Glucotropaeolin (BioDeep_00000003556)

   

natural product human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


{[(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

化学式: C14H19NO9S2 (409.0501)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 12.05%

分子结构信息

SMILES: C(/C(=N/OS(=O)(=O)O)/S[C@@H]1[C@H]([C@@H]([C@@H](O)[C@@H](O1)CO)O)O)c1ccccc1
InChI: InChI=1S/C14H19NO9S2/c16-7-9-11(17)12(18)13(19)14(23-9)25-10(15-24-26(20,21)22)6-8-4-2-1-3-5-8/h1-5,9,11-14,16-19H,6-7H2,(H,20,21,22)/b15-10+

描述信息

Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers.
Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard.
Acquisition and generation of the data is financially supported in part by CREST/JST.

同义名列表

9 个代谢物同义名

{[(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid; [(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxysulfonic acid; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2-phenyl-N-sulfooxyethanimidothioate; Benzyl glucosinolate; Benzylglucosinolate; Glucotropaeolin; Glucotropeolin; Tropaeolin; Glucotropaeolin



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

63 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CDK4, FOXO1, HPGDS, MAPK8, MAPK9, VEGFA
Peripheral membrane protein 3 ACHE, CYP1B1, GBA1
Endoplasmic reticulum membrane 1 CYP1B1
Nucleus 8 ACHE, ACP3, CDK4, FOXM1, FOXO1, MAPK8, MAPK9, VEGFA
cytosol 9 ACP3, CDK4, ENOX2, FOXO1, GLS, HPGDS, MAPK8, MAPK9, PAPSS2
trans-Golgi network 1 GBA1
nucleoplasm 6 CDK4, FOXM1, FOXO1, HPGDS, MAPK8, MAPK9
Cell membrane 2 ACHE, TNF
Synapse 3 ACHE, GLS, MAPK8
cell surface 3 ACHE, TNF, VEGFA
Golgi apparatus 3 ACHE, GBA1, VEGFA
Golgi membrane 1 INS
lysosomal membrane 2 ACP3, GBA1
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
Cytoplasm, cytosol 2 ACP3, GLS
Lysosome 3 ACP3, GBA1, SGSH
plasma membrane 6 ACHE, ACP3, ENOX2, MAPK9, REN, TNF
Membrane 4 ACHE, CYP1B1, REN, VEGFA
axon 1 MAPK8
extracellular exosome 3 ACP3, GBA1, SGSH
Lysosome membrane 2 ACP3, GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 2 GBA1, VEGFA
extracellular space 8 ACHE, ACP3, IL10, INS, REN, TNF, TST, VEGFA
lysosomal lumen 2 GBA1, SGSH
perinuclear region of cytoplasm 1 ACHE
Schaffer collateral - CA1 synapse 1 MAPK9
adherens junction 1 VEGFA
bicellular tight junction 1 CDK4
mitochondrion 5 CYP1B1, FOXO1, GLS, MAPK9, TST
intracellular membrane-bounded organelle 2 CYP1B1, HPGDS
Microsome membrane 1 CYP1B1
filopodium 1 ACP3
Single-pass type I membrane protein 1 ACP3
Secreted 5 ACHE, IL10, INS, REN, VEGFA
extracellular region 7 ACHE, ENOX2, IL10, INS, REN, TNF, VEGFA
Mitochondrion matrix 1 TST
mitochondrial matrix 2 GLS, TST
Extracellular side 1 ACHE
transcription regulator complex 1 CDK4
Nucleus membrane 1 CDK4
nuclear membrane 1 CDK4
external side of plasma membrane 2 ENOX2, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
multivesicular body 1 ACP3
nucleolus 1 CDK4
apical part of cell 2 ACP3, REN
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
extracellular matrix 1 VEGFA
basement membrane 1 ACHE
secretory granule 1 VEGFA
nuclear speck 1 MAPK9
chromatin 3 CDK4, FOXM1, FOXO1
phagocytic cup 1 TNF
[Isoform 1]: Mitochondrion 1 GLS
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 ACP3
endosome lumen 1 INS
side of membrane 1 ACHE
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
platelet alpha granule lumen 1 VEGFA
transport vesicle 1 INS
azurophil granule membrane 1 ACP3
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Golgi cisterna 1 ACP3
vesicle membrane 1 ACP3
synaptic cleft 1 ACHE
basal dendrite 1 MAPK8
[Isoform 3]: Mitochondrion 1 GLS
cyclin-dependent protein kinase holoenzyme complex 1 CDK4
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 ACP3
cyclin D1-CDK4 complex 1 CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[Isoform H]: Cell membrane 1 ACHE
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jenny Spöttel, Johannes Brockelt, Sven Falke, Sascha Rohn. Characterization of Conjugates between α-Lactalbumin and Benzyl Isothiocyanate-Effects on Molecular Structure and Proteolytic Stability. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206247. [PMID: 34684828]
  • Sabine Montaut, Benjamin S Guido, Claude Grison, Patrick Rollin. Identification of Glucosinolates in Seeds of Three Brassicaceae Species Known to Hyperaccumulate Heavy Metals. Chemistry & biodiversity. 2017 Mar; 14(3):. doi: 10.1002/cbdv.201600311. [PMID: 27981800]
  • Stefanie Platz, Carla Kühn, Sonja Schiess, Monika Schreiner, Margrit Kemper, Olga Pivovarova, Andreas F H Pfeiffer, Sascha Rohn. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.). Molecular nutrition & food research. 2016 Mar; 60(3):652-60. doi: 10.1002/mnfr.201500633. [PMID: 26610401]
  • Stefanie Platz, Carla Kühn, Sonja Schiess, Monika Schreiner, Inga Mewis, Margrit Kemper, Andreas Pfeiffer, Sascha Rohn. Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.). Analytical and bioanalytical chemistry. 2013 Sep; 405(23):7427-36. doi: 10.1007/s00216-013-7176-7. [PMID: 23852079]
  • Yasmeen Maniyar, Prabhu Bhixavatimath. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya Linn. leaves in alloxan-induced diabetic rats. Journal of Ayurveda and integrative medicine. 2012 Apr; 3(2):70-4. doi: 10.4103/0975-9476.96519. [PMID: 22707862]
  • Ze-You Li, Yong Wang, Wen-Tao Shen, Peng Zhou. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian Pacific journal of tropical medicine. 2012 Mar; 5(3):231-3. doi: 10.1016/s1995-7645(12)60030-3. [PMID: 22305790]
  • Gina R De Nicola, Maximilienne Nyegue, Sabine Montaut, Renato Iori, Chantal Menut, Arnaud Tatibouët, Patrick Rollin, Chantal Ndoyé, Paul-Henri Amvam Zollo. Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon. Phytochemistry. 2012 Jan; 73(1):51-6. doi: 10.1016/j.phytochem.2011.09.006. [PMID: 21993210]
  • Gustavo F Gonzales. Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):193496. doi: 10.1155/2012/193496. [PMID: 21977053]
  • Ishita Ahuja, Birgit Hafeld Borgen, Magnor Hansen, Bjørn Ivar Honne, Caroline Müller, Jens Rohloff, John Trevor Rossiter, Atle Magnar Bones. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. Journal of experimental botany. 2011 Oct; 62(14):4975-93. doi: 10.1093/jxb/err195. [PMID: 21778185]
  • David J Williams, Christa Critchley, Sharon Pun, Mridusmita Chaliha, Timothy J O'Hare. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochemistry. 2009 Jul; 70(11-12):1401-9. doi: 10.1016/j.phytochem.2009.07.035. [PMID: 19747700]
  • Marzena Wielanek, Aleksandra Królicka, Katarzyna Bergier, Ewa Gajewska, Maria Skłodowska. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production. Biotechnology letters. 2009 Jun; 31(6):917-21. doi: 10.1007/s10529-009-9953-0. [PMID: 19229477]
  • Franziska Kuhlmann, Caroline Müller. Independent responses to ultraviolet radiation and herbivore attack in broccoli. Journal of experimental botany. 2009; 60(12):3467-75. doi: 10.1093/jxb/erp182. [PMID: 19542197]
  • Maik Kleinwächter, Ewald Schnug, Dirk Selmar. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization. Journal of agricultural and food chemistry. 2008 Dec; 56(23):11165-70. doi: 10.1021/jf802053n. [PMID: 18986152]
  • I Cárdenas-Valencia, J Nieto, M Gasco, C Gonzales, J Rubio, J Portella, G F Gonzales. Tropaeolum tuberosum (Mashua) reduces testicular function: effect of different treatment times. Andrologia. 2008 Dec; 40(6):352-7. doi: 10.1111/j.1439-0272.2008.00868.x. [PMID: 19032684]
  • M Gasco, L Villegas, S Yucra, J Rubio, G F Gonzales. Dose-response effect of Red Maca (Lepidium meyenii) on benign prostatic hyperplasia induced by testosterone enanthate. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2007 Aug; 14(7-8):460-4. doi: 10.1016/j.phymed.2006.12.003. [PMID: 17289361]
  • Yoshimasa Nakamura, Motoko Yoshimoto, Yoshiyuki Murata, Yasuaki Shimoishi, Yumi Asai, Eun Young Park, Kenji Sato, Yasushi Nakamura. Papaya seed represents a rich source of biologically active isothiocyanate. Journal of agricultural and food chemistry. 2007 May; 55(11):4407-13. doi: 10.1021/jf070159w. [PMID: 17469845]
  • Gustavo F Gonzales, Sara Miranda, Jessica Nieto, Gilma Fernández, Sandra Yucra, Julio Rubio, Pedro Yi, Manuel Gasco. Red maca (Lepidium meyenii) reduced prostate size in rats. Reproductive biology and endocrinology : RB&E. 2005 Jan; 3(?):5. doi: 10.1186/1477-7827-3-5. [PMID: 15661081]
  • D-L Cheng, K Hashimoto, Y Uda. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2004 Mar; 42(3):351-7. doi: 10.1016/j.fct.2003.09.008. [PMID: 14871576]
  • Gabrielle Rouzaud, Sylvie Rabot, Brian Ratcliffe, Alan J Duncan. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. The British journal of nutrition. 2003 Aug; 90(2):395-404. doi: 10.1079/bjn2003900. [PMID: 12908900]
  • Richard N Bennett, Fred A Mellon, Nikolaus Foidl, John H Pratt, M Susan Dupont, Lionel Perkins, Paul A Kroon. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. Journal of agricultural and food chemistry. 2003 Jun; 51(12):3546-53. doi: 10.1021/jf0211480. [PMID: 12769522]
  • Fernando Calzada, Elizabeth Barbosa, Roberto Cedillo-Rivera. Antiamoebic activity of benzyl glucosinolate from Lepidium virginicum. Phytotherapy research : PTR. 2003 Jun; 17(6):618-9. doi: 10.1002/ptr.1210. [PMID: 12820228]
  • B Combourieu, L Elfoul, A M Delort, S Rabot. Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations. Drug metabolism and disposition: the biological fate of chemicals. 2001 Nov; 29(11):1440-5. doi: . [PMID: 11602519]