Gene Association: TRAF6
UniProt Search:
TRAF6 (PROTEIN_CODING)
Function Description: TNF receptor associated factor 6
found 123 associated metabolites with current gene based on the text mining result from the pubmed database.
(S)-Isocorydine
Isocorydine is an aporphine alkaloid. Isocorydine is a natural product found in Sarcocapnos saetabensis, Thalictrum delavayi, and other organisms with data available. (S)-Isocorydine is found in cherimoya. (S)-Isocorydine is an alkaloid from Peumus boldus (boldo). (S)-Isocorydine belongs to the family of Aporphines. These are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system. See also: Peumus boldus leaf (part of). (S)-Isocorydine is found in cherimoya. (S)-Isocorydine is an alkaloid from Peumus boldus (boldo Alkaloid from Peumus boldus (boldo). (S)-Isocorydine is found in cherimoya and poppy. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2324 Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1]. Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1].
Notoginsenoside R1
Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). Notoginsenoside R1 is found in tea. Notoginsenoside R1 is a constituent of roots of Panax notoginseng (ginseng) Constituent of roots of Panax notoginseng (ginseng). Notoginsenoside R1 is found in tea. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].
Gamabufogenin
Gamabufogenin is a steroid lactone. It is functionally related to a bufanolide. Gamabufotalin is a natural product found in Bufotes viridis, Bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways. Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways.
Parthenolide
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (1Ar,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a germacranolide. Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis. (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a natural product found in Cyathocline purpurea, Tanacetum parthenium, and other organisms with data available. Parthenolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Thus, parthenolide is considered to be an isoprenoid lipid molecule. Parthenolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Parthenolide is a bitter tasting compound found in sweet bay, which makes parthenolide a potential biomarker for the consumption of this food product. Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), after which it is named. It is found in highest concentration in the flowers and fruit . relative retention time with respect to 9-anthracene Carboxylic Acid is 1.002 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.000 Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs. Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.
Marmesin galactoside
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is found in herbs and spices. Marmesin galactoside is a constituent of Murraya koenigii (curry leaf tree). Constituent of Murraya koenigii (curry leaf tree). Marmesin galactoside is found in herbs and spices. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Isoalantolactone
Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. Isoalantolactone is found in herbs and spices. Isoalantolactone is a constituent of the essential oil of Inula helenium (elecampane) Constituent of the essential oil of Inula helenium (elecampane). Isoalantolactone is found in herbs and spices. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.
Tetrahydropalmatine
Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].
dehydrocorydalin
Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Leonurine
Leonurine is a trihydroxybenzoic acid. Leonurine is a natural product found in Leonotis leonurus and Leonurus sibiricus with data available. Leonurine is an alkaloid isolated from Leonurus artemisia, with anti-oxidative and anti-inflammatory. Leonurine is an alkaloid isolated from Leonurus artemisia, with anti-oxidative and anti-inflammatory.
LDR cpd
Linderane is a member of dioxanes. Linderane is a natural product found in Cryptocarya densiflora, Neolitsea villosa, and other organisms with data available. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1]. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1].
Sinomenine
Sinomenine is a morphinane alkaloid. Sinomenine is a natural product found in Sinomenium acutum, Stephania cephalantha, and other organisms with data available. Sinomenine is an alkaloid isolated from the root of Sinomenium acutum with immunomodulatory and potential anti-angiogenic and activities. Although the mechanism of action remains to be fully elucidated, sinomenine appears to inhibit endothelial proliferation mediated through basic fibroblast growth factor (bFGF), which may contribute to its anti-angiogenic effect. In Chinese medicine, this agent has a long track-record in treating arthritis, which is accounted by its ability to inhibit proliferation of synovial fibroblasts and lymphocytes. In addition, sinomenine has been shown to suppress expressions of genes involved in inflammation and apoptosis, such as interleukin-6, a pleiotropic inflammatory cytokine and JAK3 (Janus kinase 3), Daxx (death-associated protein 6), plus HSP27 (heat shock 27kDa protein 1), respectively. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.366 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.360 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.362 Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dioscin
Dioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. It has a role as a metabolite, an antifungal agent, an antiviral agent, an antineoplastic agent, an anti-inflammatory agent, a hepatoprotective agent, an apoptosis inducer and an EC 1.14.18.1 (tyrosinase) inhibitor. It is a spirostanyl glycoside, a spiroketal, a hexacyclic triterpenoid and a trisaccharide derivative. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Dioscin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. Dioscin is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Dioscin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dioscin can be found in fenugreek and yam, which makes dioscin a potential biomarker for the consumption of these food products. [Raw Data] CBA65_Dioscin_pos_30eV.txt [Raw Data] CBA65_Dioscin_pos_20eV.txt [Raw Data] CBA65_Dioscin_pos_10eV.txt [Raw Data] CBA65_Dioscin_pos_50eV.txt [Raw Data] CBA65_Dioscin_pos_40eV.txt Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells. Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells.
Tabersonine
Tabersonine is a monoterpenoid indole alkaloid with cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an alkaloid ester, a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of a tabersoninium(1+). Tabersonine is a natural product found in Voacanga schweinfurthii, Tabernaemontana citrifolia, and other organisms with data available. A monoterpenoid indole alkaloid with cytotoxic activity. Annotation level-1 Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1]. Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1].
Morroniside
Morroniside is a glycoside. Morroniside is a natural product found in Lonicera japonica, Tripterospermum japonicum, and other organisms with data available. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.
Corylifolinin
Isobavachalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4 and a prenyl group at position 3. It has a role as an antibacterial agent, a platelet aggregation inhibitor and a metabolite. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone. Isobavachalcone is a natural product found in Broussonetia papyrifera, Anthyllis hermanniae, and other organisms with data available. See also: Angelica keiskei top (part of). A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4 and a prenyl group at position 3. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1]. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1]. Isobavachalcone (Corylifolinin) is derived from Psoralea corylifolia Linn. and is a potent inhibitor of Akt signaling pathway, which induces apoptosis in human cancer cells (Inhibits OVCAR-8 cell growth with an IC50 value of 7.92 μM). Isobavachalcone also induces Reactive Oxyen Species (ROS) generation in OVCAR-8 cells and has exhibit cancer anti-promotive and anti-proliferative activity[1].
Rhynchophylline
Rhynchophylline is a member of indolizines. It has a role as a metabolite. Rhynchophylline is a natural product found in Uncaria tomentosa, Mitragyna inermis, and other organisms with data available. See also: Cats Claw (part of). A natural product found in Uncaria macrophylla. Annotation level-1 Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research. Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research.
Curcumenol
Curcumenol is a sesquiterpenoid. (3S,3aS,6R,8aS)-3,8-Dimethyl-5-(propan-2-ylidene)-2,3,4,5,6,8a-hexahydro-1H-3a,6-epoxyazulen-6-ol is a natural product found in Curcuma longa and Curcuma phaeocaulis with data available. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors 4-Epicurcumenol is a constituent of rhizomes of Curcuma zedoaria (zedoary). Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2]. Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2].
Dihydrocapsaicin
Dihydrocapsaicin is found in pepper (C. annuum). It is a potential nutriceutical. Dihydrocapsaicin is a capsaicinoid and analog and congener of capsaicin in chili peppers (Capsicum). Like capsaicin it is an irritant. Dihydrocapsaicin accounts for about 22\\\\\% of the total capsaicinoids mixture and has about the same pungency as capsaicin. Pure dihydrocapsaicin is a lipophilic colorless odorless crystalline to waxy compound. It is soluble in dimethyl sulfoxide and 100 \\\\\% ethanol. Dihydrocapsaicin is a capsaicinoid. Dihydrocapsaicin is a natural product found in Capsicum pubescens, Capsicum annuum, and Ganoderma lucidum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Potential nutriceutical Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
Brazilin
Brazilin is a organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). It has a role as a plant metabolite, a histological dye, an antineoplastic agent, a biological pigment, an anti-inflammatory agent, an apoptosis inducer, an antioxidant, an antibacterial agent, a NF-kappaB inhibitor and a hepatoprotective agent. It is an organic heterotetracyclic compound, a member of catechols and a tertiary alcohol. Brazilin is a natural product found in Guilandina bonduc, Biancaea decapetala, and other organisms with data available. A organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
Plantamoside
Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].
Bruceine
Bruceine D is a quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. It has a role as a metabolite, an antineoplastic agent and a plant metabolite. It is a delta-lactone, a pentol, a quassinoid, an organic heteropentacyclic compound and a secondary alpha-hydroxy ketone. It derives from a hydride of a picrasane. Brucein D is a natural product found in Brucea javanica, Brucea mollis, and Samadera indica with data available. A quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3]. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3].
Pristimerin
Pristimerin is a carboxylic ester. Pristimerin is a quinone methide triterpenoid researched for its anti-cancer potential. Pristimerin is a natural product found in Reissantia buchananii, Crossopetalum gaumeri, and other organisms with data available. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.
Feretoside
Scandoside methyl ester is a terpene glycoside. Scandoside methyl ester is a natural product found in Feretia apodanthera, Gardenia jasminoides, and other organisms with data available.
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
Deoxyschizandrin
Deoxyschizandrin is a tannin. Deoxyschizandrin is a natural product found in Schisandra sphenanthera with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Schisandrin A inhibits CYP3A activity with an IC50 of 6.60 μM and Ki of 5.83 μM, respectively. Schisandrin A inhibits CYP3A activity with an IC50 of 6.60 μM and Ki of 5.83 μM, respectively.
Aloin
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D002400 - Cathartics Aloin A is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Barbaloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). Aloin B is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Aloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). IPB_RECORD: 1881; CONFIDENCE confident structure Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Euphol
Euphol is a triterpenoid. Euphol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Euphorbia subspecies (CCD). Euphol is found in many foods, some of which are cucumber, soy bean, shea tree, and tea. Euphol is found in cucumber. Euphol is a constituent of Euphorbia species (CCD) Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].
Euscaphic acid
Euscaphic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a triol. It derives from a hydride of an ursane. Euscaphic acid is a natural product found in Ternstroemia gymnanthera, Rhaphiolepis deflexa, and other organisms with data available. A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. Euscaphic acid is found in herbs and spices. Euscaphic acid is a constituent of Coleus amboinicus (Cuban oregano). Constituent of Coleus amboinicus (Cuban oregano). Euscaphic acid is found in loquat and herbs and spices. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2]. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2].
Sanggenon C
Sanggenon C is a diarylheptanoid. Sanggenone C is a natural product found in Morus cathayana with data available. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2]. Sanggenon C, a flavonoid, exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits mitochondrial fission to induce apoptosis by blocking the ERK signaling pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and TNF-α-stimulated cell adhesion and VCAM-1 expression, by suppressing NF-κB activity. Sanggenon C possesses antioxidant, anti-inflammatory and antitumor activities[1][2]. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2].
Soyasaponin I
Soyasaponin I is a triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a sialyltransferase inhibitor. It is a pentacyclic triterpenoid, a triterpenoid saponin, a trisaccharide derivative and a carbohydrate acid derivative. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin I(1-). Soyasaponin I is a natural product found in Crotalaria albida, Hedysarum polybotrys, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. Azukisaponin V is found in pulses. Azukisaponin V is isolated from seeds of azuki bean (Vigna angularis). soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
Azadirachtin
Azadirachtin A is a member of the family of azadirachtins that is isolated from the neem tree (Azadirachta indica). It has a role as a hepatoprotective agent. It is an azadirachtin, an organic heterotetracyclic compound, an acetate ester, an epoxide, an enoate ester, a cyclic hemiketal, a tertiary alcohol, a secondary alcohol and a methyl ester. Azadirachtin is a natural product found in Azadirachta and Azadirachta indica with data available. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals [Raw Data] CBB03_Azadirachtin_pos_40eV.txt [Raw Data] CBB03_Azadirachtin_pos_10eV.txt [Raw Data] CBB03_Azadirachtin_pos_50eV.txt [Raw Data] CBB03_Azadirachtin_pos_20eV.txt [Raw Data] CBB03_Azadirachtin_pos_30eV.txt
Narciclasine
Narciclasine is a member of phenanthridines. It has a role as a metabolite. Narciclasine is a natural product found in Lycoris sanguinea, Lycoris squamigera, and other organisms with data available. A natural product found in Narcissus pseudonarcissus. Narciclasine is a plant growth modulator. Narciclasine modulates the Rho/Rho kinase/LIM kinase/cofilin signaling pathway, greatly increasing GTPase RhoA activity as well as inducing actin stress fiber formation in a RhoA-dependent manner.
D-Alanyl-D-alanine
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products CONFIDENCE standard compound; EAWAG_UCHEM_ID 3724 D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
Cinchonidine
Cinchonine is found in fruits. Cinchonine is an alkaloid from the leaves of Olea europaea Cinchonine is an alkaloidwith molecular formula C19H22N2O used in asymmetric synthesis in organic chemistry. It is a stereoisomer and pseudo-enantiomer of cinchonidine D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents [Raw Data] CB216_Cinchonine_pos_10eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_30eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_40eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_50eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_20eV_CB000075.txt Alkaloid from the leaves of Olea europaea Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].
Cytisine
N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].
Indinavir
Indinavir is only found in individuals that have used or taken this drug. It is a potent and specific HIV protease inhibitor that appears to have good oral bioavailability. [PubChem]Indinavir inhibits the HIV viral protease enzyme which prevents cleavage of the gag-pol polyprotein, resulting in noninfectious, immature viral particles. CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3668; ORIGINAL_PRECURSOR_SCAN_NO 3666 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7953; ORIGINAL_PRECURSOR_SCAN_NO 7951 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7922; ORIGINAL_PRECURSOR_SCAN_NO 7919 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3684; ORIGINAL_PRECURSOR_SCAN_NO 3682 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7948; ORIGINAL_PRECURSOR_SCAN_NO 7944 INTERNAL_ID 178; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3703; ORIGINAL_PRECURSOR_SCAN_NO 3700 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7938; ORIGINAL_PRECURSOR_SCAN_NO 7936 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3664; ORIGINAL_PRECURSOR_SCAN_NO 3662 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7884; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3703; ORIGINAL_PRECURSOR_SCAN_NO 3700 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3663; ORIGINAL_PRECURSOR_SCAN_NO 3661 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3661; ORIGINAL_PRECURSOR_SCAN_NO 3659 J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
Clothianidin
CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals
4-Hydroxytamoxifen
4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent
Rhamnetin
Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Asiaticoside
Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.
Oxymatrine
Ammothamnine is an alkaloid and a tertiary amine oxide. Oxymatrine is a natural product found in Sophora pachycarpa, Sophora chrysophylla, and other organisms with data available. D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Quinolizidine alkaloids, Sophora alkaloid Oxymatrine is under investigation in clinical trial NCT02202473 (Oxymatrine Plus Lamivudine Combination Therapy Versus Lamivudine Monotherapy for Chronic Hepatitis B Infected Subjects). Matrine oxide is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxymatrine, an alkaloid from Sophora flavescens Alt. with anti-inflammatory, antifibrosis, and antitumor effects, inhibits the iNOS expression and TGF-β/Smad pathway. Oxymatrine inhibits bocavirus minute virus of canines (MVC) replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2]. Oxysophoridine (Sophoridine N-oxide) is a bioactive alkaloid extracted from the Sophora alopecuroides Linn. Oxysophoridine (Sophoridine N-oxide) shows anti inflammatory, anti oxidative stress and anti apoptosis effects[1][2].
Dezocine
Dezocine is a partial opiate drug and is used for pain management. Dezocine is a very effective alternative to fentanyl when administered during outpatient laparoscopy, although is associated with an increased incidence of postoperative nausea. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids
Aloin
Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Skimmianine
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Sennoside A
Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Resolvin D1
Resolvin D1 (RvD1) is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225).
Galloyl glucose
Galloyl glucose, also known as 1-galloyl-beta-D-glucose or beta-glucogallin, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). Galloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Galloyl glucose can be found in a number of food items such as pomegranate, strawberry, redcurrant, and rubus (blackberry, raspberry), which makes galloyl glucose a potential biomarker for the consumption of these food products. Galloyl glucose is formed by a gallate 1-beta-glucosyltransferase (UDP-glucose: gallate glucosyltransferase), an enzyme performing the esterification of two substrates, UDP-glucose and gallate to yield two products, UDP and glucogallin. This enzyme can be found in oak leaf preparations .
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Matrine
Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].
Tiglyl-CoA
Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway. A defect in the conversion of tiglyl-CoA to alpha-methyl-beta-hydroxybutyryl-CoA, results in episodic abdominal pain and acidosis in patients with Tiglic acidemia (OMIM 275190). Tiglyl-CoA is a metabolite in the degradation of isoleucine to propionic acid pathway.
2,2,2-Trichloroethanol
2,2,2-trichloroethanol belongs to the family of Primary Alcohols. These are compounds comprising the primary alcohol functional group, with the general strucuture RCOH (R=alkyl, aryl). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].
Soyasaponin A1
Soyasaponin A1 is found in pulses. Soyasaponin A1 is isolated from soybean (Glycine max).
methibenzuron
CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8644; ORIGINAL_PRECURSOR_SCAN_NO 8642 CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8645; ORIGINAL_PRECURSOR_SCAN_NO 8643 CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8589; ORIGINAL_PRECURSOR_SCAN_NO 8584 CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8593; ORIGINAL_PRECURSOR_SCAN_NO 8591 CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8647; ORIGINAL_PRECURSOR_SCAN_NO 8645 CONFIDENCE standard compound; INTERNAL_ID 465; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8557; ORIGINAL_PRECURSOR_SCAN_NO 8555
Dimethyl sulphone
Dimethyl sulfone, also known as sulfonylbismethane or lignisul MSM, belongs to the class of organic compounds known as sulfones. Sulfones are compounds containing a sulfonyl group, which has the general structure RS(=O)2R (R,R =alkyl, aryl), attached to two carbon atoms. Dimethyl sulfone (DMSO2) is an organic sulfur compound belonging to a class of chemicals known as sulfones. It derives from dietary sources, from intestinal bacterial metabolism and from human endogenous methanethiol metabolism. DMSO2 reflects its close chemical relationship to dimethyl sulfoxide (DMSO), which differs only in the oxidation state of the sulfur atom. Dimethyl sulfone is possibly neutral. Dimethyl sulfone exists in all living organisms, ranging from bacteria to humans. DMSO2 is the primary metabolite of DMSO in humans, and it shares some of the properties of DMSO. Dimethyl sulfone is sulfurous tasting compound. dimethyl sulfone is found on average in the highest concentration in milk (cow). Dimethyl sulfone has also been detected, but not quantified in asparagus and guava. This could make dimethyl sulfone a potential biomarker for the consumption of these foods. Dimethyl sulfone can be found in Afipia. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages. Dimethyl sulfone can be found in plasma and CSF of normal humans. Methylsulfonylmethane (MSM) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including DMSO2, methyl sulfone, and dimethyl sulfone. This colorless solid features the sulfonyl functional group and is considered relatively inert chemically. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages and it is marketed as a dietary supplement. Dimethyl sulfone is found in guava. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
Pelanin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Isolated from potato. Pelanin is found in potato. Same as: D01413
Cinobufotalin
Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].
Senna
Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Skimmianine
Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
beta-Glucogallin
beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.
7,8,17-trihydroxy-4,9,11,13,15,19-docosahexaenoic acid
Azadirachtin
(6As,11bS)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol
Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
Isorhynchophylline
Cytisinicline
Cytisine is an organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. It has a role as a nicotinic acetylcholine receptor agonist, a phytotoxin and a plant metabolite. It is an alkaloid, an organic heterotricyclic compound, a secondary amino compound, a lactam and a bridged compound. Cytisine is an alkaloid naturally derived from the Fabaceae family of plants including the genera Laburnum and Cytisus. Recent studies have shown it to be a more effective and significantly more affordable smoking cessation treatment than nicotine replacement therapy. Also known as baptitoxine or sophorine, cytisine has been used as a smoking cessation treatment since 1964, and is relatively unknown in regions outside of central and Eastern Europe. Cytisine is a partial nicotinic acetylcholine agonist with a half-life of 4.8 hours. Recent Phase III clinical trials using Tabex (a brand of Cytisine marketed by Sopharma AD) have shown similar efficacy to varenicline, but at a fraction of the cost. Cytisine is a natural product found in Viscum cruciatum, Thermopsis chinensis, and other organisms with data available. See also: Cytisus scoparius flowering top (part of); Thermopsis lanceolata whole (part of). An organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].
Geniposidic_acid
Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Dehydrocorydaline
Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
Senna
D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Fusarindin
Norlichexanthone is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 6 and a methyl group at position 8. It has been isolated from Wardomyces anomalus. It has a role as an antimalarial and a fungal metabolite. It is a member of xanthones and a polyphenol. It is a conjugate acid of a norlichexanthone(1-). Norlichexanthone is a natural product found in Arthrinium, Wardomyces anomalus, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 6 and a methyl group at position 8. It has been isolated from Wardomyces anomalus.
Rhamnetin
Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Clothianidin
An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933
Cinchonine
Cinchonan in which a hydrogen at position 9 is substituted by hydroxy (S configuration). It occurs in the bark of most varieties of Cinchona shrubs, and is frequently used for directing chirality in asymmetric synthesis. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Origin: Plant; Formula(Parent): C19H22N2O; Bottle Name:Cinchonine; PRIME Parent Name:Cinchonine; PRIME in-house No.:V0325; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.610 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2401; CONFIDENCE confident structure Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].
Dihydrocapsaicin
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.271 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.269 Acquisition and generation of the data is financially supported in part by CREST/JST. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
Dehydrocorydaline
Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].
rhyncophylline
Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research. Rhyncholphylline is an alkaloid compound isolated from Uncaria rhynchophyllum. It has high biological activity and is widely used in anti-inflammatory, neuroprotective and other research.
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Nodakenin
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Skimmianine
Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.048 Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Isoalantolactone
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.234 Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.
Daphnetin
7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
Dimethyl sulfone
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
Indinavir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
Pristimerin
Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.
kukoline
Origin: Plant; Formula(Parent): C19H23NO4; Bottle Name:Sinomenine; PRIME Parent Name:Sinomenine; PRIME in-house No.:V0298; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
Cytisin
N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2241 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].
euphol
Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].
CoA 5:1
Leonurine
Leonurine is a trihydroxybenzoic acid. Leonurine is a natural product found in Leonotis leonurus and Leonurus sibiricus with data available. Leonurine is an alkaloid isolated from Leonurus artemisia, with anti-oxidative and anti-inflammatory. Leonurine is an alkaloid isolated from Leonurus artemisia, with anti-oxidative and anti-inflammatory.
thiram
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AA - Sulfur containing products D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals D010575 - Pesticides Same as: D06114
Estradiol valerate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen
SCM 3B
soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
Luteanin
Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1]. Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1].
Skimmianin
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Hyndarin
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
Dimethyl sulfone
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
EU-0100782
Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
Monotropein
Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
AI3-31148
Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.
Sanchinoside R1
Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].
Ethapon
C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].
Notoginsenoside
Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). A ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].
Isohelenin
Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
Deoxyschizandrin
Deoxyschizandrin is a tannin. Deoxyschizandrin is a natural product found in Schisandra sphenanthera with data available. Schisandrin A inhibits CYP3A activity with an IC50 of 6.60 μM and Ki of 5.83 μM, respectively. Schisandrin A inhibits CYP3A activity with an IC50 of 6.60 μM and Ki of 5.83 μM, respectively.
dezocine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids
D-Alanyl-D-alanine
A dipeptide comprising D-alanine with a D-alanyl residue attached to the alpha-nitrogen. It is a component of bacterial peptidoglycan and forms an important target for development of antibacterial drugs . D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].
ST 23:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Same as: D01413
brasilin
Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].