6-Thioguanosine monophosphate (BioDeep_00000011308)

 

Secondary id: BioDeep_00001876026

human metabolite Endogenous blood metabolite Chemicals and Drugs


代谢物信息卡片


{[(2R,3S,4R,5R)-5-(2-amino-6-sulfanylidene-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

化学式: C10H14N5O7PS (379.0352)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 40.5%

分子结构信息

SMILES: C1=NC2=C(N1C3C(C(C(O3)COP(=O)(O)O)O)O)NC(=NC2=S)N
InChI: InChI=1S/C10H14N5O7PS/c11-10-13-7-4(8(24)14-10)12-2-15(7)9-6(17)5(16)3(22-9)1-21-23(18,19)20/h2-3,5-6,9,16-17H,1H2,(H2,18,19,20)(H3,11,13,14,24)/t3-,5-,6-,9-/m1/s1

描述信息

6-Thioguanosine monophosphate is a metabolite of tioguanine. Tioguanine, formerly thioguanine, is a drug that is used in the treatment of cancer. It belongs to the family of drugs called antimetabolites. It is a guanine analog. (Wikipedia) Norcodeine

同义名列表

9 个代谢物同义名

{[(2R,3S,4R,5R)-5-(2-amino-6-sulfanylidene-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid; [(2R,3S,4R,5R)-5-(2-amino-6-sulfanylidene-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxyphosphonic acid; 6-Thioguanosine monophosphoric acid; 6-Thioguanosine monophosphate; 6-Thioguanosine-5-phosphate; 6-Thioguanine nucleotide; 6-TG Nucleotide; 6-Thio-GMP; 6-Thioguanosine monophosphate



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

6 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(5)

PharmGKB(1)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ABCB1, FKBP4, GSTA2, GSTM1, IMPDH1, IMPDH2, ITPA, PNPT1, TPMT, TYMS, XDH
Peripheral membrane protein 1 PNPT1
Endosome membrane 1 ABCC5
Endoplasmic reticulum membrane 1 PNPT1
Nucleus 5 ADK, FKBP4, IMPDH1, IMPDH2, TYMS
cytosol 14 ADK, FKBP4, GPT, GSTA1, GSTA2, GSTM1, IMPDH1, IMPDH2, ITPA, NUDT15, PNPT1, TPMT, TYMS, XDH
nucleoplasm 3 ADK, FKBP4, ITPA
Cell membrane 4 ABCB1, ABCC1, SLC29A1, TNF
Cell projection, axon 1 FKBP4
Cytoplasmic granule 1 ABCC5
Multi-pass membrane protein 5 ABCB1, ABCC1, ABCC5, SLC29A1, SLC7A5P1
cell surface 2 ABCB1, TNF
mitochondrial inner membrane 1 TYMS
neuronal cell body 2 FKBP4, TNF
postsynapse 1 SLC29A1
Cytoplasm, cytosol 2 FKBP4, IMPDH2
Presynapse 1 SLC29A1
plasma membrane 6 ABCB1, ABCC1, ABCC5, ADK, SLC29A1, TNF
Membrane 6 ABCB1, ABCC1, ABCC5, IMPDH2, SLC29A1, SLC7A5P1
apical plasma membrane 4 ABCB1, ABCC1, ABCC5, SLC29A1
basolateral plasma membrane 3 ABCC1, ABCC5, SLC29A1
extracellular exosome 7 ABCB1, ABCC1, FKBP4, GPT, GSTA1, GSTA2, IMPDH2
extracellular space 2 TNF, XDH
perinuclear region of cytoplasm 1 FKBP4
mitochondrion 3 FKBP4, PNPT1, TYMS
protein-containing complex 1 FKBP4
intracellular membrane-bounded organelle 1 ITPA
extracellular region 3 IMPDH1, IMPDH2, TNF
Mitochondrion matrix 2 PNPT1, TYMS
mitochondrial matrix 2 PNPT1, TYMS
external side of plasma membrane 1 TNF
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 3 ABCB1, ABCC5, SLC29A1
Mitochondrion inner membrane 1 TYMS
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 FKBP4
microtubule 1 FKBP4
Peroxisome 1 XDH
sarcoplasmic reticulum 1 XDH
peroxisomal membrane 1 IMPDH2
Mitochondrion intermembrane space 1 PNPT1
mitochondrial intermembrane space 1 PNPT1
lateral plasma membrane 2 ABCC1, SLC29A1
axonal growth cone 1 FKBP4
phagocytic cup 1 TNF
Basolateral cell membrane 2 ABCC5, SLC29A1
intercellular bridge 1 GSTM1
basal plasma membrane 1 ABCC1
ficolin-1-rich granule lumen 2 IMPDH1, IMPDH2
secretory granule lumen 2 IMPDH1, IMPDH2
Golgi apparatus lumen 1 ABCC5
Golgi lumen 1 ABCC5
azurophil granule lumen 1 IMPDH1
[Isoform 2]: Cytoplasm 1 ADK
[Isoform 1]: Nucleus 1 ADK
external side of apical plasma membrane 1 ABCB1
ribosome 1 PNPT1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalytic complex 1 PNPT1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
mitochondrial degradosome 1 PNPT1


文献列表

  • Prashanthi Kandavel, Sally J Eder, Noah E Newman, Akbar K Waljee, Emily P Whitfield, Jeremy Adler. Mean Corpuscular Volume to White Blood Cell Ratio for Thiopurine Monitoring in Pediatric Inflammatory Bowel Disease. Journal of pediatric gastroenterology and nutrition. 2019 07; 69(1):88-94. doi: 10.1097/mpg.0000000000002296. [PMID: 30747813]
  • Julian Essmann, Carsten Keil, Olesya Unruh, Anita Otte, Michael P Manns, Oliver Bachmann. Fecal calprotectin is significantly linked to azathioprine metabolite concentrations in Crohn's disease. European journal of gastroenterology & hepatology. 2019 01; 31(1):99-108. doi: 10.1097/meg.0000000000001262. [PMID: 30212402]
  • Xindi Li, Shenghui Mei, Xiaoqing Gong, Heng Zhou, Li Yang, Anna Zhou, Yonghong Liu, Xingang Li, Zhigang Zhao, Xinghu Zhang. Relationship between Azathioprine metabolites and therapeutic efficacy in Chinese patients with neuromyelitis optica spectrum disorders. BMC neurology. 2017 Jul; 17(1):130. doi: 10.1186/s12883-017-0903-5. [PMID: 28679367]
  • D Zochowska, J Zegarska, E Hryniewiecka, E Samborowska, R Jazwiec, W Tszyrsznic, A Borowiec, M Dadlez, L Paczek. Determination of Concentrations of Azathioprine Metabolites 6-Thioguanine and 6-Methylmercaptopurine in Whole Blood With the Use of Liquid Chromatography Combined With Mass Spectrometry. Transplantation proceedings. 2016 Jun; 48(5):1836-9. doi: 10.1016/j.transproceed.2016.01.084. [PMID: 27496503]
  • Andres J Yarur, Maddie J Kubiliun, Frank Czul, Daniel A Sussman, Maria A Quintero, Anjali Jain, Katherine A Drake, Scott I Hauenstein, Steven Lockton, Amar R Deshpande, Jamie S Barkin, Sharat Singh, Maria T Abreu. Concentrations of 6-thioguanine nucleotide correlate with trough levels of infliximab in patients with inflammatory bowel disease on combination therapy. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2015 Jun; 13(6):1118-24.e3. doi: 10.1016/j.cgh.2014.12.026. [PMID: 25562796]
  • Julienne Brackett, Eric S Schafer, Daniel H Leung, M Brooke Bernhardt. Use of allopurinol in children with acute lymphoblastic leukemia to reduce skewed thiopurine metabolism. Pediatric blood & cancer. 2014 Jun; 61(6):1114-7. doi: 10.1002/pbc.24913. [PMID: 24376133]
  • Y González-Lama, F Bermejo, A López-Sanromán, V García-Sánchez, M Esteve, J L Cabriada, A G McNicholl, R Pajares, F Casellas, O Merino, D Carpio, M I Vera, C Muñoz, M Calvo, L M Benito, L Bujanda, F J García-Fernández, E Ricart, D Ginard, M Velasco, J A Carneros, N Manceñido, M Calvo, A Algaba, C Froilan, C Cara, J Maté, L Abreu, J P Gisbert. Thiopurine methyl-transferase activity and azathioprine metabolite concentrations do not predict clinical outcome in thiopurine-treated inflammatory bowel disease patients. Alimentary pharmacology & therapeutics. 2011 Sep; 34(5):544-54. doi: 10.1111/j.1365-2036.2011.04756.x. [PMID: 21722149]
  • Sofie Haglund, Svante Vikingsson, Jan Söderman, Ulf Hindorf, Christer Grännö, Margareta Danelius, Sally Coulthard, Curt Peterson, Sven Almer. The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease. Therapeutic drug monitoring. 2011 Apr; 33(2):200-8. doi: 10.1097/ftd.0b013e31820b42bb. [PMID: 21311411]
  • Ahmed F Hawwa, Jeff S Millership, Paul S Collier, Koen Vandenbroeck, Anthony McCarthy, Sid Dempsey, Carole Cairns, John Collins, Colin Rodgers, James C McElnay. Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. British journal of clinical pharmacology. 2008 Oct; 66(4):517-28. doi: 10.1111/j.1365-2125.2008.03248.x. [PMID: 18662289]
  • Sjofn Gunnarsdottir, Marian Rucki, Lynette A Phillips, Karen M Young, Adnan A Elfarra. The glutathione-activated thiopurine prodrugs trans-6-(2-acetylvinylthio)guanine and cis-6-(2-acetylvinylthio)purine cause less in vivo toxicity than 6-thioguanine after single- and multiple-dose regimens. Molecular cancer therapeutics. 2002 Nov; 1(13):1211-20. doi: NULL. [PMID: 12479702]
  • O Dewit, R Vanheuverzwyn, J P Desager, Y Horsmans. Interaction between azathioprine and aminosalicylates: an in vivo study in patients with Crohn's disease. Alimentary pharmacology & therapeutics. 2002 Jan; 16(1):79-85. doi: 10.1046/j.1365-2036.2002.01156.x. [PMID: 11856081]
  • T Dervieux, Y Médard, V Baudouin, A Maisin, D Zhang, F Broly, C Loirat, E Jacqz-Aigrain. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. British journal of clinical pharmacology. 1999 Dec; 48(6):793-800. doi: 10.1046/j.1365-2125.1999.00087.x. [PMID: 10594482]
  • S Bergan, H E Rugstad, O Bentdal, G Sødal, A Hartmann, T Leivestad, O Stokke. Monitored high-dose azathioprine treatment reduces acute rejection episodes after renal transplantation. Transplantation. 1998 Aug; 66(3):334-9. doi: 10.1097/00007890-199808150-00010. [PMID: 9721802]
  • N Erb, D O Harms, G Janka-Schaub. Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer chemotherapy and pharmacology. 1998; 42(4):266-72. doi: 10.1007/s002800050816. [PMID: 9744770]
  • J Welch, L Lennard, G C Morton, J S Lilleyman. Pharmacokinetics of mercaptopurine: plasma drug and red cell metabolite concentrations after an oral dose. Therapeutic drug monitoring. 1997 Aug; 19(4):382-5. doi: 10.1097/00007691-199708000-00003. [PMID: 9263376]
  • S Bergan, H E Rugstad, B Klemetsdal, T Giverhaug, O Bentdal, G Sødal, A Hartmann, J Aarbakke, O Stokke. Possibilities for therapeutic drug monitoring of azathioprine: 6-thioguanine nucleotide concentrations and thiopurine methyltransferase activity in red blood cells. Therapeutic drug monitoring. 1997 Jun; 19(3):318-26. doi: 10.1097/00007691-199706000-00013. [PMID: 9200774]
  • E Schütz, J Gummert, V W Armstrong, F W Mohr, M Oellerich. Azathioprine pharmacogenetics: the relationship between 6-thioguanine nucleotides and thiopurine methyltransferase in patients after heart and kidney transplantation. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies. 1996 Mar; 34(3):199-205. doi: 10.1515/cclm.1996.34.3.199. [PMID: 8721407]
  • S Bergan, H E Rugstad, O Bentdal, G Sødal, A Hartmann, B Klemetsdal, J Aarbakke, O Stokke. Optimization of azathioprine therapy by measuring 6-thioguanine nucleotides and methylated mercaptopurine in renal allograft recipients. Transplantation proceedings. 1995 Dec; 27(6):3426. doi: NULL. [PMID: 8540033]
  • S Bergan, H E Rugstad, O Bentdal, O Stokke. Monitoring of azathioprine treatment by determination of 6-thioguanine nucleotide concentrations in erythrocytes. Transplantation. 1994 Oct; 58(7):803-8. doi: 10.1097/00007890-199410150-00010. [PMID: 7940715]
  • L Lennard, J A Van Loon, R M Weinshilboum. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clinical pharmacology and therapeutics. 1989 Aug; 46(2):149-54. doi: 10.1038/clpt.1989.119. [PMID: 2758725]
  • L Lennard, S Thomas, C I Harrington, J L Maddocks. Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. The British journal of dermatology. 1985 Dec; 113(6):723-9. doi: 10.1111/j.1365-2133.1985.tb02408.x. [PMID: 3913458]
  • L Lennard, C B Brown, M Fox, J L Maddocks. Azathioprine metabolism in kidney transplant recipients. British journal of clinical pharmacology. 1984 Nov; 18(5):693-700. doi: 10.1111/j.1365-2125.1984.tb02531.x. [PMID: 6391532]