Dihydromorphine (BioDeep_00000002374)

   

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10-triene-10,14-diol

化学式: C17H21NO3 (287.1521)
中文名称: 双氢吗啡
谱图信息: 最多检出来源 Viridiplantae(plant) 37.05%

分子结构信息

SMILES: CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(CC4)O
InChI: InChI=1S/C17H21NO3/c1-18-7-6-17-10-3-5-13(20)16(17)21-15-12(19)4-2-9(14(15)17)8-11(10)18/h2,4,10-11,13,16,19-20H,3,5-8H2,1H3

描述信息

Dihydromorphine is a metabolite of Hydromorphone. Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. (Wikipedia)
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics

同义名列表

16 个代谢物同义名

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10-triene-10,14-diol; (5alpha,6alpha)-4,5-Epoxy-17-methylmorphinan-3,6-diol; (5Α,6α)-4,5-epoxy-17-methylmorphinan-3,6-diol; 6alpha-7,8-Dihydromorphine; 6Α-7,8-dihydromorphine; alpha-Dihydromorphine; 6alpha-Hydromorphol; 7,8-Dihydromorphine; Α-dihydromorphine; 6Α-hydromorphol; Dihydromorphine; Hydromorphine; Paramorphan; Paramorfan; DHM; Dihydromorphine



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ALB, CA1, CA2, CA3, CYP2D6, DST, DTNB, GNAQ, POMC, TRIM13
Endoplasmic reticulum membrane 3 CYP2D6, DST, TRIM13
Nucleus 5 ALB, DST, DTNB, GNAQ, NANOG
cytosol 7 ALB, AVP, CA1, CA2, CA3, DST, SST
dendrite 5 AVP, DTNB, OPRM1, PDYN, PNOC
centrosome 1 ALB
nucleoplasm 2 DST, NANOG
Cell membrane 6 CA2, DST, GNAQ, OPRD1, OPRM1, SCN4A
Lipid-anchor 2 DST, GNAQ
Cell projection, axon 2 DST, OPRM1
Multi-pass membrane protein 3 OPRD1, OPRM1, SCN4A
Synapse 5 DTNB, GNAQ, OPRM1, PDYN, PNOC
cell cortex 1 DST
cell junction 1 DST
Golgi apparatus 3 ALB, GNAQ, OPRM1
lysosomal membrane 1 GNAQ
neuronal cell body 3 PDYN, PNOC, SST
postsynapse 1 DTNB
presynaptic membrane 1 OPRD1
endosome 1 OPRM1
plasma membrane 10 CA2, DST, DTNB, GNAQ, IFNLR1, OPRD1, OPRM1, PDYN, PNOC, SCN4A
synaptic vesicle membrane 1 OPRD1
Membrane 7 CYP2D6, DST, GNAQ, IFNLR1, OPRD1, OPRM1, SCN4A
axon 2 DST, OPRM1
extracellular exosome 4 ALB, CA1, CA2, GNAQ
endoplasmic reticulum 3 ALB, CYP2D6, OPRM1
extracellular space 5 ALB, AVP, IFNA1, POMC, SST
mitochondrion 1 CYP2D6
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 2 CYP2D6, NANOG
Microsome membrane 1 CYP2D6
postsynaptic density 1 DTNB
Single-pass type I membrane protein 1 IFNLR1
Secreted 7 ALB, AVP, IFNA1, PDYN, PNOC, POMC, SST
extracellular region 6 ALB, AVP, PDYN, PNOC, POMC, SST
Single-pass membrane protein 3 CYP2D6, DST, TRIM13
hippocampal mossy fiber to CA3 synapse 1 PDYN
anchoring junction 1 ALB
photoreceptor outer segment 1 GNAQ
Nucleus membrane 1 GNAQ
nuclear membrane 1 GNAQ
actin cytoskeleton 1 DST
perikaryon 1 OPRM1
Z disc 1 DST
cytoplasmic vesicle 1 DST
microtubule cytoskeleton 1 DST
nucleolus 1 NANOG
axon cytoplasm 1 DST
apical part of cell 1 CA2
Cytoplasm, cytoskeleton 1 DST
focal adhesion 1 DST
microtubule 1 DST
GABA-ergic synapse 1 SST
basement membrane 1 DST
secretory granule 2 AVP, POMC
intermediate filament 1 DST
neuron projection 2 OPRD1, OPRM1
ciliary basal body 1 ALB
chromatin 1 NANOG
cell leading edge 1 DST
cell projection 1 DST
cytoskeleton 1 DST
centriole 1 ALB
spindle pole 1 ALB
Cytoplasm, cell cortex 1 DST
blood microparticle 1 ALB
nuclear envelope 1 DST
Nucleus envelope 1 DST
heterotrimeric G-protein complex 1 GNAQ
Cell projection, dendrite 2 DTNB, OPRM1
myelin sheath 1 CA2
intermediate filament cytoskeleton 1 DST
stress fiber 1 DST
basal plasma membrane 2 DST, DTNB
synaptic membrane 1 PNOC
secretory granule lumen 1 POMC
endoplasmic reticulum quality control compartment 1 TRIM13
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
axon terminus 3 OPRD1, PDYN, PNOC
microtubule plus-end 1 DST
postsynaptic density membrane 1 OPRD1
neuronal dense core vesicle 4 AVP, OPRD1, PDYN, SST
perinuclear endoplasmic reticulum 1 TRIM13
clathrin-coated endocytic vesicle membrane 1 AVP
Cytoplasm, cytoskeleton, stress fiber 1 DST
H zone 1 DST
Basal cell membrane 1 DTNB
[Isoform 1]: Cytoplasm, cytoskeleton 1 DST
dendrite membrane 1 OPRD1
voltage-gated sodium channel complex 1 SCN4A
inhibitory synapse 1 DTNB
hemidesmosome 1 DST
[Isoform 12]: Cytoplasm 1 OPRM1
spine apparatus 1 OPRD1
ciliary transition fiber 1 ALB
Cytoplasm, myofibril, sarcomere, H zone 1 DST
[Isoform 2]: Cytoplasm, cytoskeleton 1 DST
[Isoform 6]: Nucleus 1 DST
[Isoform 7]: Cytoplasm, cytoskeleton 1 DST
[Isoform 8]: Cytoplasm, cytoskeleton 1 DST
interleukin-28 receptor complex 1 IFNLR1
organelle 1 DST


文献列表

  • Hiroshi Yamazaki. [Message from the President of the Japanese Society for the Study of Xenobiotics]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2019; 139(3):415-417. doi: 10.1248/yakushi.18-00186-5. [PMID: 30828021]
  • Wojciech Leppert, Przemysław Mikołajczak, Ewa Kamińska, Michał Szulc. Analgesia and serum assays of controlled-release dihydrocodeine and metabolites in cancer patients with pain. Pharmacological reports : PR. 2012; 64(1):84-93. doi: 10.1016/s1734-1140(12)70734-x. [PMID: 22580524]
  • A I Al-Asmari, R A Anderson. The role of dihydrocodeine (DHC) metabolites in dihydrocodeine-related deaths. Journal of analytical toxicology. 2010 Oct; 34(8):476-90. doi: 10.1093/jat/34.8.476. [PMID: 21819793]
  • Elise Glattard, Ingeborg D Welters, Thomas Lavaux, Arnaud H Muller, Alexis Laux, Dan Zhang, Alexander R Schmidt, François Delalande, Benoît-Joseph Laventie, Sylvie Dirrig-Grosch, Didier A Colin, Alain Van Dorsselaer, Dominique Aunis, Marie-Hélène Metz-Boutigue, Francis Schneider, Yannick Goumon. Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PloS one. 2010 Jan; 5(1):e8791. doi: 10.1371/journal.pone.0008791. [PMID: 20098709]
  • Andrea Baldacci, Wolfgang Thormann. Capillary electrophoresis contributions to the hydromorphone metabolism in man. Electrophoresis. 2006 Jun; 27(12):2444-57. doi: 10.1002/elps.200500867. [PMID: 16718649]
  • Ming Zheng, Keith M McErlane, May C Ong. Identification and synthesis of norhydromorphone, and determination of antinociceptive activities in the rat formalin test. Life sciences. 2004 Nov; 75(26):3129-46. doi: 10.1016/j.lfs.2004.06.008. [PMID: 15488893]
  • Anna K Przybyl, Judith L Flippen-Anderson, Arthur E Jacobson, Kenner C Rice. Practical and high-yield syntheses of dihydromorphine from tetrahydrothebaine and efficient syntheses of (8S)-8-bromomorphide. The Journal of organic chemistry. 2003 Mar; 68(5):2010-3. doi: 10.1021/jo0206871. [PMID: 12608825]
  • H Schmidt, S V Vormfelde, M Walchner-Bonjean, K Klinder, S Freudenthaler, C H Gleiter, U Gundert-Remy, G Skopp, R Aderjan, U Fuhr. The role of active metabolites in dihydrocodeine effects. International journal of clinical pharmacology and therapeutics. 2003 Mar; 41(3):95-106. doi: 10.5414/cpp41095. [PMID: 12665158]
  • M Zheng, K M McErlane, M C Ong. Hydromorphone metabolites: isolation and identification from pooled urine samples of a cancer patient. Xenobiotica; the fate of foreign compounds in biological systems. 2002 May; 32(5):427-39. doi: 10.1080/00498250110119090. [PMID: 12065064]
  • Anita B Wey, Wolfgang Thormann. Capillary electrophoresis and capillary electrophoresis-ion trap multiple-stage mass spectrometry for the differentiation and identification of oxycodone and its major metabolites in human urine. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2002 Apr; 770(1-2):191-205. doi: 10.1016/s1570-0232(01)00568-2. [PMID: 12013227]
  • M Zheng, K M McErlane, M C Ong. LC-MS-MS analysis of hydromorphone and hydromorphone metabolites with application to a pharmacokinetic study in the male Sprague-Dawley rat. Xenobiotica; the fate of foreign compounds in biological systems. 2002 Feb; 32(2):141-51. doi: 10.1080/00498250110091767. [PMID: 11868970]
  • M Balikova, V Maresova, V Habrdova. Evaluation of urinary dihydrocodeine excretion in human by gas chromatography-mass spectrometry. Journal of chromatography. B, Biomedical sciences and applications. 2001 Mar; 752(1):179-86. doi: 10.1016/s0378-4347(00)00509-0. [PMID: 11254193]
  • G Skopp, K Klinder, L Pötsch, G Zimmer, R Lutz, R Aderjan, R Mattern. Postmortem distribution of dihydrocodeine and metabolites in a fatal case of dihydrocodeine intoxication. Forensic science international. 1998 Jul; 95(2):99-107. doi: 10.1016/s0379-0738(98)00091-7. [PMID: 9722974]
  • C H Wilder-Smith, E Hufschmid, W Thormann. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine. A cross-over study with extensive and quinidine-induced poor metabolizers. British journal of clinical pharmacology. 1998 Jun; 45(6):575-81. doi: 10.1046/j.1365-2125.1998.00727.x. [PMID: 9663813]
  • E Hufschmid, R Theurillat, C H Wilder-Smith, W Thormann. Characterization of the genetic polymorphism of dihydrocodeine O-demethylation in man via analysis of urinary dihydrocodeine and dihydromorphine by micellar electrokinetic capillary chromatography. Journal of chromatography. B, Biomedical applications. 1996 Mar; 678(1):43-51. doi: 10.1016/0378-4347(95)00396-7. [PMID: 8861655]
  • M F Fromm, U Hofmann, E U Griese, G Mikus. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clinical pharmacology and therapeutics. 1995 Oct; 58(4):374-82. doi: 10.1016/0009-9236(95)90049-7. [PMID: 7586928]
  • U Hofmann, M F Fromm, S Johnson, G Mikus. Simultaneous determination of dihydrocodeine and dihydromorphine in serum by gas chromatography-tandem mass spectrometry. Journal of chromatography. B, Biomedical applications. 1995 Jan; 663(1):59-65. doi: 10.1016/0378-4347(94)00423-3. [PMID: 7704214]
  • R Maggi, D Dondi, G E Rovati, L Martini, F Piva, P Limonta. Binding characteristics of hypothalamic mu opioid receptors throughout the estrous cycle in the rat. Neuroendocrinology. 1993 Sep; 58(3):366-72. doi: 10.1159/000126564. [PMID: 8255398]
  • R Maggi, P Limonta, D Dondi, F Piva. Modulation of the binding characteristics of hypothalamic mu opioid receptors in rats by gonadal steroids. The Journal of steroid biochemistry and molecular biology. 1991; 40(1-3):113-21. doi: 10.1016/0960-0760(91)90174-4. [PMID: 1659872]
  • L A Casulari, R Maggi, D Dondi, P Limonta, F Piva, M Motta, L Martini. Effect of oestrus cyclicity on the number of brain opioid mu receptors in the rat. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1987 Nov; 19(11):549-54. doi: 10.1055/s-2007-1011880. [PMID: 2828210]
  • Y Kumagai, T Ishida, S Toki. Method for determination of morphinone in urine and bile of guinea pig by high-performance liquid chromatography. Journal of chromatography. 1987 Oct; 421(1):155-60. doi: 10.1016/0378-4347(87)80391-2. [PMID: 2448326]
  • M Olasmaa, P Limonta, R Maggi, D Dondi, L Martini, F Piva. Further evidence that gonadal steroids do not modulate brain opiate receptors in male rats. Endocrinologia japonica. 1987 Aug; 34(4):521-9. doi: 10.1507/endocrj1954.34.521. [PMID: 2824184]
  • P J Vaysse, E L Gardner, R S Zukin. Modulation of rat brain opioid receptors by cannabinoids. The Journal of pharmacology and experimental therapeutics. 1987 May; 241(2):534-9. doi: . [PMID: 3033219]
  • J Zoer, P Virgili, J A Henry. High-performance liquid chromatographic assay for morphine with electrochemical detection using an unmodified silica column with a non-aqueous ionic eluent. Journal of chromatography. 1986 Oct; 382(?):189-97. doi: 10.1016/s0378-4347(00)83516-1. [PMID: 3782384]
  • C E Dunlap, F M Leslie. Effect of ascorbate on the toxicity of morphine in mice. Neuropharmacology. 1985 Aug; 24(8):797-804. doi: 10.1016/0028-3908(85)90015-2. [PMID: 3018618]
  • A Milton, B Odlind. Renal tubular accumulation of organic substances: a new in vivo method which differentiates between luminal and peritubular uptake. Acta physiologica Scandinavica. 1985 Mar; 123(3):237-48. doi: 10.1111/j.1748-1716.1985.tb07584.x. [PMID: 3933280]
  • M A Correia, J S Wong, E Soliven. Morphine metabolism revisited: I. Metabolic activation of morphine to a reactive species in rats. Chemico-biological interactions. 1984 May; 49(3):255-68. doi: 10.1016/0009-2797(84)90101-7. [PMID: 6327094]
  • B Tocque, S Albouz, J M Boutry, F Le Saux, J J Hauw, R Bourdon, N Baumann, B Zalc. Desipramine elicits the expression of opiate receptors and sulfogalactosylceramide synthesis in rat C6 glioma cells. Journal of neurochemistry. 1984 Apr; 42(4):1101-6. doi: 10.1111/j.1471-4159.1984.tb12716.x. [PMID: 6321658]
  • J W Villiger, L J Ray, K M Taylor. Characteristics of [3H]fentanyl binding to the opiate receptor. Neuropharmacology. 1983 Apr; 22(4):447-52. doi: 10.1016/0028-3908(83)90162-4. [PMID: 6304563]
  • S Albouz, B Tocqué, J J Hauw, J M Boutry, F Le Saux, R Bourdon, N Baumann. Tricyclic antidepressant desipramine induces stereospecific opiate binding and lipid modifications in rat glioma C6 cells. Life sciences. 1982 Dec; 31(23):2549-54. doi: 10.1016/0024-3205(82)90727-5. [PMID: 6296584]
  • W K Ho, B M Cox. Reduction of opioid binding in neuroblastoma x glioma cells grown in medium containing unsaturated fatty acids. Biochimica et biophysica acta. 1982 May; 688(1):211-7. doi: 10.1016/0005-2736(82)90596-x. [PMID: 6284229]
  • A Neidle, I Manigault, I J Wajda. Distribution of opiate-like substances in rat tissues. Neurochemical research. 1979 Jun; 4(3):399-410. doi: 10.1007/bf00963809. [PMID: 223080]
  • L G Abood, N Salem, M MacNeil, M Butler. Phospholipid changes in synaptic membranes by lipolytic enzymes and subsequent restoration of opiate binding with phosphatidylserine. Biochimica et biophysica acta. 1978 Jul; 530(1):35-46. doi: 10.1016/0005-2760(78)90124-8. [PMID: 210831]
  • J H SANNER, L A WOODS. COMPARATIVE DISTRIBUTION OF TRITIUM-LABELED DIHYDROMORPHINE BETWEEN MATERNAL AND FETAL RATS. The Journal of pharmacology and experimental therapeutics. 1965 May; 148(?):176-84. doi: NULL. [PMID: 14301008]