Gene Association: ANK1
UniProt Search:
ANK1 (PROTEIN_CODING)
Function Description: ankyrin 1
found 164 associated metabolites with current gene based on the text mining result from the pubmed database.
Vanillin
Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Capsaicin
Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].
Camphor
Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Thioctic acid
Lipoate, also known as lipoic acid or 6,8-thioctate, belongs to lipoic acids and derivatives class of compounds. Those are compounds containing a lipoic acid moiety (or a derivative thereof), which consists of a pentanoic acid (or derivative) attached to the C3 carbon atom of a 1,2-dithiolane ring. Lipoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lipoate can be synthesized from octanoic acid. Lipoate can also be synthesized into lipoamide and lipoyl-AMP. Lipoate can be found in broccoli and spinach, which makes lipoate a potential biomarker for the consumption of these food products. Lipoate may be a unique E.coli metabolite. Lipoate is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Coniferaldehyde
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
p-Synephrine
Synephrine is a phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. It has a role as a plant metabolite and an alpha-adrenergic agonist. It is a phenethylamine alkaloid, a member of phenols and a member of ethanolamines. It is a conjugate base of a synephrinium. Synephrine, also referred to as, p-synephrine, is naturally occurring alkaloid. It is present in approved drug products as neo-synephrine, its m-substituted analog. p-synephrine and m-synephrine are known for their longer acting adrenergic effects compared to norepinephrine. The similarity of naming between m-synephrine and the unsubstituted form, synephrine, is a source of some confusion however m-synephrine refers to a related drug more commonly known as phenylephrine. While the compounds share some chemical and pharmacological similarities, they are in fact distinct chemical entities. Synephrine is a natural product found in Citrus medica, Ephedra sinica, and other organisms with data available. Sympathetic alpha-adrenergic agonist with actions like PHENYLEPHRINE. It is used as a vasoconstrictor in circulatory failure, asthma, nasal congestion, and glaucoma. Synephrine (or oxedrine) is a drug commonly used for weight loss. While its effectiveness is widely debated, synephrine has gained significant popularity as an alternative to ephedrine, a related substance which has been made illegal or restricted in many countries due to its use as a precursor in the illicit manufacture of methamphetamine. Products containing bitter orange or synephrine: suspected cardiovascular adverse reactions [citation needed]. Synephrine is derived primarily from the fruit of Citrus aurantium, a relatively small citrus tree, of which several of its more common names include Bitter Orange, Sour Orange, and Zhi shi.; There has been some confusion surrounding synephrine and phenylephrine (neosynephrine), one of its positional isomers. The chemicals are similar in structure; the only difference is the location of the aromatic hydroxyl group. In synephrine, the hydroxyl is at the para position, whereas, in neosynephrine, it is at the meta position. Each compound has differing biological properties.; p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents A phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). 辛弗林(Synephrine),又称为辛弗林碱或对羟福林,是一种生物碱,化学结构与肾上腺素类似。它在中药中是一种重要的活性成分,尤其在某些温热性中药中含量较高,如麻黄(Ephedra sinica)。 在中医中,辛弗林具有发汗解表、宣肺平喘、利水消肿等功效,常用于治疗感冒、哮喘、风水浮肿等症状。此外,辛弗林作为一种强效的α-受体激动剂和较弱的β-受体激动剂,也具有一定的减肥和增强代谢的效果,因此在一些减肥补充剂中也有应用。 p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2].
Cinnamaldehyde
(E)-cinnamaldehyde is the E (trans) stereoisomer of cinnamaldehyde, the parent of the class of cinnamaldehydes. It has a role as a hypoglycemic agent, an EC 4.3.1.24 (phenylalanine ammonia-lyase) inhibitor, a vasodilator agent, an antifungal agent, a flavouring agent, a plant metabolite and a sensitiser. It is a 3-phenylprop-2-enal and a member of cinnamaldehydes. Cinnamaldehyde is a naturally occurring flavonoid that gives the spice cinnamon its flavour and odour. It occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum such as camphor and cassia. Sensitivity to cinnamaldehyde may be identified with a clinical patch test. Cinnamaldehyde is a Standardized Chemical Allergen. The physiologic effect of cinnamaldehyde is by means of Increased Histamine Release, and Cell-mediated Immunity. Cinnamaldehyde is a natural product found in Chaerophyllum bulbosum, Cinnamomum sieboldii, and other organisms with data available. Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde. Cinnamaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. Cinnamaldehyde, also known as (E)-3-phenyl-2-propenal or 3-phenylacrylaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. Cinnamaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cinnamaldehyde is a sweet, candy, and cinnamon tasting compound and can be found in a number of food items such as sour cherry, rubus (blackberry, raspberry), horseradish, and sea-buckthornberry, which makes cinnamaldehyde a potential biomarker for the consumption of these food products. Cinnamaldehyde can be found primarily in feces, as well as in human neuron and skin tissues. Cinnamaldehyde exists in all eukaryotes, ranging from yeast to humans. Cinnamaldehyde is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamaldehyde is an organic compound with the formula C6H5CH=CHCHO. Occurring naturally as predominantly the trans (E) isomer, it gives cinnamon its flavor and odor. It is a flavonoid that is naturally synthesized by the shikimate pathway. This pale yellow, viscous liquid occurs in the bark of cinnamon trees and other species of the genus Cinnamomum. The essential oil of cinnamon bark is about 50\\\\% cinnamaldehyde . The specific symptoms that can result from cinnamic aldehyde allergy can vary considerably amongst patients from a severe anaphylactic reaction to asthma, abdominal symptoms, eczema or headaches (L2140) (T3DB). Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde. D020011 - Protective Agents > D016587 - Antimutagenic Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D000970 - Antineoplastic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2]. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].
Pinosylvin
Pinosylvin is a stilbenol. Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available. Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2]. Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].
Atractydin
Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
3,7-Dimethyl-1,6-octadien-3-ol
3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].
Menthol
D,l-menthol is a white crystalline solid with a peppermint odor and taste. (NTP, 1992) (-)-menthol is a p-menthan-3-ol which has (1R,2S,5R)-stereochemistry. It is the most common naturally occurring enantiomer. It has a role as an antipruritic drug, an antitussive and an antispasmodic drug. It is an enantiomer of a (+)-menthol. Menthol is a covalent organic compound made synthetically or obtained from peppermint or other mint oils. Forming clear or white waxy, crystalline substance, menthol is typically solid at room temperature. (-)-Menthol is the naturally-occurring and main form of menthol, and is assigned the (1R,2S,5R) configuration. Menthol mediates anesthetic properties and anti-irritating properties locally, thus it is widely used to relieve minor throat irritations. l-Menthol is a natural product found in Punica granatum, Mentha arvensis, and other organisms with data available. Levomenthol is a levo isomer of menthol, an organic compound made synthetically or obtained from peppermint or mint oils with flavoring and local anesthetic properties. When added to pharmaceuticals and foods, menthol functions as a fortifier for peppermint flavors. It also has a counterirritant effect on skin and mucous membranes, thereby producing a local analgesic or anesthetic effect. Menthol is an alcohol produced from mint oils or prepared synthetically. Menthol is a covalent organic compound made synthetically or obtained from peppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (-)-menthol, which is assigned the (1R,2S,5R) configuration. Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol is an alcohol produced from mint oils or prepared synthetically. Menthol is a covalent organic compound made synthetically or obtained from peppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (-)-menthol, which is assigned the (1R,2S,5R) configuration. Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Present in large amts. in peppermint oil (Mentha piperita), also in other Mentha subspecies. It is used in confectionery and perfumery. Flavouring agent A p-menthan-3-ol which has (1R,2S,5R)-stereochemistry. It is the most common naturally occurring enantiomer. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D003879 - Dermatologic Agents > D000982 - Antipruritics (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1].
Zingerone
Zingerone is a methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. It has a role as an antioxidant, an anti-inflammatory agent, a radiation protective agent, an antiemetic, a flavouring agent, a fragrance and a plant metabolite. It is a member of phenols, a monomethoxybenzene and a methyl ketone. Zingerone is a pungent component of ginger. Zingerone is a natural product found in Alpinia officinarum, Vitis vinifera, and other organisms with data available. Zingerone is a metabolite found in or produced by Saccharomyces cerevisiae. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etcand is also present in cranberry, raspberry and mango. Zingerone is found in many foods, some of which are pot marjoram, fruits, ginger, and herbs and spices. Zingerone is found in fruits. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etc. Also present in cranberry, raspberry and mang A methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].
Beta-eudesmol
Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
Dihydrodaidzein
Dihydrodaidzein is one of the most prominent dietary phytoestrogens. Dietary phytoestrogens have been implicated in the prevention of chronic diseases (PMID:12270199). Dihydrodaidzein is a biomarker for the consumption of soy beans and other soy products. Dihydrodaidzein is a hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. It has a role as a metabolite. A hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. Dihydrodaidzein is one of the most prominent dietary phytoestrogens. S-Dihydrodaidzein is the (S)-enantiomer of dihydrodaidzein which is one of the most prominent dietary phytoestrogens[1][2].
(S)-[10]-Gingerol
(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[10]-Gingerol is found in ginger. (S)-[10]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[10]-Gingerol is found in herbs and spices and ginger. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].
(-)-Sabinene
Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
(R)-Citronellal
(R)-(+)-citronellal is the (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). It is an enantiomer of a (S)-(-)-citronellal. (R)-(+)-Citronellal is a natural product found in Litsea cubeba, Backhousia citriodora, and other organisms with data available. (R)-Citronellal is found in citrus. (R)-Citronellal is a constituent of citronella oil. Also in citrus, lavender, eucalyptus oils and others. (R)-Citronellal is a flavouring agent Constituent of citronella oiland is) also in citrus, lavender, eucalyptus oils and others. Flavouring agent. (R)-Citronellal is found in lemon balm, citrus, and herbs and spices. The (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].
Dimethyl trisulfide
Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Umbellulone
Umbellulone is a ketone. (-)-Umbellulone is a natural product found in Tanacetum vulgare, Pimenta racemosa, and Umbellularia californica with data available.
Hyoscyamine
Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2292 INTERNAL_ID 2292; CONFIDENCE Reference Standard (Level 1) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3334 D002491 - Central Nervous System Agents KEIO_ID A080; [MS2] KO008864 KEIO_ID A080 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Allicin
Allicin is found in garden onion. Allicin is isolated from garlic (Allium sativum). Nutriceutical Allicin is an organic compound obtained from garlic. It is also obtainable from onions, and other species in the family Alliaceae. It was first isolated and studied in the laboratory by Chester J. Cavallito in 1944. This colourless liquid has a distinctively pungent smell. This compound exhibits antibacterial and anti-fungal properties. Allicin is garlics defence mechanism against attacks by pests Allicin is a sulfoxide and a botanical anti-fungal agent. It has a role as an antibacterial agent. Allicin has been used in trials studying the treatment of Follicular Lymphoma. Allicin is a natural product found in Allium chinense, Allium nutans, and other organisms with data available. See also: Garlic (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants Isolated from garlic (Allium sativum). Nutriceutical D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents D007004 - Hypoglycemic Agents Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2]. Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2].
5-Isopropyl-2-methylphenol
5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
Pulegone
A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
1,4-Cineole
1,4-cineole is an oxabicycloalkane consisting of p-menthane with an epoxy bridge across positions 1 and 4. It has a role as a plant metabolite, a fumigant insecticide and a central nervous system depressant. It is a cineole and an oxabicycloalkane. NA is a natural product found in Saxifraga stolonifera, Rhododendron anthopogonoides, and other organisms with data available. Constituent of Piper cubeba (cubeb pepper). 1,4-Cineole is found in many foods, some of which are star anise, roselle, herbs and spices, and lime. 1,4-Cineole is found in cardamom. 1,4-Cineole is a constituent of Piper cubeba (cubeb pepper) An oxabicycloalkane consisting of p-menthane with an epoxy bridge across positions 1 and 4. 1,4-Cineole is a widely distributed, natural, oxygenated monoterpene[1]. 1,4-Cineole, present in Rhododendron anthopogonoides, activates both human TRPM8 and human TRPA1[2]. 1,4-Cineole is a widely distributed, natural, oxygenated monoterpene[1]. 1,4-Cineole, present in Rhododendron anthopogonoides, activates both human TRPM8 and human TRPA1[2].
Citronellal
Isolated from essential oils, especies citronella oilsand is) also present in citrus peel oil, kumquat peel oil, parsley seed oil, ginger, pepper, cocoa, lovage root and other foods. Production synthetically by hydrogenation of 3,7-Dimethyl-2,6-octadienal
Safranal
Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
Capsiate
Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
(+)-alpha-Pinene
alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].
Cuminaldehyde
Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
Dibutyl phthalate
Di-n-phtalate is a manufactured chemical that does not occur naturally. It is an odorless and oily liquid that is colorless to faint yellow in color. It is slightly soluble in water and does not evaporate easily. Di-n-phtalate is used to make plastics more flexible and is also in carpet backings, paints, glue, insect repellents, hair spray, nail polish, and rocket fuel. N-butyl phthalate is a colorless oily liquid. It is insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Since it is a liquid it can easily penetrate the soil and contaminate groundwater and nearby streams. It is combustible though it may take some effort to ignite. It is used in paints and plastics and as a reaction media for chemical reactions. Dibutyl phthalate is a phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. It has a role as an environmental contaminant, a teratogenic agent, a plasticiser, a metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a phthalate ester and a diester. It is functionally related to a butan-1-ol. Dibutyl phthalate is used in making flexible plastics that are found in a variety of consumer products. It appears to have relatively low acute (short-term) and chronic (long-term) toxicity. No information is available regarding the effects in humans from inhalation or oral exposure to dibutyl phthalate, and only minimal effects have been noted in animals exposed by inhalation. No studies are available on the reproductive, developmental, or carcinogenic effects of dibutyl phthalate in humans. Animal studies have reported developmental and reproductive effects from oral exposure. EPA has classified dibutyl phthalate as a Group D, not classifiable as to human carcinogenicity. Dibutyl phthalate is a natural product found in Scutellaria amoena, Eleutherococcus sessiliflorus, and other organisms with data available. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A plasticizer used in most plastics and found in water, air, soil, plants and animals. It may have some adverse effects with long-term exposure. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006.; Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. Dibutyl phthalate is found in kohlrabi and cloves. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010968 - Plasticizers ATC code: P03BX03 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10075 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10082; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10016; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10065; ORIGINAL_PRECURSOR_SCAN_NO 10063 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10036; ORIGINAL_PRECURSOR_SCAN_NO 10031 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3670 EAWAG_UCHEM_ID 3670; CONFIDENCE standard compound INTERNAL_ID 4180; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4180 CONFIDENCE standard compound; INTERNAL_ID 8224 CONFIDENCE standard compound; INTERNAL_ID 199
4-Ethylphenol
4-Ethylphenol belongs to the class of organic compounds known as 1-hydroxy-4-alkyl benzenoids. These are phenols that are substituted by an alkyl group at the para-position. 4-Ethylphenol exists in all living species, ranging from bacteria to humans. 4-Ethylphenol is an alcohol tasting compound. 4-Ethylphenol has been detected, but not quantified, in several different foods, such as arabica coffee, beers, corns, milk (cow), and red raspberries. 4-Ethylphenol is a potentially toxic compound, capable of producing respiratory distress, cardiovascular collapse, shock, ventricular tachycardia, and coma in an adult. Liver, lung, central nervous system and renal injury may also occur. In case of exposure to eyes, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. Monitor for respiratory distress in case of inhalation exposure. Systemic manifestations of toxicity may include nausea, vomiting, diarrhea, dyspnea, tachypnea, pallor, and profuse sweating. 4-Ethylphenol (4-EP) is a phenolic compound produced in wine and beer by the spoilage yeast Brettanomyces. 4-Ethylphenol is found in many foods, some of which are red raspberry, beer, arabica coffee, and corn. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine.
Gabapentin
Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201) [HMDB] Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics
Etodolac
Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034
Sumatriptan
Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve. Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. A serotonin agonist that acts selectively at 5HT1 receptors. It is used in the treatment of migraines. Sumatriptan (Imitrex, Imigran, Imigran Recovery) is a triptan drug including a sulfonamide group which was originally developed by Glaxo for the treatment of migraine headaches. Oftentimes, serotonin levels in the brain become extremely erratic before the onset of a migraine. In an attempt to stabilize this, sumatriptan is administered to help aid in leveling the serotonin levels in the brain. Sumatriptan is structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve.; Sumatriptan is a triptan drug including a sulfonamide group structurally similar to serotonin, and is a 5-HT (5-HT1D) agonist, which is one of the receptors that serotonin binds to. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].
Mepivacaine
A local anesthetic that is chemically related to bupivacaine but pharmacologically related to lidocaine. It is indicated for infiltration, nerve block, and epidural anesthesia. Mepivacaine is effective topically only in large doses and therefore should not be used by this route. (From AMA Drug Evaluations, 1994, p168) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3126
Prilocaine
Prilocaine is only found in individuals that have used or taken this drug. It is a local anesthetic that is similar pharmacologically to lidocaine. Currently, it is used most often for infiltration anesthesia in dentistry. (From AMA Drug Evaluations Annual, 1992, p165)Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3141
(+)-Camphor
Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Methyl 2-aminobenzoate
Methyl 2-aminobenzoate is found in alcoholic beverages. Methyl 2-aminobenzoate is found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroli. Also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Methyl 2-aminobenzoate is a flavouring agent Found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroliand is also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Flavouring agent.
Aniline Yellow
D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8952 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8961; ORIGINAL_PRECURSOR_SCAN_NO 8959 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8978; ORIGINAL_PRECURSOR_SCAN_NO 8977 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8974; ORIGINAL_PRECURSOR_SCAN_NO 8972 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8989; ORIGINAL_PRECURSOR_SCAN_NO 8988 CONFIDENCE standard compound; INTERNAL_ID 1313; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8997; ORIGINAL_PRECURSOR_SCAN_NO 8995 CONFIDENCE standard compound; INTERNAL_ID 2428 CONFIDENCE standard compound; INTERNAL_ID 8113 CONFIDENCE standard compound; INTERNAL_ID 4141
1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide
Acetovanillone
Acetovanillone, also known as 4-hydroxy-3-methoxyacetophenone or acetoguaiacon, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Acetovanillone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Acetovanillone is a faint, sweet, and vanillin tasting compound found in corn and garden onion, which makes acetovanillone a potential biomarker for the consumption of these food products. Acetovanillone may be a unique S.cerevisiae (yeast) metabolite. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
FUSARENON X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Deoxynivalenol
Deoxynivalenol is found in cereals and cereal products. Deoxynivalenol is produced by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals Vomitoxin, also known as deoxynivalenol (DON), is a type B trichothecene, an epoxy-sesquiterpeneoid. This mycotoxin occurs predominantly in grains such as wheat, barley, oats, rye, and maize, and less often in rice, sorghum, and triticale. The occurrence of deoxynivalenol is associated primarily with Fusarium graminearum (Gibberella zeae) and F. culmorum, both of which are important plant pathogens which cause Fusarium head blight in wheat and Gibberella ear rot in maize. Deoxynivalenol is a direct relationship between the incidence of Fusarium head blight and contamination of wheat with deoxynivalenol has been established. The incidence of Fusarium head blight is strongly associated with moisture at the time of flowering (anthesis), and the timing of rainfall, rather than the amount, is the most critical factor. Furthermore, deoxynivalenol contents are significantly affected by the susceptibility of cultivars towards Fusarium species, previous crop, tillage practices, and fungicide us Production by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Oxaprozin
Oxaprozin is only found in individuals that have used or taken this drug. It is a non-narcotic, non-steroidal anti-inflammatory drug (NSAID), used to relieve the inflammation, swelling, stiffness, and joint pain associated with osteoarthritis and rheumatoid arthritis.Anti-inflammatory effects of Oxaprozin are believed to be due to inhibition of cylooxygenase in platelets which leads to the blockage of prostaglandin synthesis. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Oxaprozin is a non-selective NSAID, with a cell assay system showing lower COX-2 selectivity implying higher COX-1 selectivity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Oxaprozin is an orally active and potent COX inhibitor, with IC50 values of 2.2 μM for human platelet COX-1 and and 36 μM for IL-1-stimulated human synovial cell COX-2, respectively. Oxaprozin also inhibits the activation of NF-κB. Oxaprozin induces cell apoptosis. Oxaprozin shows anti-inflammatory activity. Oxaprozin-mediated inhibition of the Akt/IKK/NF-κB pathway contributes to its anti-inflammatory properties[1][2].
[8]-Shogaol
1-(3,4-Dimethoxyphenyl)-4-decen-3-one is found in ginger. 1-(3,4-Dimethoxyphenyl)-4-decen-3-one is a constituent of ginger (Zingiber officinale) [DFC] (Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.). Constituent of grains of paradise (Amomum melegueta) and Zingiber officinale (ginger) [DFC] C1907 - Drug, Natural Product > C28269 - Phytochemical D009676 - Noxae > D009153 - Mutagens Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
Diphenoxylate
A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
Phenelzine
Phenelzine is only found in individuals that have used or taken this drug. It is an irreversible non-selective inhibitor of monoamine oxidase. May be used to treat major depressive disorder.Although the exact mechanism of action has not been determined, it appears that the irreversible, nonselective inhibition of MAO by phenelzine relieves depressive symptoms by causing an increase in the levels of serotonin, norepinephrine, and dopamine in the neuron. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor
Terazosin
Terazosin is a selective alpha1-antagonist used for treatment of symptoms of benign prostatic hyperplasia (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. It works by blocking the action of adrenaline on smooth muscle of the bladder and the blood vessel walls. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
Allyl isothiocyanate
Allyl isothiocyanate is a volatile organic compound. Allyl isothiocyanate (AITC) is a constituent of mustard, horseradish and wasabi and certain vegetables found in the human diet, mostly in cruciferous vegetables. AITC is a colorless to pale yellow liquid that is slightly soluble in water, but soluble in most organic solvents. AITC possesses numerous biochemical and physiological activities. It is cytotoxic and tumorigenic at high doses and is also a modulator of enzymes involved in metabolism of xenobiotics, including carcinogens. It is plausible that the wide consumption of dietary AITC may have profound effects on human health. oxidative DNA damage may play important roles in carcinogenic processes induced by AITC. Allergic contact dermatitis from AICT is well known but infrequently reported. AITC is occasionally found as a volatile component of normal human biofluids. (PMID:5556886, 8222057, 8000299, 10754276, 15373848). Chief constituent of natural mustard oiland is also found in cooked cabbage, horseradish, etc. Flavouring ingredient. Potential nutriceutical D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives
Sinigrin
Sinigrin is found in brassicas. Sinigrin is isolated from seeds of black mustard (Brassica nigra) and cabbage, as K salt. Sinigrin is present in many crucifers, major glucosinolate in Brussels sprouts (Brassica oleraceae). Sinigrin is isolated from seeds of black mustard (Brassica nigra) and cabbage, as a K salt. It is found in many crucifers, major glucosinolate in Brussels sprouts (Brassica oleraceae). Acquisition and generation of the data is financially supported in part by CREST/JST.
Resolvin D1
Resolvin D1 (RvD1) is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225).
Resolvin D2
Resolvin D2 is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225) [HMDB] Resolvin D2 is an autacoid resolvin. Autacoids are chemical mediators including the families of resolvins and protectins, defined by their potent bioactions and novel chemical structures. The bioactive local mediators, or autacoids, that require enzymatic generation from the omega-3 essential fatty acid EPA were first identified in resolving inflammatory exudates in vivo and carry potent stereoselective biological actions. Resolvins of the E (RvE) series are derived from eicosapentaenoic acid (EPA). Those derived from docosahexaenoic acid (DHA) were termed resolvins of the D series, for example resolvin D1 (RvD1).Resolvins and protectins have specific stereoselective actions which evoke biological actions in the nanogram range in vivo and are natural exudate products. Resolvins and protectins as distinct chemical families join the lipoxins as potent agonists of endogenous anti-inflammation and are proresolving chemical mediators of interest in human disease as potential new approaches to treatment. The term resolvins (resolution-phase interaction products) was first introduced to signify that these new structures were endogenous mediators, biosynthesized in the resolution phase of inflammatory exudates, possessing very potent anti-inflammatory and immunoregulatory actions. These actions include reducing neutrophil traffic, regulating cytokine and reactive oxygen species, and lowering the magnitude of the response. In recent years, investigators have recognized inflammation as playing a key role in many prevalent diseases not previously considered to be of inflammatory etiology. These include Alzheimers disease, cardiovascular disease, and cancer, which now join those well-appreciated inflammatory disorders such as arthritis and periodontal disease. Identifying the molecular mechanism(s) that underlie the many reports of the benefits of dietary omega-3 PUFAs remains an important challenge for nutrition and medicine. Thus, that these new mediator families, resolvins and protectins, are biosynthesized from EPA and DHA, act locally, and possess potent, novel bioactions is of interest to researchers. (PMID: 17090225).
Lutein 5,6-epoxide
Lutein; 5,6-Epoxide is found in common grape. Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids). Isolated from a variety of higher plants and from algae. Taraxanthin was a mixture with lutein epoxide as the main component. [CCD]. Lutein 5,6-epoxide is found in many foods, some of which are rice, swamp cabbage, garden tomato (variety), and common grape.
Pyruvaldehyde
Methylglyoxal, also known as 2-ketopropionaldehyde or 2-oxopropanal, is a member of the class of compounds known as alpha ketoaldehydes. Alpha ketoaldehydes are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Methylglyoxal is soluble (in water) and an extremely weak acidic compound (based on its pKa). Methylglyoxal can be found in a number of food items such as shiitake, yellow zucchini, roman camomile, and carob, which makes methylglyoxal a potential biomarker for the consumption of these food products. Methylglyoxal can be found primarily in blood and urine, as well as throughout most human tissues. Methylglyoxal exists in all living species, ranging from bacteria to humans. In humans, methylglyoxal is involved in few metabolic pathways, which include glycine and serine metabolism, pyruvaldehyde degradation, pyruvate metabolism, and spermidine and spermine biosynthesis. Methylglyoxal is also involved in several metabolic disorders, some of which include hyperglycinemia, non-ketotic, pyruvate kinase deficiency, non ketotic hyperglycinemia, and pyruvate decarboxylase E1 component deficiency (PDHE1 deficiency). Moreover, methylglyoxal is found to be associated with diabetes mellitus type 2. Methylglyoxal, also called pyruvaldehyde or 2-oxopropanal, is the organic compound with the formula CH3C(O)CHO. Gaseous methylglyoxal has two carbonyl groups, an aldehyde and a ketone but in the presence of water, it exists as hydrates and oligomers. It is a reduced derivative of pyruvic acid . Pyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
2-Butenal
(e)-2-butenal, also known as (cis)-crotonaldehyde or (E)-crotonaldehyde (iupac), is a member of the class of compounds known as enals. Enals are an alpha,beta-unsaturated aldehyde of general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position (e)-2-butenal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-2-butenal is a flower tasting compound found in fruits, garden tomato, and potato, which makes (e)-2-butenal a potential biomarker for the consumption of these food products (e)-2-butenal can be found primarily in feces and saliva. 2-Butenal (CAS: 4170-30-3), also known as crotonaldehyde, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. The (E)-form of 2-butenal predominates (>95\\%). 2-Butenal can undergo polycondensation with phenols to synthesize phenolic resins. It is an eye, skin, and mucous membrane irritant. (E)-2-Butenal is found in fruits and vegetables (e.g. tomato juice, strawberry aroma).
xi-2-Ethyl-1-hexanol
Xi-2-ethyl-1-hexanol, also known as 2-ethylhexyl alcohol or octyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, xi-2-ethyl-1-hexanol is considered to be a fatty alcohol lipid molecule. Xi-2-ethyl-1-hexanol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Xi-2-ethyl-1-hexanol can be found in a number of food items such as tea, cereals and cereal products, fats and oils, and alcoholic beverages, which makes xi-2-ethyl-1-hexanol a potential biomarker for the consumption of these food products. Xi-2-ethyl-1-hexanol can be found primarily in feces and saliva. Xi-2-ethyl-1-hexanol exists in all eukaryotes, ranging from yeast to humans. 2-Ethyl-1-hexanol, also known as 2-ethylhexyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, 2-ethyl-1-hexanol is considered to be a fatty alcohol lipid molecule. 2-ethyl-1-hexanol is practically insoluble in water. 2-Ethyl-1-hexanol can be found in a number of food items such as tea, cereals and cereal products, fats and oils, and alcoholic beverages. 2-Ethyl-1-hexanol exists in all eukaryotes, ranging from yeast to humans and in mammals it can be found primarily in feces and saliva.
Cyclohexanone
Cyclohexanone is a food flavourant. Present in various plant spp. e.g. Cistus ladaniferus (labdanum). Cyclohexanone is a colorless oily liquid with an odor resembling acetone and peppermint. Cyclohexanone is occasionally found as a volatile component of human urine. Biological fluids such as blood and urine have been shown to contain a large number of components, some of them volatiles (low boiling point) apparently present in all individuals, while others such are much more variable. In some cases differences up to an order of magnitude are observed. Although some of these changes may have dietary origins, others seem to be characteristic of the individual. Cyclohexanone is obtained through oxidation of cyclohexane or dehydrogenation of phenol. Approx. 95\\% of its manuf. is used for the production of nylon. Information on toxicity to human beings is fragmentary. Acute exposure is characterized by irritation of the eyes, nose, and throat. In two persons, drowsiness and renal impairment were found; Like cyclohexanol, cyclohexanone is not carcinogenic and is only moderately toxic, with a TLV of 25 ppm for the vapor. It is an irritant.; The great majority of cyclohexanone is consumed in the production of precursors to Nylon 66 and Nylon 6. About half of the worlds supply is converted to adipic acid, one of two precursors for nylon 66. For this application, the KA oil (see above) is oxidized with nitric acid. The other half of the cyclohexanone supply is converted to the oxime. In the presence of sulfuric acid catalyst, the oxime rearranges to caprolactam, a precursor to nylon 6:; however, there were embryotoxic effects and influence on reproduction Cyclohexanone is well absorbed through the skin, respiratory tract, and alimentary tract. The main metabolic pathway leads to cyclohexanol, which is excreted in urine coupled with glucuronic acid. A high correlation was found between the concentration of cyclohexanone in the working environment and its concentration in urine. Cyclohexanone is formed from the hydrocarbons cyclohexane and 1-, 2-, and 3-hexanol. A patients case report documents the development of anosmia (an olfactory disorder) and rhinitis caused by occupational exposure to organic solvents, including cyclohexanone (PMID: 10476412, 16925936, 16477465); however, these workers were also exposed to other compounds. Hepatic disorders were found in a group of workers exposed for over five years. In animals, cyclohexanone is characterized by relatively low acute toxicity (DL50 by intragastric administration is approx. 2 g/kg body wt.). Effects on the central nervous system (CNS) were found (narcosis), as well as irritation of the eyes and skin. Following multiple administration, effects were found in the CNS, liver, and kidneys as well as irritation of the conjunctiva. Mutagenic and genotoxic effects were found, but no teratogenic effects were detected Cyclohexanone is a colorless oily liquid with an odor resembling acetone and peppermint. Cyclohexanone is occasionally found as a volatile component of human urine. Biological fluids such as blood and urine have been shown to contain a large number of components, some of them volatiles (low boiling point) apparently present in all individuals, while others such are much more variable. In some cases differences up to an order of magnitude are observed. Although some of these changes may have dietary origins, others seem to be characteristic of the individual. Cyclohexanone is obtained through oxidation of cyclohexane or dehydrogenation of phenol. Approx. 95\\% of its manufacturing is used for the production of nylon. Information on toxicity to human beings is fragmentary. Acute exposure is characterized by irritation of the eyes, nose, and throat. In two persons, drowsiness and renal impairment were found; however, these workers were also exposed to other compounds. Hepatic disorders were found in a group of workers exposed for over five years. In animals, cyclohexanone is characterized by relatively low acute toxicity (DL50 by intragastric administration is approximately 2 g/kg body wt.). Effects on the central nervous system (CNS) were found (narcosis), as well as irritation of the eyes and skin. Following multiple administration, effects were found in the CNS, liver, and kidneys as well as irritation of the conjunctiva. Mutagenic and genotoxic effects were found, but no teratogenic effects were detected; however, there were embryotoxic effects and influence on reproduction Cyclohexanone is well absorbed through the skin, respiratory tract, and alimentary tract. The main metabolic pathway leads to cyclohexanol, which is excreted in urine coupled with glucuronic acid. A high correlation was found between the concentration of cyclohexanone in the working environment and its concentration in urine. Cyclohexanone is formed from the hydrocarbons cyclohexane and 1-, 2-, and 3-hexanol. A patients case report documents the development of anosmia (an olfactory disorder) and rhinitis caused by occupational exposure to organic solvents, including cyclohexanone (PMID:10476412, 16925936, 16477465).
3-Mercaptopyruvic acid
3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .
Acrolein
Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colourless liquid with a piercing, disagreeable, acrid smell. The smell of burnt fat (i.e. when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propylene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine. Acrolein is used as an etherification agent in the preparation of modified food starches. Acrolein is an herbicide and algicide used in water treatment. It is produced by microorganisms, e.g. Clostridium perfringens. Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde. Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages. The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a tolerable oral acrolein intake of 7.5 µg/day per kilogram of body weight. Although acrolein occurs in French fries, the levels are only a few micrograms per kilogram. Acrolein has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Present in fruit aromas, black tea, carrot, cooked potato, cheeses, white wine, hydrolyzed soy protein, turkey, pork, beef fat and other foods. It is used as an etherification agent in the preparation of modified food starches. Herbicide and algicide used in water treatment. Production by microorganisms, e.g. Clostridium perfringens. 2-Propenal is found in many foods, some of which are napa cabbage, sacred lotus, devilfish, and garlic.
Thiocysteine
The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).
(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid
(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid, also known as Hepoxilin a3 or 8-EH-2, is classified as a member of the Hepoxilins. Hepoxilins are eicosanoids containing an oxirane group attached to the fatty acyl chain. (5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid is considered to be practically insoluble (in water) and acidic
(+)-1(10),4-Cadinadiene
Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag
Mibefradil
C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Pancuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant
Glucoputranjivin
An alkylglucosinolic acid that consists of 1-thio-beta-D-glucopyranose attached to a 2-methyl-N-(sulfooxy)propanimidoyl group at the anomeric sulfur.
Resiniferatoxin
Resiniferatoxin is a heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). It has a role as a TRPV1 agonist, a plant metabolite, a neurotoxin and an analgesic. It is a diterpenoid, an ortho ester, a tertiary alpha-hydroxy ketone, a member of phenols, a monomethoxybenzene, an organic heteropentacyclic compound, a carboxylic ester and an enone. Resiniferatoxin (RTX) is a naturally occurring, ultrapotent capsaicin analog that activates the vanilloid receptor in a subpopulation of primary afferent sensory neurons involved in nociception (the transmission of physiological pain). Resiniferatoxin is a natural product found in Euphorbia resinifera and Euphorbia unispina with data available. Resiniferatoxin is a naturally occurring capsaicin analog found in the latex of the cactus Euphorbia resinifera with analgesic activity. Resiniferatoxin (RTX) binds to and activates the transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the plasma membrane of primary afferent sensory neurons. This increases the permeability to cations, and leads to an influx of calcium and sodium ions. This results in membrane depolarization, causing an irritant effect, followed by desensitization of the sensory neurons thereby inhibiting signal conduction in afferent pain pathways and causing analgesia. TRPV1, a member of the transient receptor potential channel (TRP) superfamily, is a heat- and chemo-sensitive calcium/sodium ion channel that is selectively expressed in a subpopulation of pain-sensing primary afferent neurons. A heteropentacyclic compound found in Euphorbia poissonii with molecular formula C37H40O9. It is an agonist of the transient receptor potential cation channel subfamily V member 1 (TrpV1). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Perlolyrine
Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc
Nanafrocin
A pyranonaphthoquinone antibiotic from strain OS-3966 of Streptomyces rosa var. notoensis. C254 - Anti-Infective Agent > C514 - Antifungal Agent C254 - Anti-Infective Agent > C258 - Antibiotic
1'-Acetoxychavicol
1-Acetoxychavicol is found in herbs and spices. 1-Acetoxychavicol is a constituent of Acorus calamus (sweet flag). Constituent of Acorus calamus (sweet flag). 1-Acetoxychavicol is found in herbs and spices and root vegetables.
1-(4-Hydroxy-3-methoxyphenyl)-3-decanone
1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is found in alcoholic beverages. 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is from grains of paradise (Amomum melegueta) and ginger (Zingiber officinale).Paradol is the active flavor constituent of the seeds of Guinea pepper (Aframomum melegueta). The seed is also known as Grains of paradise. Paradol has been found to have antioxidative and antitumor promoting effects. It is used in flavors as an essential oil to give spiciness. (Wikipedia [6]-Paradol is a member of phenols, a ketone and a monomethoxybenzene. Paradol is a natural product found in Aframomum angustifolium, Aframomum melegueta, and Zingiber officinale with data available. From grains of paradise (Amomum melegueta) and ginger (Zingiber officinale) Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.
Peimine
Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.
2-Pinen-10-ol
2-Pinen-10-ol is found in citrus. 2-Pinen-10-ol is a flavouring ingredient. 2-Pinen-10-ol is present in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foodstuffs (±)-Myrtenol is a flavouring ingredient. It is found in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foods.
2-Ethylphenol
2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .
Bis(1-methylethyl) hexanedioate
Bis(1-methylethyl) hexanedioate is a food additive [Goodscents]. Food additive [Goodscents]
Myxothiazol
A 2,4-bi-1,3-thiazole substituted at the 4-position with a (1E,3S,4R,5E)-7-amino-3,5-dimethoxy-4-methyl-7-oxohepta-1,5-dien-1-yl] group and at the 2-position with a (2S,3E,5E)-7-methylocta-3,5-dien-2-yl group. It is an inhibitor of coenzyme Q - cytochrome c reductase. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors
N,N-Diethylglycine
An N-alkyl glycine that is glycine in which the amino group is replaced by a diethylnitrilo group.
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
Lipoic_acid
Lipoic acid is a heterocyclic thia fatty acid comprising pentanoic acid with a 1,2-dithiolan-3-yl group at the 5-position. It has a role as a fundamental metabolite and a geroprotector. It is a member of dithiolanes, a heterocyclic fatty acid and a thia fatty acid. It is functionally related to an octanoic acid. It is a conjugate acid of a lipoate. lipoate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thioctic acid is a natural product found in Arabidopsis thaliana, Trypanosoma brucei, and other organisms with data available. Alpha-Lipoic Acid is a naturally occurring micronutrient, synthesized in small amounts by plants and animals (including humans), with antioxidant and potential chemopreventive activities. Alpha-lipoic acid acts as a free radical scavenger and assists in repairing oxidative damage and regenerates endogenous antioxidants, including vitamins C and E and glutathione. This agent also promotes glutathione synthesis. In addition, alpha-lipoic acid exerts metal chelating capacities and functions as a cofactor in various mitochondrial enzyme complexes involved in the decarboxylation of alpha-keto acids. An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
p-Menthan-3-ol
P-menthan-3-ol is any secondary alcohol that is one of the eight possible diastereoisomers of 5-methyl-2-(propan-2-yl)cyclohexan-1-ol. It has a role as a volatile oil component. It is a p-menthane monoterpenoid and a secondary alcohol. Menthol is a natural product found in Chaerophyllum macrospermum, Mesosphaerum sidifolium, and other organisms with data available. Menthol is an organic compound made synthetically or obtained from peppermint or mint oils with flavoring and local anesthetic properties. When added to pharmaceuticals and foods, menthol functions as a fortifier for peppermint flavors. It also has a counterirritant effect on skin and mucous membranes, thereby producing a local analgesic or anesthetic effect. Menthol is a metabolite found in or produced by Saccharomyces cerevisiae. A monoterpene cyclohexanol produced from mint oils. p-Menthan-3-ol is found in herbs and spices. p-Menthan-3-ol is found in many essential oils.Menthol is an organic compound made synthetically or obtained from peppermint or other mint oils. Natural menthol exists as one pure stereoisomer, nearly always the (1R,2S,5R) form ((-)-menthol). There are 8 possible stereoisomers. (Wikipedia Any secondary alcohol that is one of the eight possible diastereoisomers of 5-methyl-2-(propan-2-yl)cyclohexan-1-ol. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D003879 - Dermatologic Agents > D000982 - Antipruritics Found in many essential oils DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1].
Apocynin
Apocynin is an aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an antirheumatic drug, a peripheral nervous system drug, an EC 1.6.3.1. [NAD(P)H oxidase (H2O2-forming)] inhibitor and a plant metabolite. It is a member of acetophenones, a methyl ketone and an aromatic ketone. Acetovanillone has been used in trials studying the treatment of Bronchial Asthma and Chronic Obstructive Pulmonary Disease. Acetovanillone is a natural product found in Iris tectorum, Apocynum cannabinum, and other organisms with data available. Acetovanillone is a metabolite found in or produced by Saccharomyces cerevisiae. An aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
Pulegone
Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
7,8,17-trihydroxy-4,9,11,13,15,19-docosahexaenoic acid
D-Camphor
(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
gabapentin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2561
Shogaol
[6]-Shogaol is a monomethoxybenzene, a member of phenols and an enone. Shogaol is a natural product found in Flueggea suffruticosa, Zingiber zerumbet, and other organisms with data available. See also: Ginger (part of). C1907 - Drug, Natural Product > C28269 - Phytochemical D009676 - Noxae > D009153 - Mutagens Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
Vanillin
CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Thioctic acid
CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3996; ORIGINAL_PRECURSOR_SCAN_NO 3992 A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4005; ORIGINAL_PRECURSOR_SCAN_NO 4002 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3980; ORIGINAL_PRECURSOR_SCAN_NO 3976 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3993; ORIGINAL_PRECURSOR_SCAN_NO 3989 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4012; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3990; ORIGINAL_PRECURSOR_SCAN_NO 3988 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.890 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.888 α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Dihydrodaidzein
Dihydrodaidzein is one of the most prominent dietary phytoestrogens. Dietary phytoestrogens have been implicated in the prevention of chronic diseases (PMID:12270199). Dihydrodaidzein is a biomarker for the consumption of soy beans and other soy products. Dihydrodaidzein is one of the most prominent dietary phytoestrogens.
Spectrum5_000309
Pinosylvin methyl ether is a stilbenoid. Pinosylvin methyl ether is a natural product found in Alpinia hainanensis, Pinus contorta var. latifolia, and other organisms with data available.
(+)-Neomenthol
D,l-menthol is a white crystalline solid with a peppermint odor and taste. (NTP, 1992) (+)-menthol is a p-menthan-3-ol which has (1S,2R,5S)-stereochemistry. In contrast to (-)-menthol, the (+)-enantiomer occurs only rarely in nature. It is an enantiomer of a (-)-menthol. (+)-Menthol is a natural product found in Diaporthe amygdali with data available. A p-menthan-3-ol which has (1S,2R,5S)-stereochemistry. In contrast to (-)-menthol, the (+)-enantiomer occurs only rarely in nature. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D003879 - Dermatologic Agents > D000982 - Antipruritics (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1].
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
gabapentin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1678 CONFIDENCE standard compound; INTERNAL_ID 4114 CONFIDENCE Reference Standard (Level 1)
etodolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308
Diphenoxylate
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
oxaprozin
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Oxaprozin is an orally active and potent COX inhibitor, with IC50 values of 2.2 μM for human platelet COX-1 and and 36 μM for IL-1-stimulated human synovial cell COX-2, respectively. Oxaprozin also inhibits the activation of NF-κB. Oxaprozin induces cell apoptosis. Oxaprozin shows anti-inflammatory activity. Oxaprozin-mediated inhibition of the Akt/IKK/NF-κB pathway contributes to its anti-inflammatory properties[1][2].
prilocaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Sabinene
Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
10-gingerol
10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].
3-mercaptopyruvic acid
A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.
mepivacaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Phenelzine
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor
sumatriptan
N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Sumatriptan (GR 43175) is an orally active 5-HT1 receptor agonist with IC50s of 7.3 nm, 9.3nm and 17.8 nm for 5-HT1D, 5-HT1B and 5-HT1F receptors, respectively. Sumatriptan can be used for migraine headache research[1][2][3][4].
terazosin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
Fusarenon-X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
capsiate
Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
Rhodinal
Citronellal is a monoterpenea from the essential oils in various aromatic species of plants, with depressant, and antinociceptive properties. Citronellal attenuates mechanical nociception, mediated in part by the NO-cGMP-ATP-sensitive K? channel pathway[1][2]. Citronellal is a monoterpenea from the essential oils in various aromatic species of plants, with depressant, and antinociceptive properties. Citronellal attenuates mechanical nociception, mediated in part by the NO-cGMP-ATP-sensitive K? channel pathway[1][2].
Resolvin D2
A member of the class of resolvins that is (4Z,8E,10Z,12E,14E,19Z)-docosahexaenoic acid carrying three hydroxy substituents at positions 7, 16 and 17 (the 7S,16R,17S-stereoisomer).
FOH 8:0
D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].
(+)-DELTA-CADINENE
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).
apocynin
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].
4-ETHYLPHENOL
A member of the class of phenols carrying an ethyl substituent at position 4. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine.
473-15-4
Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
α-Pinene
A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].
Atractylodin
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Antioxine
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
Zimco
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Safranal
Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
cuminal
Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
Cinnamal
D020011 - Protective Agents > D016587 - Antimutagenic Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D000970 - Antineoplastic Agents trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2]. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].
Ferulaldehyde
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
Perlolyrine
1,4-Cineol
1,4-Cineole is a widely distributed, natural, oxygenated monoterpene[1]. 1,4-Cineole, present in Rhododendron anthopogonoides, activates both human TRPM8 and human TRPA1[2]. 1,4-Cineole is a widely distributed, natural, oxygenated monoterpene[1]. 1,4-Cineole, present in Rhododendron anthopogonoides, activates both human TRPM8 and human TRPA1[2].
zingerone
Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].
Axsain
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].
Paradol
Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.
Obepin
4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
AI3-26172
Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Gingerol
(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].
Mustardseed Oil
An isothiocyanate with the formula CH2=CHCH2N=C=S. A colorless oil with boiling point 152degreeC, it is responsible for the pungent taste of mustard, horseradish, and wasabi. D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives
METHYL ANTHRANILATE
A benzoate ester that is the methyl ester of anthranilic acid.
2-Ethylhexanol
A primary alcohol that is hexan-1-ol substituted by an ethyl group at position 2.
Polycyclohexanone
A cyclic ketone that consists of cyclohexane bearing a single oxo substituent.
Pancuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] N-sulfooxybut-3-enimidothioate
Galangal acetate
An acetate ester that is chavicol acetate substituted by an acetoxy group at position 1.