Nicotinic acid adenine dinucleotide (BioDeep_00001869051)
Main id: BioDeep_00000004140
代谢物信息卡片
化学式: C21H27N6O15P2+ (665.101)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=CC(=C[N+](=C1)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)OCC3C(C(C(O3)N4C=NC5=C(N=CN=C54)N)O)O)O)O)C(=O)O
InChI: InChI=1S/C21H26N6O15P2/c22-17-12-18(24-7-23-17)27(8-25-12)20-16(31)14(29)11(41-20)6-39-44(36,37)42-43(34,35)38-5-10-13(28)15(30)19(40-10)26-3-1-2-9(4-26)21(32)33/h1-4,7-8,10-11,13-16,19-20,28-31H,5-6H2,(H4-,22,23,24,32,33,34,35,36,37)/p+1/t10-,11-,13-,14-,15-,16-,19-,20-/m1/s1
数据库引用编号
9 个数据库交叉引用编号
- ChEBI: CHEBI:18304
- KEGG: C00857
- PubChem: 165491
- DrugBank: DB04099
- PubChem: 4114
- PDB-CCD: DND
- PDB-CCD: NXX
- 3DMET: B01343
- RefMet: Nicotinic acid adenine dinucleotide
分类词条
相关代谢途径
Reactome(4)
BioCyc(3)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dahyun Hwang, HyunA Jo, Seong-Ho Ma, Young-Hee Lim. Oxyresveratrol stimulates mucin production in an NAD+-dependent manner in human intestinal goblet cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Aug; 118(?):880-888. doi:
10.1016/j.fct.2018.06.039
. [PMID: 29935245] - Samuel A J Trammell, Mark S Schmidt, Benjamin J Weidemann, Philip Redpath, Frank Jaksch, Ryan W Dellinger, Zhonggang Li, E Dale Abel, Marie E Migaud, Charles Brenner. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
Nature communications.
2016 10; 7(?):12948. doi:
10.1038/ncomms12948
. [PMID: 27721479] - Kerly Laskoski, Adrian R S Santos, Ana C Bonatto, Fábio O Pedrosa, Emanuel M Souza, Luciano F Huergo. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.
Archives of microbiology.
2016 May; 198(4):307-13. doi:
10.1007/s00203-016-1190-z
. [PMID: 26802007] - Valerio Mori, Adolfo Amici, Francesca Mazzola, Michele Di Stefano, Laura Conforti, Giulio Magni, Silverio Ruggieri, Nadia Raffaelli, Giuseppe Orsomando. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.
PloS one.
2014; 9(11):e113939. doi:
10.1371/journal.pone.0113939
. [PMID: 25423279] - Riko Katahira, Hiroshi Ashihara. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).
Planta.
2009 Dec; 231(1):35-45. doi:
10.1007/s00425-009-1023-2
. [PMID: 19820966] - Nobumasa Hara, Kazuo Yamada, Masaharu Terashima, Harumi Osago, Makoto Shimoyama, Mikako Tsuchiya. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency.
The Journal of biological chemistry.
2003 Mar; 278(13):10914-21. doi:
10.1074/jbc.m209203200
. [PMID: 12547821] - Kinji Ohno, Masashi Tanaka, Ko Sahashi. [Electron transfer flavoprotein in mitochondria].
Nihon rinsho. Japanese journal of clinical medicine.
2002 Apr; 60 Suppl 4(?):113-7. doi:
NULL
. [PMID: 12013830] - A C Foster, E Okuno, D S Brougher, R Schwarcz. A radioenzymatic assay for quinolinic acid.
Analytical biochemistry.
1986 Oct; 158(1):98-103. doi:
10.1016/0003-2697(86)90595-6
. [PMID: 2948416]