Chemical Formula: C27H39NO3

Chemical Formula C27H39NO3

Found 22 metabolite its formula value is C27H39NO3

Iervin

Jervine

C27H39NO3 (425.29297840000004)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2330 Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   

N-Docosahexaenoyl Proline

1-(docosa-4,7,10,13,16,19-hexaenoyl)pyrrolidine-2-carboxylic acid

C27H39NO3 (425.29297840000004)


N-docosahexaenoyl proline belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Proline. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Proline is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Proline is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Jervine

5-hydroxy-2,3,6,15-tetramethyl-3a,4,5,6,7,7a-hexahydro-3H-spiro[furo[3,2-b]pyridine-2,14-tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadecane]-7,15-dien-17-one

C27H39NO3 (425.29297840000004)


   

Jervine

(2R,3S,3R,3aS,6S,6aS,6bS,7aR,11aS,1 1bR)-2,3,3a,4,4,5,6,6,6a,6b,7,7,7a,8,11a,11b-hexad ecahydro-3-hydroxy-3,6,10,11b-tetramethyl-Spiro[9H -benzo[a]fluorene-9,2(3H)-furo[3,2-b]pyridin]-11(1 H)-one

C27H39NO3 (425.29297840000004)


Jervine is a member of piperidines. Jervine is a natural product found in Veratrum stamineum, Veratrum grandiflorum, and other organisms with data available. Jervine is a steroidal alkaloid with molecular formula C27H39NO3 which is derived from the Veratrum plant genus. Similar to cyclopamine, which also occurs in the Veratrum genus, it is a teratogen implicated in birth defects when consumed by animals during a certain period of their gestation. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2]. Jervine (11-Ketocyclopamine) is a potent Hedgehog (Hh) inhibitor with an IC50 of 500-700 nM[1]. Jervine is a natural teratogenic sterodial alkaloid from rhizomes of Veratrum nigrum. Jervine has anti-inflammatory and antioxidant properties[2].

   
   
   
   
   

Brachystamide D|brachystamide-D|N-isobutyl-16-(3,4-methylenedioxyphenyl)-2E,4E,15E-hexadecatrienamide|pergumidiene

Brachystamide D|brachystamide-D|N-isobutyl-16-(3,4-methylenedioxyphenyl)-2E,4E,15E-hexadecatrienamide|pergumidiene

C27H39NO3 (425.29297840000004)


   

(23R)-17,23-Epoxy-3beta-hydroxy-(13alphaH(?)-veratra-5,12(14)-dien-11-on|(23R)-17,23-epoxy-3beta-hydroxy-(13alphaH(?)-veratra-5,12(14)-dien-11-one|jervine|jervine sulfate

(23R)-17,23-Epoxy-3beta-hydroxy-(13alphaH(?)-veratra-5,12(14)-dien-11-on|(23R)-17,23-epoxy-3beta-hydroxy-(13alphaH(?)-veratra-5,12(14)-dien-11-one|jervine|jervine sulfate

C27H39NO3 (425.29297840000004)


   

VERALODINE

NCGC00160229-01!VERALODINE

C27H39NO3 (425.29297840000004)


   

C27H39NO3_(3beta,9xi,22S,23R)-3-Hydroxy-17,23-epoxyveratraman-11-one

NCGC00380997-01_C27H39NO3_(3beta,9xi,22S,23R)-3-Hydroxy-17,23-epoxyveratraman-11-one

C27H39NO3 (425.29297840000004)


   

(3S,3R,3aS,6S,6aS,6bS,7aR,9R,11bR)-3-hydroxy-3,6,10,11b-tetramethylspiro[1,2,3,4,6,6a,6b,7,8,11a-decahydrobenzo[a]fluorene-9,2-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridine]-11-one

(3S,3R,3aS,6S,6aS,6bS,7aR,9R,11bR)-3-hydroxy-3,6,10,11b-tetramethylspiro[1,2,3,4,6,6a,6b,7,8,11a-decahydrobenzo[a]fluorene-9,2-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridine]-11-one

C27H39NO3 (425.29297840000004)


   

NA 27:8;O

(5E,7E)-8-[(3aS,4R,5R,7aR)-4-[(1Z,3E)-5-oxo-5-(2-methyl-butylamino)-penta-1,3-dienyl]-2,3,3a,4,5,7a-hexahydro-1H-inden-5-yl]octa-5,7-dienoic acid

C27H39NO3 (425.29297840000004)


   

1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]pyrrolidine-2-carboxylic acid

1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]pyrrolidine-2-carboxylic acid

C27H39NO3 (425.29297840000004)


   

3,9beta-Hydroxy-22alpha,23alpha-epoxy-9(10)-seco-solanida-1,3,5(10)-triene, (rel)-

3,9beta-Hydroxy-22alpha,23alpha-epoxy-9(10)-seco-solanida-1,3,5(10)-triene, (rel)-

C27H39NO3 (425.29297840000004)


A natural product found in Solanum campaniforme.

   

(1R,2S,6R,9S,10R,11R,14R,16S,23R,24S)-16-hydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.02,11.04,9.015,24.018,23]pentacos-18-ene-3,20-dione

(1R,2S,6R,9S,10R,11R,14R,16S,23R,24S)-16-hydroxy-6,10,23-trimethyl-4-azahexacyclo[12.11.0.02,11.04,9.015,24.018,23]pentacos-18-ene-3,20-dione

C27H39NO3 (425.29297840000004)