodiazepines but is less effective at reversing respiratory depression. Its use, however, is controversial as it has numerous contraindications. It is contraindicated in patients who are on long-term benzodiazepines, those who have ingested a substance that lowers the seizure threshold, or in patients who have tachycardia or a history of seizures. As a general rule, medical observation and supportive care are the mainstay of treatment of benzodiazepine overdose. Although benzodiazepines are absorbed by activated charcoal, gastric decontamination with activated charcoal is not beneficial in pure benzodiazepine overdose as the risk of adverse effects often outweigh any potential benefit from the procedure. It is recommended only if benzodiazepines have been taken in combination with other drugs that may benefit from decontamination. Gastric lavage (stomach pumping) or whole bowel irrigation are also not recommended (T3DB). Nordiazepam is a metabolite of Diazepam. Diazepam, first marketed as Valium by Hoffmann-La Roche, is a benzodiazepine drug. Nordazepam, also known as desoxydemoxepam, nordiazepam and desmethyldiazepam, is a 1,4-benzodiazepine derivative. Like other benzodiazepine derivatives, it has anticonvulsant, anxiolytic, muscle relaxant and sedative properties. (Wikipedia) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3608
P-Toluenesulfonamide
CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4179; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4160; ORIGINAL_PRECURSOR_SCAN_NO 4155 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4177; ORIGINAL_PRECURSOR_SCAN_NO 4175 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4145; ORIGINAL_PRECURSOR_SCAN_NO 4142 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4171; ORIGINAL_PRECURSOR_SCAN_NO 4169 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4164; ORIGINAL_PRECURSOR_SCAN_NO 4159 C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3618 CONFIDENCE standard compound; INTERNAL_ID 4185 CONFIDENCE standard compound; INTERNAL_ID 2869 CONFIDENCE standard compound; INTERNAL_ID 8805 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cyclohexanecarboxylic acid
Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].
Heptanoic acid
Heptanoic acid, or C7:0 also known as enanthic acid or heptylic acid, belongs to the class of organic compounds known as medium-chain fatty acids. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides Heptanoic acid is an oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Its name derives from the Latin oenanthe which is in turn derived from the Ancient Greek oinos "wine" and anthos "blossom." Heptanoic acid is used in the preparation of esters, such as ethyl enanthate, which are used in fragrances and as artificial flavors. The triglyceride ester of heptanoic acid is the triheptanoin, which is used in certain medical conditions as a nutritional supplement. Present in essential oils, e.g. violet leaf oil, palm oiland is also present in apple, feijoa fruit, strawberry jam, clove bud, ginger, black tea, morello cherry, grapes, rice bran and other foodstuffs. Flavouring ingredient. It is used as one of the components in washing solns. used to assist lye peeling of fruit and vegetables
Oleamide
Oleamide is an amide of the fatty acid oleic acid. It is an endogenous substance: it occurs naturally in the body of animals. It accumulates in the cerebrospinal fluid during sleep deprivation and induces sleep in animals. It is being studied as a potential medical treatment for mood and sleep disorders, and cannabinoid-regulated depression. The mechanism of action of oleamides sleep inducing effects is an area of current research. It is likely that oleamide interacts with multiple neurotransmitter systems. Oleamide is structurally related to the endogenous cannabinoid anandamide, and has the ability to bind to the CB1 receptor as a full agonist. Oleamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=301-02-0 (retrieved 2024-07-02) (CAS RN: 301-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.
Tripelennamine
Tripelennamine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist with low sedative action but frequent gastrointestinal irritation. It is used to treat asthma; HAY fever; urticaria; and rhinitis; and also in veterinary applications. Tripelennamine is administered by various routes, including topically. [PubChem]Tripelennamine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
4-Nitrobenzoic acid
CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3571; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3551; ORIGINAL_PRECURSOR_SCAN_NO 3550 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3569; ORIGINAL_PRECURSOR_SCAN_NO 3568 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3553; ORIGINAL_PRECURSOR_SCAN_NO 3552 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3596; ORIGINAL_PRECURSOR_SCAN_NO 3594 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3589; ORIGINAL_PRECURSOR_SCAN_NO 3588
Dihydromorphine
Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Azinphos-ethyl
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3654 CONFIDENCE standard compound; INTERNAL_ID 2608 CONFIDENCE standard compound; INTERNAL_ID 8478
Indole-3-carboxylic acid
Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
(-)-Maackiain
(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
Mephentermine
A sympathomimetic agent with mainly indirect effects on adrenergic receptors. It is used to maintain blood pressure in hypotensive states, for example, following spinal anesthesia. Although the central stimulant effects of mephentermine are much less than those of amphetamine, its use may lead to amphetamine-type dependence. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1248) C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
2,2-Bis[4-(2,3-epoxypropoxy)phenyl]propane
Potential food contaminant arising from its use in epoxy resin coatings for cans, concrete vats and tanks, etc. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 5810 D009676 - Noxae > D002273 - Carcinogens
4-Methylumbelliferyl acetate
Isolated from fenugreek (Trigonella foenum-graecum). 4-Methylumbelliferyl acetate is found in herbs and spices, green vegetables, and fenugreek. 4-Methylumbelliferyl acetate is found in fenugreek. 4-Methylumbelliferyl acetate is isolated from fenugreek (Trigonella foenum-graecum).
2,4,5-Trichlorphenol
CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5177; ORIGINAL_PRECURSOR_SCAN_NO 5173 CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5143 CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5142 CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5132; ORIGINAL_PRECURSOR_SCAN_NO 5129 CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5120; ORIGINAL_PRECURSOR_SCAN_NO 5119 CONFIDENCE standard compound; INTERNAL_ID 1107; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5185; ORIGINAL_PRECURSOR_SCAN_NO 5183 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5186; ORIGINAL_PRECURSOR_SCAN_NO 5184 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5196; ORIGINAL_PRECURSOR_SCAN_NO 5194 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5145; ORIGINAL_PRECURSOR_SCAN_NO 5143 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5158; ORIGINAL_PRECURSOR_SCAN_NO 5157 CONFIDENCE standard compound; INTERNAL_ID 677; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5190; ORIGINAL_PRECURSOR_SCAN_NO 5188 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8166
3-(4-hydroxyphenyl)lactate
Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.
Diethylthiophosphate
Diethylthiophosphate, also known as DETP, belongs to the class of organic compounds known as thiophosphate diesters. These are organic compounds containing the thiophosphoric acid functional group or a derivative thereof, with the general structure ROP(OR)(OR)=S, where exactly two R-groups are organyl groups. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Diethylthiophosphate is a potentially toxic compound. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase Chronic exposure to POs has neurological sequelae as well and data suggests that OP exposure alters sperm chromatin condensation (A3181, A3182, A3183, A3181). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412). PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Diethylthiophosphate is the most frequent metabolite of organophosphorus (OP) found in urine (PMID 15050412). Organophosphorus compounds are widely used as pesticides because of easy degradation in the environment. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412) [HMDB] KEIO_ID D113
N-NITROSOMETHYLETHYLAMINE
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3449
coronardine
Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1]. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1].
D-Arabinono-1,4-lactone
D-arabinono-1,4-lactone, also known as D-arabinonic acid, gamma-lactone, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. D-arabinono-1,4-lactone is soluble (in water) and a very weakly acidic compound (based on its pKa). D-arabinono-1,4-lactone can be found in rice, which makes D-arabinono-1,4-lactone a potential biomarker for the consumption of this food product. D-arabinono-1,4-lactone may be a unique S.cerevisiae (yeast) metabolite.
Ophthalmic acid
Ophthalmic acid, also known as ophthalmate, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Ophthalmic acid is a very strong basic compound (based on its pKa). Ophthalmic acid is an L-glutamine derivative in which L-glutamine is substituted by a 1--1-oxobutan-2-yl at the terminal amino nitrogen atom. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. [HMDB]
2,4-Dibromophenol
2,4-Dibromophenol is found in crustaceans. Commonly found in molluscs and crustacean CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8006
N-METHYLANILINE
N-methylaniline, also known as methylphenylamine or N-methylbenzenamine, is a member of the class of compounds known as phenylalkylamines. Phenylalkylamines are organic amines where the amine group is secondary and linked on one end to a phenyl group and on the other end, to an alkyl group. N-methylaniline is soluble (in water) and a strong basic compound (based on its pKa). N-methylaniline can be found in a number of food items such as carrot, wild carrot, orange bell pepper, and red bell pepper, which makes N-methylaniline a potential biomarker for the consumption of these food products. N-Methylaniline (NMA) is an aniline derivative. It is an organic compound with the chemical formula C6H5NH(CH3). The substance exists as a colorless or slightly yellow viscous liquid and turns brown when exposed to air. The chemical is insoluble in water. It is used as a latent and coupling solvent and is also used as an intermediate for dyes, agrochemicals and other organic products manufacturing. NMA is toxic and exposure can cause damage to the central nervous system and can also cause liver and kidney failure . CONFIDENCE standard compound; INTERNAL_ID 8126 KEIO_ID M066
2,4,6-Tribromophenol
2,4,6-Tribromophenol, also known as 2,4,6-TBP or bromol, belongs to the class of organic compounds known as p-bromophenols. These are bromophenols carrying a iodine at the C4 position of the benzene ring. 2,4,6-Tribromophenol has been detected, but not quantified, in a few different foods, such as crustaceans, fishes, and mollusks. This could make 2,4,6-tribromophenol a potential biomarker for the consumption of these foods. A bromophenol that is phenol in which the hydrogens at positions 2, 4 and 6 have been replaced by bromines. 2,4,6-Tribromophenol is a potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4940; ORIGINAL_PRECURSOR_SCAN_NO 4936 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4952; ORIGINAL_PRECURSOR_SCAN_NO 4950 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4925; ORIGINAL_PRECURSOR_SCAN_NO 4923 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4953; ORIGINAL_PRECURSOR_SCAN_NO 4951 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4957; ORIGINAL_PRECURSOR_SCAN_NO 4955 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4956; ORIGINAL_PRECURSOR_SCAN_NO 4953 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8167
N-Phenyl-2-naphthylamine
CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28
2-Phenylacetamide
2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.
2-Phenylethyl acetate
2-Phenylethyl acetate, also known as 2-phenethyl acetic acid or benzylcarbinyl acetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethyl acetate is a sweet, floral, and fruity tasting compound. 2-Phenylethyl acetate is found, on average, in the highest concentration within ceylon cinnamons and cloves. 2-Phenylethyl acetate has also been detected, but not quantified, in several different foods, such as butternuts, eggplants, turmerics, radish (var.), and pili nuts. This could make 2-phenylethyl acetate a potential biomarker for the consumption of these foods. The acetate ester of 2-phenylethanol. Flavouring ingredient. 2-Phenylethyl acetate is found in many foods, some of which are acerola, prickly pear, summer grape, and sweet orange.
Methyl beta-D-glucopyranoside
Methyl beta-D-glucopyranoside is found in cereals and cereal products. Methyl beta-D-glucopyranoside is present in Medicago sativa (alfalfa Methyl β-D-Galactopyranoside is an endogenous metabolite.
Palatinose
Acquisition and generation of the data is financially supported in part by CREST/JST.
2,2',5,5'-Tetrachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Nicotianamine
The (S,S,S)-stereoisomer of nicotianamine. IPB_RECORD: 2921; CONFIDENCE confident structure
beta-Alanyl-L-lysine
This compound belongs to the family of Hybrid Peptides. These are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta). KEIO_ID A127
4-Chlorobenzoic acid
CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4340; ORIGINAL_PRECURSOR_SCAN_NO 4338 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4332; ORIGINAL_PRECURSOR_SCAN_NO 4329 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4361; ORIGINAL_PRECURSOR_SCAN_NO 4356 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4419 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4331; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE standard compound; INTERNAL_ID 431; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4339; ORIGINAL_PRECURSOR_SCAN_NO 4337 KEIO_ID C104
threo-b-methylaspartate
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M009
Kanamycin B
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID B028 Bekanamycin (Kanamycin B) is an aminoglycoside antibiotic produced by Streptomyces kanamyceticus, against an array of Gram-positive and Gram-negative bacterial strain[1][2].
Epinine
Epinine, also known as deoxyepinephrine or deoxyadrenaline, is a member of the class of compounds known as catecholamines and derivatives. These compounds contain 4-(2-aminoethyl)pyrocatechol [4-(2-aminoethyl)benzene-1,2-diol] or a derivative thereof formed by substitution. Epinine exists as a solid, and is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Epinine is an alkaloid from Vicia faba and can be found in pulses. Epinine is a dopamine and epinephrine derivative. KEIO_ID E013
Nebularine
Nebularine, also known as purine riboside is found in mushrooms. Nebularine can be isolated from the mushroom Clitocybe nebularis (clouded agaric). Nebularine is a nucleoside analog that is used in a variety of enzyme studies. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents KEIO_ID P081; [MS2] KO009216 KEIO_ID P081
L-Phosphoarginine
L-Phosphoarginine is found in crustaceans. L-Phosphoarginine is a constituent of crayfish muscle KEIO_ID P105
Butyrylcarnitine
Butyrylcarnitine, also known as (3R)-3-(butyryloxy)-4-(trimethylammonio)butanoate or L-carnitine butyryl ester, is classified as a member of the acylcarnitines. Acylcarnitines are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. Butyrylcarnitine is considered to be practically insoluble (in water) and acidic. Butyrylcarnitine is elevated in patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, in infants with acute acidosis and generalized muscle weakness, and in middle-aged patients with chronic myopathy localized in muscle (OMIM: 201470). Butyrylcarnitine is elevated in patients with acyl-coa dehydrogenase, short-chain (SCAD) deficiencyin; in infants with acute acidosis and generalized muscle weakness; and in middle-aged patients with chronic myopathy localized in muscle. (OMIM 201470) [HMDB] Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.
Glucotropaeolin
Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.
Ginkgolide A
Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Himbacine
A piperidine alkaloid that is decahydronaphtho[2,3-c]furan-1(3H)-one substituted by a methyl group at position 3 and a 2-[(2R,6S)-1,6-dimethylpiperidin-2-yl]ethenyl group at position 4. It has been isolated from the bark of Australian magnolias. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.814 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.809
6-Hydroxyflavanone
A monohydroxyflavanone that is flavanone substituted by a hydroxy group at position 6. Annotation level-1
Antheraxanthin A
Antheraxanthin a is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Antheraxanthin a is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Antheraxanthin a can be found in herbs and spices, which makes antheraxanthin a a potential biomarker for the consumption of this food product. Antheraxanthin A is found in herbs and spices. Antheraxanthin A is a constituent of Capsicum fruit; potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Acteoside
The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
Vincosamide
Vincosamide is a monoterpenoid indole alkaloid. Vincosamide is a natural product found in Camptotheca acuminata, Sinoadina racemosa, and other organisms with data available. Strictosamide has important effects on inflammation and inflammatory pain. Strictosamide possesses antiplasmodial and antifungal activities[1]. Strictosamide has important effects on inflammation and inflammatory pain. Strictosamide possesses antiplasmodial and antifungal activities[1]. Vincosamide, an alkaloid from Psychotria leiocarpa extract, inhibits the acetylcholinesterase (AChE) activity with anti-inflammatory activity[1]. Vincosamide, an alkaloid from Psychotria leiocarpa extract, inhibits the acetylcholinesterase (AChE) activity with anti-inflammatory activity[1].
Androstanedione
Androstanedione belongs to the class of organic compounds known as androgens and derivatives. These are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androstanedione is considered to be a steroid lipid molecule. Androstanedione is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Androstanedione is a steroid metabolite and a procursor of both testosterone and estrone. It is a product of enzyme 3alpha-hydroxysteroid dehydrogenase [EC 1.1.1.50] in pathway Androgen and estrogen metabolism (KEGG). [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
toxin HT 2
HT-2 toxin is a trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. It has a role as a fungal metabolite and an apoptosis inducer. It is a trichothecene, an organic heterotetracyclic compound and an acetate ester. HT-2 Toxin is a natural product found in Fusarium heterosporum, Fusarium sporotrichioides, and other organisms with data available. A trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
penitrem A
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].
5,6-Epoxy-8,11,14-eicosatrienoic acid
5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113) [HMDB] 5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113).
8,9-DiHETrE
8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990) [HMDB] 8,9-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid (AA) metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. P450converts AA to 8,9- dihydroxyeicosatrienoic acid. This enzymatic pathway was first described in liver; however, it is now clear that AA can be metabolized by P450 in many tissues including the pituitary gland, eye, kidney, adrenal gland, and blood vessels. (PMID: 17431031, 11700990).
Nicotinic acid adenine dinucleotide
Nicotinic acid adenine dinucleotide, also known as deamido-NAD or NAAD, belongs to the class of organic compounds known as (5->5)-dinucleotides. These are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. NAAD is possibly soluble (in water) and a strong basic compound (based on its pKa). NAAD exists in all living species, ranging from bacteria to humans. L-Glutamine and NAAD can be converted into L-glutamic acid and NAD; which is catalyzed by the enzyme glutamine-dependent nad(+) synthetase. In humans, NAAD is involved in the nicotinate and nicotinamide metabolism pathway. NAAD is also involved in the metabolic disorder called succinic semialdehyde dehydrogenase deficiency. Outside of the human body, NAAD has been detected, but not quantified in, several different foods, such as japanese walnuts, cauliflowers, sparkleberries, komatsuna, and macadamia nut (m. tetraphylla). This could make NAAD a potential biomarker for the consumption of these foods. NAAD is the product of the degradation of Nicotinic acid adenine dinucleotide phosphate (NAADP) by a Ca2+-sensitive phosphatase. NAADP is a Ca2+-mobilizing second messenger which is synthesized, in response to extracellular stimuli, via the base-exchange reaction by an ADP-ribosyl cyclase (ARC) family members (such as CD38). NAADP binds to and opens Ca2+ channels on intracellular organelles, thereby increasing the intracellular Ca2+ concentration which, in turn, modulates a variety of cellular processes. Structurally, NAADP it is a dinucleotide that only differs from the house-keeping enzyme cofactor, NADP, by a hydroxyl group (replacing the nicotinamide amino group) and yet this minor modification converts it into the most potent Ca2+-mobilizing second messenger yet described. NAADP may also be broken down to 2-phosphoadenosine diphosphoribose (ADPRP) by CD38 or reduced to NAADPH. Deamido-nad(+), also known as deamidonicotinamide adenine dinucleoetide, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Deamido-nad(+) is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Deamido-nad(+) can be found in a number of food items such as garden tomato, sea-buckthornberry, pitanga, and japanese walnut, which makes deamido-nad(+) a potential biomarker for the consumption of these food products. Deamido-nad(+) exists in all living species, ranging from bacteria to humans. In humans, deamido-nad(+) is involved in few metabolic pathways, which include glutamate metabolism, homocarnosinosis, and nicotinate and nicotinamide metabolism. Deamido-nad(+) is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency.
Naphthalene-1,2-diol
This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.
1-Nonanol
1-Nonanol is found in citrus. 1-Nonanol is widespread in nature. 1-Nonanol occurs in oils of orange, citronella and lemon. Also found in cheese, prickly pears and bread. 1-Nonanol is a straight chain fatty alcohol with nine carbon atoms and the molecular formula CH3(CH2)8OH. It is a colorless to slightly yellow liquid with a citrus odor similar to citronella oil Widespread in nature. Occurs in oils of orange, citronella and lemonand is also found in cheese, prickly pears and bread. Flavouring agent
2-Furanmethanol
2-Furanmethanol, also known as 2-furylcarbinol or furfural alcohol, belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Its structure is that of a furan bearing a hydroxymethyl substituent at the 2-position. 2-Furanmethanol is a sweet, alcoholic and bitter tasting compound. 2-Furanmethanol has been detected, but not quantified, in several different foods, such as cereals and cereal products, potato, white mustards, arabica coffee, and cocoa and cocoa products. This could make 2-furanmethanol a potential biomarker for the consumption of these foods. Isolated from coffee aroma, tea, wheat bread, crispbread, soybean, cocoa, rice, potato chips and other sources. Flavouring ingredient. 2-Furanmethanol is found in many foods, some of which are sesame, pulses, white mustard, and potato.
4-Oxoretinol
4-oxo-retinol, a metabolite of retinol synthesized in mouse embryonal carcinoma F9 cells,is active in inducing differentiation of these cells. It also functions as a ligand of retinoic acid receptors and a transcriptional activator of reporter. genes.[PMID: 9110564]. 4-Oxoretinol is a metabolite of retinol in the human promyelocytic leukemia cell line NB4 which induces cell growth arrest and granulocytic differentiation.[PMID: 9581846]. 4-oxo-retinol, a metabolite of retinol synthesized in mouse embryonal carcinoma F9 cells,is active in inducing differentiation of these cells. It also functions as a ligand of retinoic acid receptors and a transcriptional activator of reporter D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
n-Butyl acetate
n-Butyl acetate is a flavouring ingredient used in apple flavours. n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of fruit, where along with other chemicals it imparts characteristic flavors. Apples, especially of the Red Delicious variety, are flavored in part by this chemical. It is a colourless flammable liquid with a sweet smell of banana. Flavouring ingredient used in apple flavours
Ethyl octanoate
Ethyl octanoate is a fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. It has a role as a metabolite. It is a fatty acid ethyl ester and an octanoate ester. Ethyl octanoate is found in alcoholic beverages. Ethyl octanoate is used in many fruit flavourings. Ethyl octanoate is a constituent of plant oils. Also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. It is used in many fruit flavourings. Constituent of plant oilsand is) also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. Ethyl octanoate is found in many foods, some of which are milk and milk products, guava, cereals and cereal products, and pepper (c. frutescens).
Tridecane
Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].
Glyceric acid 1,3-biphosphate
Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
Lactaldehyde
L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).
Nocardicin A
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Phosphoglycolic acid
Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.
UDP-N-acetylmuraminate
UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]
Protoporphyrinogen IX
Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Hydroxy-2-oxoglutaric acid
4-Hydroxy-2-ketoglutaric acid is a substrate for Fructose-bisphosphate aldolase A. [HMDB] 4-Hydroxy-2-ketoglutaric acid is a substrate for Fructose-bisphosphate aldolase A.
Tartronate semialdehyde
Tartronate semialdehyde is an intermediate in ascorbate and aldarate as well as glyoxylate and dicarboxylate metabolism. It is generated from 2-dehydro-3-deoxy-D-glucarate and 5-dehydro-4-deoxy-D-glucarate via the enzyme 2-dehydro-3-deoxyglucarate aldolase [EC:4.1.2.20]. [HMDB]. Tartronate semialdehyde is found in many foods, some of which are wild leek, common salsify, sunflower, and new zealand spinach. Tartronate semialdehyde is an intermediate in ascorbate and aldarate as well as glyoxylate and dicarboxylate metabolism. It is generated from 2-dehydro-3-deoxy-D-glucarate and 5-dehydro-4-deoxy-D-glucarate via the enzyme 2-dehydro-3-deoxyglucarate aldolase [EC:4.1.2.20].
GDP-4-Dehydro-6-deoxy-D-mannose
GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403) [HMDB]. GDP-4-Dehydro-6-deoxy-D-mannose is found in many foods, some of which are bayberry, cherimoya, greenthread tea, and pulses. GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Inositol 1,3,4-trisphosphate
Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]
Hydrogen selenide
Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).
TOLRESTAT
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10X - Other drugs used in diabetes > A10XA - Aldose reductase inhibitors C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D004791 - Enzyme Inhibitors
streptonigrin
Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
Uroporphyrin III
Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. Uroporphyrins have four acetic acid and four propionic acid side chains attached to their pyrrole rings. The enzyme uroporphyrinogen I synthase catalyzes the formation of hydroxymethylbilane from four molecules of porphobilinogen. Uroporphyrinogen III cosynthase then catalyzes the conversion of hydroxymethylbilane into uroporphyrinogen III. Otherwise, hydroxymethylbilane cyclizes nonenzymatically to form uroporphyrinogen I. Uroporphyrinogen I and III yield their respective uroporphyrins via autooxidation or their respective coproporphyrinogens via decarboxylation. Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both uroporphyrin I and uroporphyrin III are excreted in porphyria cutanea tarda. Uroporphyrin I and III are the most common isomers. Under certain conditions, uroporphyrin III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, porphyria cutanea tarda, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Occurs in urine in small amounts as by-product of haem biosynthesis, also in Rhodopseudomonas spheroides (CCD). Uroporphyrin III is found in soy bean.
L-Aspartyl-4-phosphate
L-Aspartyl-4-phosphate belongs to the class of organic compounds known as aspartic acid and derivatives. Aspartic acid and derivatives are compounds containing an aspartic acid or a derivative thereof resulting from a reaction of aspartic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-Aspartyl-4-phosphate is a very strong basic compound (based on its pKa). L-Aspartyl-4-phosphate is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways. L-Aspartyl-4-phosphate is produced from a reaction between L-aspartate and ATP, with ADP as a byproduct. The reaction is catalyzed by aspartate kinase. L-Aspartyl-4-phosphate reacts with NADPH to produce phosphate, L-aspartate-semialdehyde, and NADP+. Aspartate-semialdehyde dehydrogenase catalyzes this reaction. L-Aspartyl-4-phosphate is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids
N-Benzoylanthranilic acid
N-Benzoylanthranilic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
NSC627046
N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].
Leucopelargonidin
Leucopelargonidin (CAS: 520-17-2) is a colourless chemical compound belonging to the family of leucoanthocyanidins. Leucoanthocyanidins are flavonoids consisting of a flavan (3,4-dihydro-2-phenyl-2H-1-benzopyran) moiety that carries two hydroxy groups at the C3- and C4-positions. Leucopelargonidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Leucopelargonidin can be found in a number of food items such as narrowleaf cattail, pepper (C. pubescens), macadamia nut (M. tetraphylla), and abiyuch, which makes leucopelargonidin a potential biomarker for the consumption of these food products (FooDB). Leucopelargonidin can also be found in Albizia lebbeck (East Indian walnut), in the fruit of Anacardium occidentale (cashew), in the fruit of Areca catechu (Areca nut), in the fruit of Hydnocarpus wightiana (Hindi Chaulmoogra), in the rhizome of Rumex hymenosepalus (Arizona dock), in Zea Mays (corn), and in Ziziphus jujuba (Chinese date) (Wikipedia).
D-myo-Inositol 1,3,4,6-tetrakisphosphate
D-myo-Inositol 1,3,4,6-tetrakisphosphate, also known as Ins(1,3,4,6)P4, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3,4,6-tetrakisphosphate is an extremely strong acidic compound (based on its pKa). D-myo-Inositol 1,3,4,6-tetrakisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 1,3,4,6-tetrakisphosphate can be converted into D-myo-inositol 1,3,4,5,6-pentakisphosphate through the action of the enzyme inositol polyphosphate multikinase. In addition, D-myo-inositol 1,3,4,6-tetrakisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate; which is mediated by the enzyme inositol-tetrakisphosphate 1-kinase. In humans, D-myo-inositol 1,3,4,6-tetrakisphosphate is involved in inositol phosphate metabolism and is a substrate for the tyrosine-protein kinase BTK. 1D-Myo-inositol 1,3,4,6-tetrakisphosphate is a substrate for Tyrosine-protein kinase BTK and Inositol polyphosphate multikinase. [HMDB]
D-myo-Inositol 3,4,5,6-tetrakisphosphate
Inositol phosphates are a family of water-soluble intracellular signalling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-myo-Inositol 3,4,5,6-tetrakisphosphate, also known as Ins(3,4,5,6)P4, has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenges with Ca2+-dependent agonists (PMID: 12388102, 11408264). Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-Myo-inositol (3,4,5,6) tetrakisphosphate (Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenge with Ca2+-dependent agonists. (PMID: 12388102, 11408264) [HMDB]
L-L-Homoglutathione
L-l-homoglutathione is a member of the class of compounds known as hybrid peptides. Hybrid peptides are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta) linked to each other through a peptide bond. L-l-homoglutathione is practically insoluble (in water) and a moderately acidic compound (based on its pKa). L-l-homoglutathione can be found in pulses, which makes L-l-homoglutathione a potential biomarker for the consumption of this food product. L-L-Homoglutathione is found in pulses. L-L-Homoglutathione occurs in seeds of various legume
SAICAR
SAICAR, also known as succinylaminoimidazolecarboxamide ribotide or phosphoribosylaminoimidazolesuccinocarboxamide, is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. SAICAR is converted from 5-aminoimidazole-4-carboxyribonucleotide (CAIR) via phosphoribosylaminoimidazolesuccinocarboxamide synthetase (EC: 6.3.2.6) or SAICAR synthase. This enzyme catalyzes the eighth step in the biosynthesis of purine nucleotides. SAICAR (a ribotide) can lose its phosphate group leading to the appearance of a riboside known as succinylaminoimidazolecarboxamide riboside (SAICAriboside) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma. This particular riboside (called SAICAr) is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). On the other hand, the ribotide (SAICAR) is generally harmless and is an essential intermediate in purine metabolism. When present in sufficiently high levels, SAICAR can act as an oncometabolite. An oncometabolite is a compound that promotes tumour growth and survival. As an oncometabolite, high levels of SAICAR stimulate pyruvate kinase isoform M2 and promote cancer cell survival in glucose-limited conditions such as aerobic glycolysis (PMID: 23086999). SAICAR (or (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate) is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate is converted from 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate via phosphoribosylaminoimidazole-succinocarboxamide synthase [EC: 6.3.2.6] or SAICAR synthase. This enzyme catalyses the seventh step out of ten in the biosynthesis of purine nucleotides. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, urine, and to a lesser extent in plasma is characteristic of a heritable deficiency Adenylosuccinate lyase deficiency. [HMDB]. SAICAR is found in many foods, some of which are sweet potato, black chokeberry, common wheat, and globe artichoke. SAICAR. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3031-95-6 (retrieved 2024-08-20) (CAS RN: 3031-95-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dihydroneopterin triphosphate
The biosynthesis of tetrahydrobiopterin (BH4) from dihydroneopterin triphosphate (NH2P3) was studied in human liver extract. The phosphate-eliminating enzyme (PEE) was purified approximately 750-fold. The conversion of NH2P3 to BH4 was catalyzed by this enzyme in the presence of partially purified sepiapterin reductase, Mg2+, and NADPH. The PEE is heat stable when heated at 80°C for 5 min. It has a molecular weight of 63 000 daltons. One possible intermediate 6-(1-hydroxy-2-oxopropyl)5,6,7,8-tetrahydropterin(2-oxo-tetrahydropte rin) was formed upon incubation of BH4 in the presence of sepiapterin reductase and NADP+ at pH 9.0. The reduction of this compound with NaBD4 yielded monodeutero-, threo-, and erythro-BH4; the deuterium was incorporated at the 2 position. This and the UV spectra were consistent with a 2-oxo-tetrahydropterin structure. Dihydrofolate reductase (DHFR) catalyzed the reduction of BH2 into BH4 and was found to be specific for the pro-R-NADPH side. The sepiapterin reductase catalyzed the transfer of the pro-S hydrogen of NADPH during the reduction of sepiapterin into BH2. In the presence of crude liver extracts, the conversion of NH2P3 into BH4 requires NADPH. Two deuterium atoms were incorporated from (4S-2H)NADHP in the 1 and 2 position of the BH4 side chain. The incorporation of one hydrogen from the solvent was found at position C(6). These results are consistent with the occurrence of an intramolecular redox exchange between the pteridine nucleus and the side chain and formation of 6-pyruvoyl-5,6,7,8-tetrahydropterin(tetrahydro-1-2-dioxopterin) as an intermediate (PMID: 3930838). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
19-Hydroxyandrost-4-ene-3,17-dione
19-hydroxyandrost-4-ene-3,17-dione, also known as 19-haed, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, 19-hydroxyandrost-4-ene-3,17-dione is considered to be a steroid lipid molecule. 19-hydroxyandrost-4-ene-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 19-hydroxyandrost-4-ene-3,17-dione can be found in a number of food items such as red huckleberry, chinese chestnut, mustard spinach, and komatsuna, which makes 19-hydroxyandrost-4-ene-3,17-dione a potential biomarker for the consumption of these food products. 19-hydroxyandrost-4-ene-3,17-dione can be found primarily in blood, as well as in human placenta and testes tissues. In humans, 19-hydroxyandrost-4-ene-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. 19-hydroxyandrost-4-ene-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, 19-hydroxyandrost-4-ene-3,17-dione is found to be associated with cushings Syndrome. 19-Hydroxyandrost-4-ene-3,17-dione is a substrate for Corticotropin-lipotropin and Cytochrome P450 19A1. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
w Hydroxy testosterone
This compound belongs to the family of Androgens and Derivatives. These are hydroxylated C19 steroid hormones. They are known to favour the development of masculine characteristics. They also show profound effects on scalp and body hair in humans
2-Hydroxyestrone
2-Hydroxyestrone (2-OHE1), also known as estra-1,3,5(10)-trien-2,3-diol-17-one, is an endogenous, naturally occurring catechol estrogen and a major metabolite of estrone and estradiol. 2-Hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 2-Hydroxyestrone is considered to be a steroid molecule. It is formed irreversibly from estrone in the liver and to a lesser extent in other tissues via 2-hydroxylation mediated by cytochrome P450 enzymes, mainly the CYP3A and CYP1A subfamilies. 2-OHE1 is the most abundant catechol estrogen in the body. 2-Hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1, respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good steroid metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 2-hydroxyestrone is not significantly uterotrophic, whereas other hydroxylated estrogen metabolites including 2-hydroxyestradiol, 16a-hydroxyestrone, estriol, 4-hydroxyestradiol, and 4-hydroxyestrone all are. A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
Dihydrocortisol
Dihydrocortisol is the product of the enzyme steroid 5-beta-reductase (EC 1.3.1.3), which catalyzes the reduction of progesterone, androstenedione, 17-alpha-hydroxyprogesterone, testosterone, aldosterone, corticosterone, and cortisol to 5-beta-reduced metabolites. A deficiency in this enzyme is associated with a congenital defect in bile acid synthesis (OMIM: 235555). Dihydrocortisol is the substrate of the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.225, 1.1.1.213, 1.3.1.20, 1.1.1.50), and is an intermediate in bile acid biosynthesis, C21-steroid hormone metabolism, androgen and estrogen metabolism, and the metabolism of xenobiotics by cytochrome P450 (KEGG). Dihydrocortisol is the product of the enzyme Steroid 5-beta-reductase [EC 1.3.1.3], which catalyzes the reduction of progesterone, androstenedione, 17-alpha-hydroxyprogesterone, testosterone, aldosterone, corticosterone and cortisol to 5-beta-reduced metabolites. A deficiency in this enzyme is associated with congenital defect in bile acid synthesis. (OMIM 235555) 5β-Dihydrocortisol, a metabolite of Cortisol, is a potential mineralocorticoid. 5β-Dihydrocortisol can potentiate glucocorticoid activity in raising the intraocular pressure. 5β-Dihydrocortisol causes breast cancer cell apoptosis[1][2][3][4][5].
3,4-Dihydroxymandelaldehyde
3,4-Dihydroxymandelaldehyde is the monoamine oxidase (MAO) aldehyde metabolite of both norepinephrine and epinephrine. 3,4- dihydroxymandelaldehyde generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826). 3,4-dihydroxymandelaldehyde, also known as alpha,3,4-trihydroxybenzeneacetaldehyde or dhmal, is a member of the class of compounds known as phenylacetaldehydes. Phenylacetaldehydes are compounds containing a phenylacetaldehyde moiety, which consists of a phenyl group substituted at the second position by an acetalydehyde. 3,4-dihydroxymandelaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydroxymandelaldehyde can be found in a number of food items such as canola, lentils, grass pea, and moth bean, which makes 3,4-dihydroxymandelaldehyde a potential biomarker for the consumption of these food products. In humans, 3,4-dihydroxymandelaldehyde is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelaldehyde is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, alkaptonuria, hawkinsinuria, and tyrosinemia, transient, of the newborn. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Indole-5,6-quinone
Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1]. [HMDB] Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1].
Leucodopachrome
Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatically product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus dopa. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis. (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639) [HMDB]. Leucodopachrome is found in many foods, some of which are chives, saffron, leek, and red beetroot. Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatic product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus DOPA. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639).
3-Aminopropionaldehyde
3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).
Uroporphyrinogen I
Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. [HMDB]. Uroporphyrinogen I is found in many foods, some of which are great horned owl, nutmeg, lime, and cascade huckleberry. Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction.
Vitamin K1 2,3-epoxide
Vitamin K1 2,3-epoxide (CAS: 25486-55-9) is a vitamin K derivative. Vitamin K is needed for the posttranslational modification of certain proteins, mostly required for blood coagulation. Within the cell, vitamin K undergoes electron reduction to a reduced form of vitamin K (called vitamin K hydroquinone) by the enzyme vitamin K epoxide reductase (or VKOR). Another enzyme then oxidizes vitamin K hydroquinone to allow carboxylation of glutamate into gamma-carboxyglutamate (Gla). This enzyme is called the gamma-glutamyl carboxylase or the vitamin K-dependent carboxylase. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize vitamin K hydroquinone into vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled reactions. Vitamin K epoxide is then re-converted into vitamin K by the vitamin K epoxide reductase. These two enzymes comprise the so-called vitamin K cycle. One of the reasons why vitamin K is rarely deficient in a human diet is because vitamin K is continually recycled in our cells. Vitamin K 2,3-epoxide is the substrate for vitamin K 2,3-epoxide reductase (VKOR) complex. Significantly increased level of serum vitamin K epoxide has been found in patients with familial multiple coagulation factor deficiency (PMID: 12384421). Accumulation of vitamin K1-2,3-epoxide in plasma is also a sensitive marker of the coumarin-like activity of drugs (PMID: 2401753). Vitamin K1 2,3-epoxide is a vitamin K derivative. Vitamin K needed for the posttranslational modification of certain proteins, mostly required for blood coagulation. Within the cell, Vitamin K undergoes electron reduction to a reduced form of Vitamin K (called Vitamin K hydroquinone) by the enzyme Vitamin K epoxide reductase (or VKOR). Another enzyme then oxidizes Vitamin K hydroquinone to allow carboxylation of Glutamate to Gamma-cabroxygluatmate (Gla); this enzyme is called the gamma-glutamyl carboxylase or the Vitamin K-dependent carboxylase. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize Vitamin K hydroquinone to vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled reactions. Vitamin K epoxide is then re-converted to Vitamin K by the Vitamin K epoxide reductase. These two enzymes comprise the so-called Vitamin K cycle. One of the reasons why Vitamin K is rarely deficient in a human diet is because Vitamin K is continually recycled in our cells. Vitamin K 2,3-epoxide is the substrate for vitamin K 2,3-epoxide reductase (VKOR) complex. Significantly increased level of serum vitamin K epoxide has been found in patients with familial multiple coagulation factor deficiency. (PMID 12384421) Accumulation of vitamin K1-2,3-epoxide in plasma is also a sensitive marker of coumarin-like activity of drugs. (PMID 2401753) [HMDB]
Delta-12-Prostaglandin J2
Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
6-Ketoprostaglandin E1
6-Ketoprostaglandin E1 (6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1. 6-keto-PGE1 elicits the same biological effects as PGI2 in human platelets and in rabbit aorta and mesenteric artery, being, however, less potent. 6-keto-PGE1 dose-dependently stimulates adenylate cyclase activity in membranes of human platelets and cultured myocytes from rabbit aorta and mesenteric artery. The extent of stimulation of the enzyme by 6-keto-PGE1 is the same as elicited by PGI2, while the apparent affinity is lower than that of prostacyclin, both in platelets and in vascular smooth muscle cells. At the level of platelet membranes, 6-keto-PGE1 interacts with the binding sites labelled by PGI2. However, in platelets as well as in mesenteric artery myocytes, 6-keto-PGE1 interacts with only one class of sites as demonstrated either by binding or by adenylate cyclase studies, whereas PGI2 in the same conditions recognizes two different classes. (PMID: 3186779, 3075239, 3472253, 3912001, 3881881, 6391491)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 6-Ketoprostaglandin E1(6-keto PGE1) is a biologically active and stable prostacyclin (PGI2) metabolite and a substrate for Adenylate cyclase type III. 6-keto PGE1 is a potent coronary vasodilator. 6-keto PGE1 could be elevated in plasma of patients with primary thrombocythaemia. 6-keto-PGE1 has approximately four times less potent antiplatelet activity than PGI2 on a molar basis in man. The cardiovascular and plasma renin activity (PRA) changes are less prominent for 6-keto-PGE1 than PGI2. Salt loading slightly increases urinary 6-keto PGE1. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Lead
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Lead is a chemical element in the carbon group with symbol Pb and atomic number 82. Like the element mercury, another heavy metal, lead is a neurotoxin that accumulates both in soft tissues and the bones. Lead can be ingested through fruits and vegetables contaminated by high levels of lead in the soils they were grown in. Soil is contaminated through particulate accumulation from lead in pipes, lead paint and residual emissions from leaded gasoline that was used before the Environment Protection Agency issue the regulation around 1980. [Wikipedia]. Lead is found in many foods, some of which are blackcurrant, asparagus, endive, and flaxseed.
Carboprost Tromethamine
Carboprost Tromethamine is only found in individuals that have used or taken this drug. It is a nonsteroidal abortifacient agent that is effective in both the first and second trimesters of pregnancy. [PubChem]Carboprost is a synthetic prostaglandin. It binds the prostaglandin E2 receptor, causing myometrial contractions, casuing the induction of labour or the expulsion of the placenta. Prostaglandins occur naturally in the body and act at several sites in the body including the womb (uterus). They act on the muscles of the womb, causing them to contract. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue
Diphenidol
Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents
Echothiophate
Echothiophate is only found in individuals that have used or taken this drug. It is a potent, long-acting irreversible cholinesterase inhibitor used as an ocular hypertensive in the treatment of glaucoma. Occasionally used for accomodative esotropia.Echothiophate Iodide is a long-acting cholinesterase inhibitor for topical use which enhances the effect of endogenously liberated acetylcholine in iris, ciliary muscle, and other parasympathetically innervated structures of the eye. Echothiophate iodide binds irreversibly to cholinesterase, and is long acting due to the slow rate of hydrolysis by cholinesterase. It causes miosis, increase in facility of outflow of aqueous humor, fall in intraocular pressure, and potentiation of accommodation. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors
Edrophonium
Edrophonium is only found in individuals that have used or taken this drug. It is a rapid-onset, short-acting cholinesterase inhibitor used in cardiac arrhythmias and in the diagnosis of myasthenia gravis. It has also been used as an antidote to curare principles. [PubChem]Edrophonium works by prolonging the action acetylcholine, which is found naturally in the body. It does this by inhibiting the action of the enzyme acetylcholinesterase. Acetylcholine stimulates nicotinic and muscarinic receptors. When stimulated, these receptors have a range of effects. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors
Megestrol
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000970 - Antineoplastic Agents
Trimethaphan
Trimethaphan is only found in individuals that have used or taken this drug. It is a nicotinic antagonist that has been used as a ganglionic blocker in hypertension, as an adjunct to anesthesia, and to induce hypotension during surgery. [PubChem]Trimethaphan is a ganglionic blocking agent prevents stimulation of postsynaptic receptors by competing with acetylcholine for these receptor sites. Additional effects may include direct peripheral vasodilation and release of histamine. Trimethaphans hypotensive effect is due to reduction in sympathetic tone and vasodilation, and is primarily postural. C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone
3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone is found in alcoholic beverages. 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone is a constituent of Humulus lupulus (hops). Constituent of Humulus lupulus (hops). Phlorisovalerophenone is found in many foods, some of which are bitter gourd, breadfruit, devilfish, and pepper (c. chinense).
Proparacaine
Proparacaine is only found in individuals that have used or taken this drug. It is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5\\%. [Wikipedia]The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Methoxyflurane
An inhalation anesthetic. Currently, methoxyflurane is rarely used for surgical, obstetric, or dental anesthesia. If so employed, it should be administered with nitrous oxide to achieve a relatively light level of anesthesia, and a neuromuscular blocking agent given concurrently to obtain the desired degree of muscular relaxation. (From AMA Drug Evaluations Annual, 1994, p180) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent N - Nervous system > N02 - Analgesics
Pipecuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
Bithionol
CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5307; ORIGINAL_PRECURSOR_SCAN_NO 5304 CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5340; ORIGINAL_PRECURSOR_SCAN_NO 5338 CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5314; ORIGINAL_PRECURSOR_SCAN_NO 5313 CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5289; ORIGINAL_PRECURSOR_SCAN_NO 5286 CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5359; ORIGINAL_PRECURSOR_SCAN_NO 5357 CONFIDENCE standard compound; INTERNAL_ID 1364; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5336; ORIGINAL_PRECURSOR_SCAN_NO 5335 D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AB - Preparations containing sulfur P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
MELARSOPROL
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CD - Arsenic compounds D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
1-Propanethiol
1-Propanethiol, also known as N-propylthiol or propyl mercaptan, belongs to the class of organic compounds known as alkylthiols. These are organic compounds containing the thiol functional group linked to an alkyl chain. 1-Propanethiol is a sweet, cabbage, and gassy tasting compound. 1-Propanethiol has been detected, but not quantified, in several different foods, such as garden onions, fruits, cabbages, wild leeks, and onion-family vegetables. Isolated from onion (Allium cepa) and other Allium sspecies Also present in cooked chicken, beef, beer, American potato chips and durian (Durio zibethinus). 1-Propanethiol is found in many foods, some of which are fruits, wild leek, yellow wax bean, and animal foods.
Inulicin
Britannilactone 1-O-acetate is a natural product found in Pentanema britannicum and Inula japonica with data available. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation.
trichodermin
A tetracyclic spiroepoxide which acts as an antifungal and protein synthesis inhibitor. D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
(R)-Oxypeucedanin
(r)-oxypeucedanin, also known as hishigado or phosphine, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one (r)-oxypeucedanin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-oxypeucedanin can be found in carrot, lemon, parsley, and wild carrot, which makes (r)-oxypeucedanin a potential biomarker for the consumption of these food products. (R)-Oxypeucedanin is a member of psoralens. 4-[(3,3-Dimethyloxiran-2-yl)methoxy]furo[3,2-g]chromen-7-one is a natural product found in Prangos latiloba, Citrus medica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (R)-Oxypeucedanin is found in herbs and spices. (R)-Oxypeucedanin is isolated from Angelica glauc Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2]. Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2].
Curine
Curine is an aromatic ether. Curine is a natural product found in Cissampelos pareira, Cyclea barbata, and other organisms with data available.
Pachypodol
Pachypodol is a trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. It has a role as a plant metabolite and an antiemetic. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. Pachypodol is a natural product found in Larrea cuneifolia, Macaranga triloba, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2]. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2].
Patuletin
Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors
Pedunculagin
Isodiospyrin
Isodiospyrin is a member of biphenyls. Isodiospyrin is a natural product found in Diospyros morrisiana, Diospyros verrucosa, and other organisms with data available. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3]. Isodiospyrin, a natural dimeric naphthoquinone, is a human DNA topoisomerase I (Topoisomerase) inhibitor. Isodiospyrin can prevent both DNA relaxation and kinase activities of human topoisomerase I. Isodiospyrin shows anticancer, antibacterial and antifungal activities[1][2][3].
Sophoraisoflavanone A
A hydroxyisoflavanone that is isoflavanone substituted by hydroxy groups at positions 5, 7 and 4, a methoxy substituent at position 2 and a prenyl group at position 3.
N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate
Calpain Inhibitor I
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins
Xamoterol
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists Same as: D06328
2-Aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Sulfametopyrazine
Sulfametopyrazine is only found in individuals that have used or taken this drug. It is a long-acting plasma-bound sulfonamide used for respiratory and urinary tract infections and also for malaria. [PubChem]Sulfametopyrazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. Para-aminobenzoic acid (PABA), a substrate of the enzyme is prevented from binding. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01ED - Long-acting sulfonamides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides Same as: D01216
Cyclacillin
Cyclacillin is only found in individuals that have used or taken this drug. It is a cyclohexylamido analog of penicillanic acid. [PubChem]The bactericidal activity of cyclacillin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cyclacillin is stable in the presence of a variety of b-lactamases, including penicillinases and some cephalosporinases. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334
Talampanel
C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D02696 Talampanel (LY300164) is an orally and selective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonis with anti-seizure activity[1]. Talampanel (IVAX) has neuroprotective effects in rodent stroke models[2]. Talampanel attenuates caspase-3 dependent apoptosis in mouse brain[2].
MG(20:4(5Z,8Z,11Z,14Z)/0:0/0:0)
MG(20:4(5Z,8Z,11Z,14Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
Caldarchaeol
Promegestone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives Same as: D08431
4-Propylphenol
4-Propylphenol is a flavouring ingredien Flavouring ingredient
1,2-DIBROMO-3-CHLOROPROPANE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
2-Ethylphenol
2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .
FENSULFOTHION
CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8595; ORIGINAL_PRECURSOR_SCAN_NO 8592 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8562; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8609; ORIGINAL_PRECURSOR_SCAN_NO 8605 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8582; ORIGINAL_PRECURSOR_SCAN_NO 8581 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8608; ORIGINAL_PRECURSOR_SCAN_NO 8606 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8628; ORIGINAL_PRECURSOR_SCAN_NO 8627
1,2,4-Trimethylbenzene
1,2,4-trimethylbenzene, also known as pseudocumene or psi-cumene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. 1,2,4-trimethylbenzene is a plastic tasting compound found in black walnut and corn, which makes 1,2,4-trimethylbenzene a potential biomarker for the consumption of these food products. 1,2,4-trimethylbenzene can be found primarily in urine. 1,2,4-trimethylbenzene exists in all eukaryotes, ranging from yeast to humans. 1,2,4-trimethylbenzene is a non-carcinogenic (not listed by IARC) potentially toxic compound. 1,2,4-Trimethylbenzene is a colorless liquid with chemical formula C9H12. It is a flammable aromatic hydrocarbon with a strong odor. It occurs naturally in coal tar and petroleum (about 3\\%). It is nearly insoluble in water, but well-soluble in ethanol, diethyl ether, and benzene.
5,6-DHET
5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162) [HMDB] 5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162).
Troxilin B3
Troxilin B3 is the enzymatically formed derivative of Hepoxilin B3. Normal human epidermis incubated with exogenous AA produces 12-oxo-eicosatetraenoic acid (12-oxo-ETE), hepoxilin A3 (HxA3), and hepoxilin B3 (HxB3) through the 12- Lipoxygenase (LO) pathway. 12-LO is the major arachidonic acid (AA) oxygenation pathway in epidermal cells with total product formation generally exceeding cyclooxygenase activity. Platelet-type 12-LO has been found to be the predominant isoenzyme expressed in human and murine skin epidermis. Increased levels of nonesterified hepoxilins and trioxilins occur in the psoriatic scales. Normal human epidermis synthesized only one of the two possible 10-hydroxy epimers of HxB3 whose formation is probably catalyzed by 12-LO. Hepoxilins exert action on plasma permeability on skin, and induce a specific-receptor-dependent Ca2+ mobilization from endogenous sources and the release of AA and diacylglycerols. (PMID: 11851887) [HMDB] Troxilin B3 is the enzymatically formed derivative of Hepoxilin B3. Normal human epidermis incubated with exogenous AA produces 12-oxo-eicosatetraenoic acid (12-oxo-ETE), hepoxilin A3 (HxA3), and hepoxilin B3 (HxB3) through the 12- Lipoxygenase (LO) pathway. 12-LO is the major arachidonic acid (AA) oxygenation pathway in epidermal cells with total product formation generally exceeding cyclooxygenase activity. Platelet-type 12-LO has been found to be the predominant isoenzyme expressed in human and murine skin epidermis. Increased levels of nonesterified hepoxilins and trioxilins occur in the psoriatic scales. Normal human epidermis synthesized only one of the two possible 10-hydroxy epimers of HxB3 whose formation is probably catalyzed by 12-LO. Hepoxilins exert action on plasma permeability on skin, and induce a specific-receptor-dependent Ca2+ mobilization from endogenous sources and the release of AA and diacylglycerols. (PMID: 11851887).
DHA ethyl ester
C26170 - Protective Agent > C275 - Antioxidant
N-Desmethyltamoxifen
N-Desmethyltamoxifen is only found in individuals that have used or taken Tamoxifen. N-Desmethyltamoxifen is a metabolite of Tamoxifen. N-desmethyltamoxifen belongs to the family of Stilbenes. These are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
6-Thioguanosine monophosphate
6-Thioguanosine monophosphate is a metabolite of tioguanine. Tioguanine, formerly thioguanine, is a drug that is used in the treatment of cancer. It belongs to the family of drugs called antimetabolites. It is a guanine analog. (Wikipedia) Norcodeine
Tuberculostearic acid
Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256). Tuberculostearic acid (TBSA) is a mycobacterial cell wall constituent that is possible to measure in plasma samples of patients with active tuberculosis. (PMID 14723350). Detection of tuberculostearic acid in cerebrospinal fluid by use of gas chromatography-mass spectrometry has proven to be a very rapid, sensitive, and specific test for tuberculous meningitis. (PMID 8438134). Tuberculostearic acid can also be found in Actinomycetales (PMID: 109465). Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256)
Didemnin B
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic A natural product found particularly in Lyngbya majuscula and Trididemnum solidum. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents Didemnin B is a depsipeptide extracted from the marine tunicate Trididemnin cyanophorum. Didemnin B can be used for the research of cancer[1].
Chavicol
Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.
2-Amino-2-deoxyisochorismate
lactaldehyde
A member of the class of propanals obtained by the reduction of the carboxylic group of lactic acid (2-hydroxypropanoic acid).
ST 19:3;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2815
1-Triacontanol
Triacontan-1-ol is an ultra-long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogens is replaced by a hydroxy group. It is a fatty alcohol 30:0 and an ultra-long-chain primary fatty alcohol. 1-Triacontanol is a natural product found in Haplophyllum bucharicum, Euphorbia dracunculoides, and other organisms with data available. See also: Saw Palmetto (part of); Iris versicolor root (part of).
Liquiritigenin
4,7-dihydroxyflavanone is a dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a Brassica napus metabolite and a fungal xenobiotic metabolite. It is a dihydroxyflavanone, a polyphenol and a member of 4-hydroxyflavanones. It is functionally related to a flavanone. 4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)- is a natural product found in Pterocarpus marsupium, Pterocarpus macrocarpus, and other organisms with data available. A dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1]. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1].
Corynanthin
Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a yohimban alkaloid, a methyl ester and an organic heteropentacyclic compound. Methyl 17-hydroxy-20xi-yohimban-16-carboxylate is a natural product found in Aspidosperma oblongum, Aspidosperma ramiflorum, and other organisms with data available. D001697 - Biomedical and Dental Materials > D003764 - Dental Materials
16b-Hydroxyestrone
16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Ribonolactone
Ribonolactone, also known as D-ribono-1,4-lactone is a five-membered form of ribonolactone having D-configuration. It has a role as a metabolite. It is a ribonolactone and a butan-4-olide. It derives from a D-ribonic acid. Ribonolactone belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribonolactone is a metabolite normally not detectable in human biofluids; however, it has been found in the urine of patients with neuroblastoma. Ribonolactone is a metabolite normally not detectable in human biofluids; however, it has been found in the urine of patients with neuroblastoma. (PMID 699273) [HMDB] D-Ribonolactone is sugar lactone and an inhibitor of β-galactosidase of Escherichia coli with a Ki of 26 mM[1].
19-Hydroxytestosterone
19-Hydroxytestosterone is an intermediate in Androgen and estrogen metabolism. 19-Hydroxytestosterone is the 4th to last step in the synthesis of 16-Glucuronide-estriol. It is generated from Testosterone via the enzyme cytochrome P450 (EC 1.14.14.1) and then converted to 19-Oxotestosterone.
Neopterin
Neopterin, also known as monapterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative and are mainly synthesized in several parts of the body, including the pineal gland. Neopterin is a solid that is soluble in water. Neopterin is a catabolic product of guanosine triphosphate (GTP). In humans, it is involved in pterine biosynthesis and it also serves as a precursor in the biosynthesis of biopterin, which is an essential cofactor in neurotransmitter synthesis. Neopterin has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic toxins can cause kidney, liver and heart damage. They can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Uremic toxins such as neopterin are actively transported into the kidneys via organic ion transporters (especially OAT3). Elevated levels of neopterin result from immune system activation, including from malignant cancer, allograft rejection, viral infection, and autoimmune disorders (PMID: 19500901). Measurement of neopterin concentration allows estimation of the extent of oxidative stress elicited by the immune system. Neopterin concentrations usually correlate with the extent and activity of a given disease, and are also used to monitor the course of the disease. Elevated neopterin concentrations are among the best predictors of adverse outcome in patients with HIV infection, in cardiovascular disease, and in various types of cancer. Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
L-Dopaquinone
Implicated in food discolouration (enzymatic browning). Implicated in food discolouration (enzymatic browning)
penitrem A
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].
N-(N-(N-((Hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan
15-Hydroperoxyicosa-5,8,11,13-tetraenoic acid
Androst-5-ene-3beta,17beta-diol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents
2,3-Epoxyphylloquinone
Vitamin K1 2,3-epoxide is a vitamin K derivative. Vitamin K needed for the posttranslational modification of certain proteins, mostly required for blood coagulation. Within the cell, Vitamin K undergoes electron reduction to a reduced form of Vitamin K (called Vitamin K hydroquinone) by the enzyme Vitamin K epoxide reductase (or VKOR). Another enzyme then oxidizes Vitamin K hydroquinone to allow carboxylation of Glutamate to Gamma-cabroxygluatmate (Gla); this enzyme is called the gamma-glutamyl carboxylase or the Vitamin K-dependent carboxylase. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize Vitamin K hydroquinone to vitamin K epoxide at the same time; the carboxylation and epoxidation reactions are said to be coupled reactions. Vitamin K epoxide is then re-converted to Vitamin K by the Vitamin K epoxide reductase. These two enzymes comprise the so-called Vitamin K cycle. One of the reasons why Vitamin K is rarely deficient in a human diet is because Vitamin K is continually recycled in our cells. Vitamin K 2,3-epoxide is the substrate for vitamin K 2,3-epoxide reductase (VKOR) complex. Significantly increased level of serum vitamin K epoxide has been found in patients with familial multiple coagulation factor deficiency. (PMID 12384421) Accumulation of vitamin K1-2,3-epoxide in plasma is also a sensitive marker of coumarin-like activity of drugs. (PMID 2401753) [HMDB]
N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide
Ajmalicine
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Itopride
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
Nocardicin A
Verbascoside
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is an antifungal metabolite.
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
ginkgolide A
Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A is found in ginkgo nuts and fats and oils. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.715 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.712 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Ginkgolide A is a highly active PAF antagonist cage molecule that is isolated from the leaves of the Ginkgo biloba tree. Shows potential in a wide variety of inflammatory and immunological disorders. ginkgolide-A is a natural product found in Ginkgo biloba and Machilus wangchiana with data available. See also: Ginkgo (part of). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Jervine
Jervine is a member of piperidines. Jervine is a natural product found in Veratrum stamineum, Veratrum grandiflorum, and other organisms with data available. Jervine is a steroidal alkaloid with molecular formula C27H39NO3 which is derived from the Veratrum plant genus. Similar to cyclopamine, which also occurs in the Veratrum genus, it is a teratogen implicated in birth defects when consumed by animals during a certain period of their gestation. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].
Ginkgolide A
9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-tert-butylhexahydro-4,7b-dihydroxy-8-methyl- is a diterpene lactone. Ginkgolide A is a natural product found in Ginkgo biloba with data available. Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Furanodienon
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
6-Hydroxykaempferol
6-Hydroxykaempferol is a natural product found in Ficus virens, Eupatorium cannabinum, and other organisms with data available.
Itopride
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
4-Hydroxycoumarin
4-hydroxycoumarin is a hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. It is a conjugate acid of a 4-hydroxycoumarin(1-). 4-Hydroxycoumarin is a natural product found in Vitis vinifera, Ruta graveolens, and Apis cerana with data available. A hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins 4-hydroxycoumarin is an important fungal metabolite from the precursor coumarin, and its production leads to further fermentative production of the natural anticoagulant dicoumarol. 4-Hydroxy-2H-1-benzopyran-2-one is found in beer and grape wine. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2338 INTERNAL_ID 2338; CONFIDENCE Reference Standard (Level 1) 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1]. 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1].
Lupenone
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
ophthalmic acid
A L-glutamine derivative that is L-glutamine substituted by a 1-[(carboxymethyl)amino]-1-oxobutan-2-yl at the terminal amino nitrogen atom. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JCMUOFQHZLPHQP-BQBZGAKWSA-N_STSL_0170_Ophthalmic acid_0500fmol_180425_S2_LC02_MS02_88; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Coronaridine
(-)-coronaridine is a monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. It has a role as an antileishmanial agent, an antineoplastic agent, an apoptosis inducer and a plant metabolite. It is a monoterpenoid indole alkaloid, a methyl ester, an organic heteropentacyclic compound and an alkaloid ester. It is a conjugate base of a (-)-coronaridine(1+). Coronaridine is a natural product found in Voacanga schweinfurthii, Tabernanthe iboga, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H26N2O2. It is isolated from the flowering plant genus, Tabernaemontana. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1]. Coronaridine, an iboga type alkaloid, inhibits the wnt signaling pathway by decreasing β-catenin expression[1].
Leucopelargonidin
Leucopelargonidin is a leucoanthocyanidin.
Oprea1_401356
7-hydroxyflavanone is a monohydroxyflavanone that is flavanone substituted by a hydroxy group at position 7. 7-Hydroxyflavanone is a natural product found in Dalbergia cochinchinensis, Berberis dictyota, and other organisms with data available.
Nordazepam
A 1,4-benzodiazepinone having phenyl and chloro substituents at positions 5 and 7 respectively; it has anticonvulsant, anxiolytic, muscle relaxant and sedative properties but is used primarily in the treatment of anxiety. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1611
Fenpropimorph
D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146
3-Indolecarboxylic acid
An indole-3-carboxylic acid carrying a carboxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 2301; CONFIDENCE confident structure Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
4-Methylumbelliferylglucuronide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes relative retention time with respect to 9-anthracene Carboxylic Acid is 0.488 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2121; CONFIDENCE confident structure
Valine
A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isopropyl group. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].
Chlorfenvinfos
ORIGINAL_ACQUISITION_NO 9710; CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 9708 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9710; ORIGINAL_PRECURSOR_SCAN_NO 9708 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D056810 - Acaricides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9724; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9748; ORIGINAL_PRECURSOR_SCAN_NO 9745 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9768; ORIGINAL_PRECURSOR_SCAN_NO 9766 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9748; ORIGINAL_PRECURSOR_SCAN_NO 9744 CONFIDENCE standard compound; INTERNAL_ID 376; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9777; ORIGINAL_PRECURSOR_SCAN_NO 9774 CONFIDENCE standard compound; INTERNAL_ID 2609 CONFIDENCE standard compound; INTERNAL_ID 4038
TETRAMISOLE
C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2141 - Chemo Immunostimulant Adjuvant C2140 - Adjuvant
tripelennamine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents
Histidinol
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040
chlorprothixene
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Chlorprothixene is a dopamine and histamine receptors antagonist with Kis of 18 nM, 2.96 nM, 4.56 nM, 9 nM and 3.75 nM for hD1, hD2, hD3, hD5 and hH1 receptors, respectively. Antipsychotic activity[1].
L-Histidinol
An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).
Tryptophol
An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Sabinene
Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.
(all-E)-Antheraxanthin
An epoxycarotenol that is beta-carotene-3,3-diol in which one of the one of the endocyclic double bonds has been oxidised to the corresponding epoxide. It is a neutral yellow plant pigment found in Euglenophyta. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
2-hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 2-hydroxy steroid that is estrone substituted by a hydroxy group at position 2. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
Androstanedione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Cholestenone
Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].
2-PHENYLACETAMIDE
A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.
4-Methylumbelliferyl acetate
An acetate ester consiting of umbelliferone carrying a 7-O-acetyl group.
oxymorphone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
2,4-DIBROMOPHENOL
A bromophenol that is phenol in which the hydrogens at positions 2 and 4 have been replaced by bromines.
isomaltulose
L-2,3-Diaminopropionic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
mescaline
A phenethylamine alkaloid that is phenethylamine substituted at positions 3, 4 and 5 by methoxy groups. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
HT-2 Toxin
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
Oleamide
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D000074385 - Food Ingredients > D005503 - Food Additives A fatty amide derived from oleic acid. Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.
protriptyline
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
CARTEOLOL
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
biperiden
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].
hydroxyzine
N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BB - Diphenylmethane derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics Hydroxyzine, a benzodiazepine antihistamine agent, acts as an orally active histamine?H1-receptor and serotonin antagonist. Hydroxyzine has anxiolytic effect and can be used for the research of generalised anxiety disorder[1].
PG 34:1
A phosphatidylglycerol in which the 1- and 2-acyl groups are specified as palmitoyl and oleoyl respectively. Found in mouse lung; TwoDicalId=7; MgfFile=160901_Lung_normal_Neg_03; MgfId=540
HEPTANOIC ACID
A C7, straight-chain fatty acid that contributes to the odour of some rancid oils. Used in the preparation of esters for the fragrance industry, and as an additive in cigarettes.
Carboprost
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics C78568 - Prostaglandin Analogue
Maackiain
Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
7,8-Dihydro-L-biopterin
7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.
Dihydroneopterin triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
FA 20:5;O2
An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Prostaglandin B1
A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).
SFE 10:0
A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].
4-Oxoretinol
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))
2,4,6-tribromophenol
A bromophenol that is phenol in which the hydrogens at positions 2, 4 and 6 have been replaced by bromines. It is commonly used as a fungicide and in the preparation of flame retardants.
resmethrin
D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
DL-Aspartic Acid
3,6-hexahydroxydiphenoylglucose is a member of the class of compounds known as hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. 3,6-hexahydroxydiphenoylglucose is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,6-hexahydroxydiphenoylglucose can be found in pomegranate, which makes 3,6-hexahydroxydiphenoylglucose a potential biomarker for the consumption of this food product. Constituent of Allium chinense (rakkyo). Gitogenin 3-[glucosyl-(1->2)-glucosyl-(1->4)-galactoside] is found in onion-family vegetables. Pigment from Phytolacca americana (pokeberry). 15-Epibetanidin 5-[E-feruloyl-(->3)-apiosyl-(1->2)-glucoside] is found in fruits. Isolated from sugar cane leaves (Saccharum officinarum) Constituent of the famine food Physalis angulata (cutleaf ground cherry). 24,25-Epoxywithanolide D is found in herbs and spices and fruits. Isolated from Melilotus alba (white melilot). cis-o-Coumaric acid 2-glucoside is found in herbs and spices and pulses. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids
Sulfamethopyrazine
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01ED - Long-acting sulfonamides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides Same as: D01216
2-Naphthoic acid
A naphthoic acid that is naphthalene carrying a carboxy group at position 2.
Cyclacillin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Myristicin
Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].
Tridekan
Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].
771-50-6
Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
AIDS-071717
The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
19-Hydroxytestosterone
A 3-oxo Delta(4)-steroid that is testosterone which is substituted by a hydroxy group at positions 19. 19-Hydroxytestosterone is an intermediate in Androgen and estrogen metabolism. 19-Hydroxytestosterone is the 4th to last step in the synthesis of 16-Glucuronide-estriol. It is generated from Testosterone via the enzyme cytochrome P450 (EC 1.14.14.1) and then converted to 19-Oxotestosterone. [HMDB]. 19-Hydroxytestosterone is found in many foods, some of which are hedge mustard, tinda, black walnut, and babassu palm.
Ginkgolid A
Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
(+)-Himbacine
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics
G-29701
A metabolite of phenylbutazone obtained by hydroxylation at position 4 of one of the phenyl rings. Commonly used (as its hydrate) to treat pain, swelling and stiffness associated with arthritis and gout, it was withdrawn from the market 1984 following association with blood dyscrasis and Stevens-Johnson syndrome. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].
bithionol
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AB - Preparations containing sulfur P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
CYCLOHEXANECARBOXYLIC ACID
Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].
glutethimide
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
MEPHENTERMINE
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
4-Chlorobenzoic acid
A monochlorobenzoic acid carrying a chloro substituent at position 4.
methoxyflurane
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent N - Nervous system > N02 - Analgesics
Diethyl phosphate
A dialkyl phosphate having ethyl as the alkyl group. Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
butorphanol
Levorphanol in which a hydrogen at position 14 of the morphinan skeleton is substituted by hydroxy and one of the hydrogens of the N-methyl group is substituted by cyclopropyl. A semi-synthetic opioid agonist-antagonist analgesic, it is used as its (S,S)-tartaric acid salt for relief or moderate to severe pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
bruneomycin
Complex cytotoxic antibiotic obtained from Streptomyces flocculus or S. rufochronmogenus. It is used in advanced carcinoma and causes leukopenia. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
proparacaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Bekanamycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Bekanamycin (Kanamycin B) is an aminoglycoside antibiotic produced by Streptomyces kanamyceticus, against an array of Gram-positive and Gram-negative bacterial strain[1][2].
Cholest-4-en-3-one
A cholestanoid that is cholest-4-ene substituted by an oxo group at position 3. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].
TRIMETHAPHAN
C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
19-Hydroxy-4-androsten-3,17-dione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
16α-Hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.
4-Chlorophenylacetic acid
A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-chlorophenyl group.
Fluphenazine decanoate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].
5-Methoxyindole-3-acetic acid
A member of the class of indole-3-acetic acids in which the hydrogen at position 5 of indole-3-acetic acid has been replaced by a methoxy group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5-Methoxyindole-3-acetic acid is a metabolite of Melatonin[1].
Edrophonium
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors
SAICAR
A 1-(phosphoribosyl)imidazolecarboxamide resulting from the formal condesation of the darboxy group of 5-amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxylic acid with the amino group of L-aspartic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Echothiophate
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors
O,O-Diethyl hydrogen thiophosphate
An organic thiophosphate that is the diethyl ester of phosphorothioic O,O,O-acid.
Methyl β-D-galactopyranoside
Methyl β-D-Galactopyranoside is an endogenous metabolite.
6-Oxoprostaglandin e1
A prostaglandin E that is prostaglandin E1 bearing a keto substituent at the 6-position. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
delta-12-Prostaglandin J2
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Ribose-1-phosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Deoxyinosine 5-monophosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
1D-myo-Inositol 3,4,5,6-tetrakisphosphate
A myo-inositol tetrakisphosphate having the four phosphate groups placed at the 3-, 4-, 5- and 6-positions.
O-Butanoylcarnitine
A C4-acylcarnitine that is the O-butanoyl derivative of carnitine.
N,N-Dimethyladenosine
N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].
2-amino-3-oxobutanoic acid
An alpha-amino acid that is acetoacetic acid which is substituted by an amino group at position 2.
Leucodopachrome
Indoline substituted with hydroxy groups at C-5 and -6 and a carboxy group at C-2, and with S stereochemistry at C-2.
protoporphyrinogen
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Dihydrocortisol
5β-Dihydrocortisol, a metabolite of Cortisol, is a potential mineralocorticoid. 5β-Dihydrocortisol can potentiate glucocorticoid activity in raising the intraocular pressure. 5β-Dihydrocortisol causes breast cancer cell apoptosis[1][2][3][4][5].
3,4-Dihydroxymandelaldehyde
A hydroxyaldehyde consisting of phenylacetaldehyde having three hydroxy substituents located at the alpha-, 3- and 4-positions. It is a metabolite of noradrenaline. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-Fructofuranose
A fructofuranose that has D configuration. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.
4-Hydroxy-2-oxoglutaric acid
An oxo dicarboxylic acid comprising glutaric acid having oxo- and hydroxy substituents at the 2- and 4-positions respectively.
GDP-4-Keto-6-deoxymannose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
threo-3-methyl-L-aspartic acid
An aspartic acid derivative having a 3-methyl substituent.
2-Methylhistamine
An aralkylamino compound that is histamine bearing a methyl substituent at the 2 position on the ring.
2beta,3beta,5beta,14,20,22R,25-heptahydroxycholest-7-en-6-one
UDP-N-acetyl-α-D-muramic acid
UDP-N-acetyl-alpha-D-muramic acid is a UDP-N-acetyl-D-muramate in which the anomeric centre of the pyranose fragment has alpha-configuration. It is a conjugate acid of an UDP-N-acetyl-alpha-D-muramate(3-). A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed.
Myo-inositol 1,3,4,6-tetrakisphosphate
A myo-inositol tetrakisphosphate having the phosphate groups placed at the 1-, 3-, 4- and 6-positions.
(4beta,12R)-12,13-epoxytrichothec-9-en-4-yl acetate
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide
(5S,6S)-6-amino-5-[(1-carboxyethenyl)oxy]cyclohexa-1,3-diene-1-carboxylic acid
Trichloroacetaldehyde
An organochlorine compound that consists of acetaldehyde where all the methyl hydrogens are replaced by chloro groups. C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
BISPHENOL A DIGLYCIDYL ETHER
D009676 - Noxae > D002273 - Carcinogens
Dihydromorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Ciclacillin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01334
Tuberculostearic acid
A methyl-branched fatty acid, the structure of which is that of stearic acid carrying a methyl group at C-10.
4-Toluenesulfonamide
C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
FLUAZIFOP-BUTYL
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
N-Desmethyltamoxifen
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent
2-aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
5-Acetamido-2-[[5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
Glyceric acid 1,3-biphosphate
1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).