Indole-3-carboxylic acid (BioDeep_00000002407)

 

Secondary id: BioDeep_00000397996, BioDeep_00000860817

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


1H-Indole-3-carboxylic acid

化学式: C9H7NO2 (161.0477)
中文名称: 吲哚-3-羧酸
谱图信息: 最多检出来源 Homo sapiens(feces) 10.59%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Indole-3-carboxylic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/indole-3-carboxylic_acid (retrieved 2025-01-06) (BioDeep RN: BioDeep_00000002407). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)C(=O)O
InChI: InChI=1S/C9H7NO2/c11-9(12)7-5-10-8-4-2-1-3-6(7)8/h1-5,10H,(H,11,12)

描述信息

Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group.
Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas
Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].

同义名列表

23 个代谢物同义名

1H-Indole-3-carboxylic acid; Indole-beta-carboxylic acid; Indole - 3 carboxylic acid; Indole-β-carboxylic acid; 3-Indolylcarboxylic acid; 3-Indole carboxylic acid; Indole-3-carboxylic acid; Indole-b-carboxylic acid; 1H-Indole-3-carboxylate; Indole-beta-carboxylate; 3-Indolecarboxylic acid; Indole-3-carboxylicacid; Indole - 3 carboxylate; 3-Indolylcarboxylate; Indole-b-carboxylate; Indole-β-carboxylate; Indole-3-carboxylate; 3-Indoleformic acid; 3-Indolecarboxylate; 3-Carboxyindole; 3-Indoleformate; Indole-3-carboxylic acid; Indole-3-carboxylate



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

174 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 AHR, BCL2, BCL2L1, CYP2E1, IDO1, IL18, ISG20, XDH
Peripheral membrane protein 3 CYP2E1, GBA1, GORASP1
Endoplasmic reticulum membrane 4 BCL2, CYP2E1, CYP51A1, SLC33A1
Mitochondrion membrane 1 BCL2L1
Nucleus 4 AHR, BCL2, DDX53, ISG20
cytosol 7 AHR, BCL2, BCL2L1, DDX53, IDO1, IL18, XDH
trans-Golgi network 1 GBA1
centrosome 1 BCL2L1
nucleoplasm 3 AHR, DDX53, ISG20
Cell membrane 3 AGTR2, CD8A, TNF
Cytoplasmic side 2 BCL2L1, GORASP1
Multi-pass membrane protein 2 AGTR2, SLC33A1
Golgi apparatus membrane 1 GORASP1
cell surface 1 TNF
Golgi apparatus 2 GBA1, GORASP1
Golgi membrane 2 GORASP1, SLC33A1
lysosomal membrane 2 GAA, GBA1
mitochondrial inner membrane 2 BCL2L1, CYP2E1
neuronal cell body 1 TNF
Cytoplasm, cytosol 3 BCL2L1, IDO1, IL18
Lysosome 2 GAA, GBA1
plasma membrane 5 AGTR2, CD8A, GAA, SLC33A1, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 4 BCL2, CYP51A1, GAA, SLC33A1
extracellular exosome 2 GAA, GBA1
Lysosome membrane 2 GAA, GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 3 BCL2, BCL2L1, GBA1
extracellular space 5 CXCL8, IL10, IL18, TNF, XDH
lysosomal lumen 2 GAA, GBA1
mitochondrion 2 BCL2, BCL2L1
protein-containing complex 2 AHR, BCL2
intracellular membrane-bounded organelle 4 CYP2E1, CYP51A1, DDX53, GAA
Microsome membrane 2 CYP2E1, CYP51A1
Single-pass type I membrane protein 1 CD8A
Secreted 4 CXCL8, GAA, IL10, IL18
extracellular region 6 CD8A, CXCL8, GAA, IL10, IL18, TNF
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 3 BCL2, BCL2L1, CYP51A1
mitochondrial outer membrane 2 BCL2, BCL2L1
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 1 AHR
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 2 BCL2, BCL2L1
external side of plasma membrane 2 CD8A, TNF
nucleolus 2 DDX53, ISG20
Cytoplasm, P-body 1 ISG20
P-body 1 ISG20
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 TNF
pore complex 1 BCL2
cis-Golgi network 1 GORASP1
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
PML body 1 ISG20
receptor complex 1 CD8A
chromatin 1 AHR
stereocilium bundle 1 IDO1
phagocytic cup 1 TNF
Nucleus, nucleolus 1 ISG20
aryl hydrocarbon receptor complex 1 AHR
tertiary granule membrane 1 GAA
myelin sheath 1 BCL2
plasma membrane raft 1 CD8A
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Cajal body 1 ISG20
ficolin-1-rich granule membrane 1 GAA
[Isoform 1]: Cell membrane 1 CD8A
Nucleus, Cajal body 1 ISG20
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD8A
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
smooth muscle contractile fiber 1 IDO1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yawei Que, Donghai Huang, Shuangjun Gong, Xuejiang Zhang, Bin Yuan, Minfeng Xue, Wenqi Shi, Fansong Zeng, Meilin Liu, Tingting Chen, Dazhao Yu, Xia Yan, Zhengyi Wang, Lijun Yang, Libo Xiang. Indole-3-Carboxylic Acid From the Endophytic Fungus Lasiodiplodia pseudotheobromae LPS-1 as a Synergist Enhancing the Antagonism of Jasmonic Acid Against Blumeria graminis on Wheat. Frontiers in cellular and infection microbiology. 2022; 12(?):898500. doi: 10.3389/fcimb.2022.898500. [PMID: 35860382]
  • Ayumi Kosaka, Marta Pastorczyk, Mariola Piślewska-Bednarek, Takumi Nishiuchi, Erika Ono, Haruka Suemoto, Atsushi Ishikawa, Henning Frerigmann, Masanori Kaido, Kazuyuki Mise, Paweł Bednarek, Yoshitaka Takano. Tryptophan-derived metabolites and BAK1 separately contribute to Arabidopsis postinvasive immunity against Alternaria brassicicola. Scientific reports. 2021 01; 11(1):1488. doi: 10.1038/s41598-020-79562-x. [PMID: 33452278]
  • Hayat Kherkhache, Imane Benabdelaziz, Artur M S Silva, Mokhtar Boualem Lahrech, Mokhtar Benalia, Hamada Haba. A new indole alkaloid, antioxidant and antibacterial activities of crude extracts from Saccocalyx satureioides. Natural product research. 2020 Jun; 34(11):1528-1534. doi: 10.1080/14786419.2018.1519817. [PMID: 30445859]
  • J Pastor-Fernández, V Pastor, D Mateu, J Gamir, P Sánchez-Bel, V Flors. Accumulating evidences of callose priming by indole- 3- carboxylic acid in response to Plectospharella cucumerina. Plant signaling & behavior. 2019; 14(7):1608107. doi: 10.1080/15592324.2019.1608107. [PMID: 31010375]
  • Jordi Gamir, Victoria Pastor, Paloma Sánchez-Bel, Blas Agut, Diego Mateu, Javier García-Andrade, Víctor Flors. Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indole-3-carboxylic acid in response to Plectosphaerella cucumerina infection. The Plant journal : for cell and molecular biology. 2018 11; 96(3):518-531. doi: 10.1111/tpj.14045. [PMID: 30051514]
  • Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorganic & medicinal chemistry. 2018 01; 26(2):509-515. doi: 10.1016/j.bmc.2017.12.011. [PMID: 29254897]
  • Jongmin Ahn, Hee-Sung Chae, Young-Won Chin, Jinwoong Kim. Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorganic & medicinal chemistry letters. 2017 06; 27(12):2807-2811. doi: 10.1016/j.bmcl.2017.04.072. [PMID: 28499733]
  • Seung Jae Lee, Eun-Mi Jeong, Ah Young Ki, Kyung-Seo Oh, Joseph Kwon, Jae-Hyuk Jeong, Nam-Jin Chung. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea. Journal of plant physiology. 2016 Nov; 206(?):133-142. doi: 10.1016/j.jplph.2016.08.015. [PMID: 27770750]
  • C Brunius, J K Vidanarachchi, J Tomankova, K Lundström, K Andersson, G Zamaratskaia. Skatole metabolites in urine as a biological marker of pigs with enhanced hepatic metabolism. Animal : an international journal of animal bioscience. 2016 Oct; 10(10):1734-40. doi: 10.1017/s1751731116000574. [PMID: 27080076]
  • Elia Stahl, Patricia Bellwon, Stefan Huber, Klaus Schlaeppi, Friederike Bernsdorff, Armelle Vallat-Michel, Felix Mauch, Jürgen Zeier. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular plant. 2016 05; 9(5):662-681. doi: 10.1016/j.molp.2016.01.005. [PMID: 26802249]
  • Pham Thi Nhat Trinh, Mai Dinh Tri, Dang Chi Hien, Nguyen Huu An, Phan Nhat Minh, Pham Ngoc An, Le Tien Dung. A new flavan from the Drynaria bonii H. Christ rhizomes. Natural product research. 2016; 30(7):761-7. doi: 10.1080/14786419.2015.1063054. [PMID: 26230303]
  • Milan Šoškić, Ivana Porobić. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study. PloS one. 2016; 11(4):e0154339. doi: 10.1371/journal.pone.0154339. [PMID: 27124734]
  • Hui Ren, Li-mei Dong, Zhong-yu Zhou, Qiao-lin Xu, Jian-wen Tan. [Chemical Constituents from Sphagneticola trilobata]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Jul; 38(7):1426-9. doi: . [PMID: 26946839]
  • Chao-Dong Qian, Yu-Hang Fu, Fu-Sheng Jiang, Zheng-Hong Xu, Dong-Qing Cheng, Bin Ding, Cheng-Xian Gao, Zhi-Shan Ding. Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC microbiology. 2014 Nov; 14(?):297. doi: 10.1186/s12866-014-0297-0. [PMID: 25433389]
  • Cheng-Jian Zheng, Xue-Hong Deng, Yu Wu, Yi-Ping Jiang, Jian-Yong Zhu, Lu-Ping Qin. Antiinflammatory effects and chemical constituents of Veronicastrum axillare. Phytotherapy research : PTR. 2014 Oct; 28(10):1561-6. doi: 10.1002/ptr.5168. [PMID: 24817590]
  • Hai-jun Hu, Qing Liu, Ying-bo Yang, Li Yang, Zheng-tao Wang. [Chemical constituents of Clerodendrum trichotomum Leaves]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Sep; 37(9):1590-3. doi: . [PMID: 25857158]
  • Huawei Zhang, Peng Fu, Beilei Ke, Shuping Wang, Min Li, Lin Han, Chengcheng Peng, Weidong Zhang, Runhui Liu. Metabolomic analysis of biochemical changes in the plasma and urine of collagen-induced arthritis in rats after treatment with Huang-Lian-Jie-Du-Tang. Journal of ethnopharmacology. 2014 May; 154(1):55-64. doi: 10.1016/j.jep.2014.03.007. [PMID: 24709313]
  • Ariane Wohlfarth, Adarsh S Gandhi, Shaokun Pang, Mingshe Zhu, Karl B Scheidweiler, Marilyn A Huestis. Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Analytical and bioanalytical chemistry. 2014 Feb; 406(6):1763-80. doi: 10.1007/s00216-014-7668-0. [PMID: 24518903]
  • J Gamir, V Pastor, M Cerezo, V Flors. Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant physiology and biochemistry : PPB. 2012 Dec; 61(?):169-79. doi: 10.1016/j.plaphy.2012.10.004. [PMID: 23116603]
  • Paweł Bednarek. Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity. Current opinion in plant biology. 2012 Aug; 15(4):407-14. doi: 10.1016/j.pbi.2012.03.002. [PMID: 22445190]
  • Mu-Yang Wang, Xue-Ting Liu, Ying Chen, Xiao-Jing Xu, Biao Yu, Shu-Qun Zhang, Qun Li, Zu-Hua He. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. Journal of integrative plant biology. 2012 Jul; 54(7):471-85. doi: 10.1111/j.1744-7909.2012.01131.x. [PMID: 22624950]
  • Jagan Srinivasan, Stephan H von Reuss, Neelanjan Bose, Alon Zaslaver, Parag Mahanti, Margaret C Ho, Oran G O'Doherty, Arthur S Edison, Paul W Sternberg, Frank C Schroeder. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS biology. 2012 Jan; 10(1):e1001237. doi: 10.1371/journal.pbio.1001237. [PMID: 22253572]
  • Youcai Zhang, Pallavi B Limaye, Lois D Lehman-McKeeman, Curtis D Klaassen. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PloS one. 2012; 7(4):e34522. doi: 10.1371/journal.pone.0034522. [PMID: 22496825]
  • M Soledade C Pedras, Sajjad Hossain. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are. Phytochemistry. 2011 Dec; 72(18):2308-16. doi: 10.1016/j.phytochem.2011.08.018. [PMID: 21920565]
  • Paweł Bednarek, Mariola Piślewska-Bednarek, Emiel Ver Loren van Themaat, Ravi Kumar Maddula, Aleš Svatoš, Paul Schulze-Lefert. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. The New phytologist. 2011 Nov; 192(3):713-26. doi: 10.1111/j.1469-8137.2011.03824.x. [PMID: 21793828]
  • Thiago F Borgati, Maria Amelia D Boaventura. Effects of indole amides on lettuce and onion germination and growth. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2011 Sep; 66(9-10):485-90. doi: 10.1515/znc-2011-9-1008. [PMID: 22191214]
  • Johanna Hauder, Stefanie Winkler, Achim Bub, Corinna E Rüfer, Marc Pignitter, Veronika Somoza. LC-MS/MS quantification of sulforaphane and indole-3-carbinol metabolites in human plasma and urine after dietary intake of selenium-fortified broccoli. Journal of agricultural and food chemistry. 2011 Aug; 59(15):8047-57. doi: 10.1021/jf201501x. [PMID: 21732669]
  • Zhi-Heng Su, Shu-Qi Li, Guo-An Zou, Chang-Yuan Yu, Yan-Guo Sun, Hong-Wu Zhang, Ying Gu, Zhong-Mei Zou. Urinary metabonomics study of anti-depressive effect of Chaihu-Shu-Gan-San on an experimental model of depression induced by chronic variable stress in rats. Journal of pharmaceutical and biomedical analysis. 2011 Jun; 55(3):533-9. doi: 10.1016/j.jpba.2011.02.013. [PMID: 21398066]
  • Md Mujahid, Ch Sasikala, Ch V Ramana. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Applied microbiology and biotechnology. 2011 Feb; 89(4):1001-8. doi: 10.1007/s00253-010-2951-2. [PMID: 20972782]
  • Shaoliang Jiang, Jianrong Gao, Liang Han. Synthesis and biological activity of N-acyl O-indolylalkyl ethanolamines. Bioscience, biotechnology, and biochemistry. 2011; 75(4):768-70. doi: 10.1271/bbb.100804. [PMID: 21512235]
  • Jamil A Shilpi, Alexander I Gray, Véronique Seidel. New cardenolides from the stem bark of Trewia nudiflora. Fitoterapia. 2010 Sep; 81(6):536-9. doi: 10.1016/j.fitote.2010.01.016. [PMID: 20097274]
  • Alapati Kavitha, Peddikotla Prabhakar, Muvva Vijayalakshmi, Yenamandra Venkateswarlu. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Research in microbiology. 2010 Jun; 161(5):335-45. doi: 10.1016/j.resmic.2010.03.011. [PMID: 20403429]
  • William M Truman, Mark H Bennett, Colin G N Turnbull, Murray R Grant. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. Plant physiology. 2010 Mar; 152(3):1562-73. doi: 10.1104/pp.109.152173. [PMID: 20081042]
  • Marc Morant, Claus Ekstrøm, Peter Ulvskov, Charlotte Kristensen, Mats Rudemo, Carl Erik Olsen, Jørgen Hansen, Kirsten Jørgensen, Bodil Jørgensen, Birger Lindberg Møller, Søren Bak. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. Molecular plant. 2010 Jan; 3(1):192-211. doi: 10.1093/mp/ssp098. [PMID: 20008451]
  • Mario Kallenbach, Ian T Baldwin, Gustavo Bonaventure. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS. Plant methods. 2009 Nov; 5(?):17. doi: 10.1186/1746-4811-5-17. [PMID: 19939243]
  • Wen-Jun Dai, Jiao Wu, Zhuang Han, Wen-Li Mei, Hao-Fu Dai. Metabolites from endophytic fungus S20 of Cephalotaxus hainanensis. Journal of Asian natural products research. 2009 Aug; 11(8):704-9. doi: 10.1080/10286020902858846. [PMID: 20183311]
  • Christoph Böttcher, Lore Westphal, Constanze Schmotz, Elke Prade, Dierk Scheel, Erich Glawischnig. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. The Plant cell. 2009 Jun; 21(6):1830-45. doi: 10.1105/tpc.109.066670. [PMID: 19567706]
  • Chaofeng Zhang, Aichun Zhou, Mian Zhang. [Chemical constituents of Alisma orientalis and their immunosuppressive function]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Apr; 34(8):994-8. doi: . [PMID: 19639784]
  • Mandi L Conrad, Annette C Moser, David S Hage. Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: Analysis by high-performance affinity chromatography. Journal of separation science. 2009 Apr; 32(8):1145-55. doi: 10.1002/jssc.200800567. [PMID: 19296478]
  • Fredd Vergara, Ales Svatos, Bernd Schneider, Michael Reichelt, Jonathan Gershenzon, Ute Wittstock. Glycine conjugates in a lepidopteran insect herbivore--the metabolism of benzylglucosinolate in the cabbage white butterfly, Pieris rapae. Chembiochem : a European journal of chemical biology. 2006 Dec; 7(12):1982-9. doi: 10.1002/cbic.200600280. [PMID: 17086559]
  • M R Sunayana, Ch Sasikala, Ch V Ramana. Production of a novel indole ester from 2-aminobenzoate by Rhodobacter sphaeroides OU5. Journal of industrial microbiology & biotechnology. 2005 Feb; 32(2):41-5. doi: 10.1007/s10295-004-0193-y. [PMID: 15726442]
  • Mark J Anderton, Margaret M Manson, Richard D Verschoyle, Andreas Gescher, John H Lamb, Peter B Farmer, William P Steward, Marion L Williams. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004 Aug; 10(15):5233-41. doi: 10.1158/1078-0432.ccr-04-0163. [PMID: 15297427]
  • Jianwen Tan, Pawel Bednarek, Jikai Liu, Bernd Schneider, Ales Svatos, Klaus Hahlbrock. Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry. 2004 Mar; 65(6):691-9. doi: 10.1016/j.phytochem.2003.12.009. [PMID: 15016565]
  • Manabu Nakazono, Yumiko Sho, Kiyoshi Zaitsu. Lasting chemiluminescence of 3-indoleglyoxylyl chloride and its enhancement. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2003 Jan; 19(1):123-7. doi: 10.2116/analsci.19.123. [PMID: 12558035]
  • V Stetinová, L Smetanová, V Grossmann, P Anzenbacher. In vitro and in vivo assessment of the antioxidant activity of melatonin and related indole derivatives. General physiology and biophysics. 2002 Jun; 21(2):153-62. doi: . [PMID: 12236544]
  • A Braca, N De Tommasi, L Di Bari, C Pizza, M Politi, I Morelli. Antioxidant principles from Bauhinia tarapotensis. Journal of natural products. 2001 Jul; 64(7):892-5. doi: 10.1021/np0100845. [PMID: 11473417]
  • J Hagemeier, B Schneider, N J Oldham, K Hahlbrock. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jan; 98(2):753-8. doi: 10.1073/pnas.98.2.753. [PMID: 11136235]
  • D J Byrd, H W Berthold, K F Trefz, W Kochen, G Gilli, K Schärer, H W Schüler, H W Asbach. Indolic tryptophan metabolism in uraemia. Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association. 1976; 12(?):347-54. doi: . [PMID: 935125]