5,6-Epoxy-8,11,14-eicosatrienoic acid (BioDeep_00000004027)
Secondary id: BioDeep_00001871938
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C20H32O3 (320.23513219999995)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 0.06%
分子结构信息
SMILES: C(/C=C\CC1OC1CCCC(=O)O)/C=C\C/C=C\CCCCC
InChI: InChI=1S/C20H32O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-15-18-19(23-18)16-14-17-20(21)22/h6-7,9-10,12-13,18-19H,2-5,8,11,14-17H2,1H3,(H,21,22)
描述信息
5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113) [HMDB]
5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113).
同义名列表
23 个代谢物同义名
5,6-Epoxy-8,11,14-eicosatrienoic acid, (2alpha,3alpha(2Z,5Z,8Z))-isomer; 4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoic acid; (±)5(6)-epoxy-8Z,11Z,14Z-eicosatrienoic acid; (8Z,11Z,14Z)-5,6-Epoxyeicosa-8,11,14-trienoic acid; (8Z,11Z,14Z)-5,6-Epoxyicosa-8,11,14-trienoic acid; (8Z,11Z,14Z)-5,6-Epoxyeicosa-8,11,14-trienoate; (8Z,11Z,14Z)-5,6-Epoxyicosa-8,11,14-trienoate; 5,6-epoxy-8Z,11Z,14Z-eicosatrienoic acid; 5,6-Epoxy-8Z,11Z,14Z-icosatrienoic acid; 5(6)-Oxido-8,11,14-eicosatrienoic acid; 5,6-Epoxy-8,11,14-eicosatrienoic acid; 5,6-Epoxy-8,11,14-icosatrienoic acid; 5,6-Epoxy-8Z,11Z,14Z-eicosatrienoate; 5,6-Epoxy-8Z,11Z,14Z-icosatrienoate; 5,6-Epoxy-8,11,14-eicosatrienoate; 5,6-Epoxy-8,11,14-icosatrienoate; 5(6)-Oxidoeicosatrienoic acid; 5(6)Epoxyeicosatrienoic acid; (±)5(6)-EET; (+/-)5,6-EpETrE; 5,6-EpETrE; FA 20:4;O; 5,6-EET
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:34450
- KEGG: C14768
- PubChem: 5283202
- PubChem: 1778
- HMDB: HMDB0002190
- Metlin: METLIN3851
- ChEMBL: CHEMBL1893588
- LipidMAPS: LMFA03080002
- foodb: FDB022895
- chemspider: 4446323
- CAS: 81246-84-6
- CAS: 87173-80-6
- PMhub: MS000014730
- PubChem: 17395766
- NIKKAJI: J185.459C
- RefMet: 5,6-EpETrE
- LOTUS: LTS0192456
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
112 个相关的代谢反应过程信息。
Reactome(65)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET):
AA + H+ + Oxygen + TPNH ⟶ 5,6-EET + H2O + TPN
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Nalin Singh, Anders Vik, Daniel B Lybrand, Christophe Morisseau, Bruce D Hammock. New Alkoxy- Analogues of Epoxyeicosatrienoic Acids Attenuate Cisplatin Nephrotoxicity In Vitro via Reduction of Mitochondrial Dysfunction, Oxidative Stress, Mitogen-Activated Protein Kinase Signaling, and Caspase Activation.
Chemical research in toxicology.
2021 12; 34(12):2579-2591. doi:
10.1021/acs.chemrestox.1c00347
. [PMID: 34817988] - John D Imig, Wojciech K Jankiewicz, Abdul H Khan. Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture.
Hypertension (Dallas, Tex. : 1979).
2020 07; 76(1):3-15. doi:
10.1161/hypertensionaha.120.13898
. [PMID: 32475311] - Theresa Aliwarga, Brianne S Raccor, Rozenn N Lemaitre, Nona Sotoodehnia, Sina A Gharib, Libin Xu, Rheem A Totah. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.
Free radical biology & medicine.
2017 11; 112(?):131-140. doi:
10.1016/j.freeradbiomed.2017.07.015
. [PMID: 28734877] - Amy A Rand, Bogdan Barnych, Christophe Morisseau, Tomas Cajka, Kin Sing Stephen Lee, Dipak Panigrahy, Bruce D Hammock. Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids.
Proceedings of the National Academy of Sciences of the United States of America.
2017 04; 114(17):4370-4375. doi:
10.1073/pnas.1616893114
. [PMID: 28396419] - Dorothee J Funk, Bernd L Sorg, Klaus Kopka, Heinz H Schmeiser. Epoxyeicosatrienoic acids (EETs) form adducts with DNA in vitro.
Prostaglandins & other lipid mediators.
2016 03; 123(?):63-7. doi:
10.1016/j.prostaglandins.2016.04.006
. [PMID: 27166927] - Quan-Fei Zhu, Yan-Hong Hao, Ming-Zhou Liu, Jiang Yue, Jian Ni, Bi-Feng Yuan, Yu-Qi Feng. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.
Journal of chromatography. A.
2015 Sep; 1410(?):154-63. doi:
10.1016/j.chroma.2015.07.100
. [PMID: 26253834] - Suzy Eryanni-Levin, Soliman Khatib, Reut Levy-Rosenzvig, Snait Tamir, Andrea Szuchman-Sapir. 5,6-δ-DHTL, a stable metabolite of arachidonic acid, is a potential substrate for paraoxonase 1.
Biochimica et biophysica acta.
2015 Sep; 1851(9):1118-22. doi:
10.1016/j.bbalip.2015.04.008
. [PMID: 25958017] - V Lamounier-Zepter, C Look, W-H Schunck, I Schlottmann, C Woischwill, S R Bornstein, A Xu, I Morano. Interaction of epoxyeicosatrienoic acids and adipocyte fatty acid-binding protein in the modulation of cardiomyocyte contractility.
International journal of obesity (2005).
2015 May; 39(5):755-61. doi:
10.1038/ijo.2014.193
. [PMID: 25370574] - Timo Frömel, Karin Kohlstedt, Rüdiger Popp, Xiaoke Yin, Khader Awwad, Eduardo Barbosa-Sicard, Anita C Thomas, Ralf Lieberz, Manuel Mayr, Ingrid Fleming. Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques.
Basic research in cardiology.
2013 Jan; 108(1):319. doi:
10.1007/s00395-012-0319-8
. [PMID: 23224081] - Aviva Gamliel-Lazarovich, Zaid Abassi, Soliman Khatib, Hagai Tavori, Jacob Vaya, Michael Aviram, Shlomo Keidar. Paraoxonase1 deficiency in mice is associated with hypotension and increased levels of 5,6-epoxyeicosatrienoic acid.
Atherosclerosis.
2012 May; 222(1):92-8. doi:
10.1016/j.atherosclerosis.2012.01.047
. [PMID: 22365750] - Yuehong Li, Hideomi Yamada, Yoshihiro Kita, Masashi Suzuki, Yoko Endo, Shoko Horita, Osamu Yamazaki, Takao Shimizu, George Seki, Toshiro Fujita. Arachidonic acid metabolites inhibit the stimulatory effect of angiotensin II in renal proximal tubules.
Hypertension research : official journal of the Japanese Society of Hypertension.
2008 Dec; 31(12):2155-64. doi:
10.1291/hypres.31.2155
. [PMID: 19139605] - Jacqueline Fernandes, Ivan M Lorenzo, Yaniré N Andrade, Anna Garcia-Elias, Selma A Serra, José M Fernández-Fernández, Miguel A Valverde. IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid.
The Journal of cell biology.
2008 Apr; 181(1):143-55. doi:
10.1083/jcb.200712058
. [PMID: 18378772] - Natasha T Snider, Andrei M Kornilov, Ute M Kent, Paul F Hollenberg. Anandamide metabolism by human liver and kidney microsomal cytochrome p450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides.
The Journal of pharmacology and experimental therapeutics.
2007 May; 321(2):590-7. doi:
10.1124/jpet.107.119321
. [PMID: 17272674] - Joris Vriens, Grzegorz Owsianik, Annelies Janssens, Thomas Voets, Bernd Nilius. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4.
The Journal of biological chemistry.
2007 Apr; 282(17):12796-803. doi:
10.1074/jbc.m610485200
. [PMID: 17341586] - Nidhal Ben-Amor, Pedro C Redondo, Aghleb Bartegi, José A Pariente, Ginés M Salido, Juan A Rosado. A role for 5,6-epoxyeicosatrienoic acid in calcium entry by de novo conformational coupling in human platelets.
The Journal of physiology.
2006 Jan; 570(Pt 2):309-23. doi:
10.1113/jphysiol.2005.100800
. [PMID: 16308346] - J Vriens, G Owsianik, B Fisslthaler, M Suzuki, A Janssens, T Voets, C Morisseau, B D Hammock, I Fleming, R Busse, B Nilius. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium.
Circulation research.
2005 Oct; 97(9):908-15. doi:
10.1161/01.res.0000187474.47805.30
. [PMID: 16179585] - Uzzal Roy, Robert Joshua, Russell L Stark, Michael Balazy. Cytochrome P450/NADPH-dependent biosynthesis of 5,6-trans-epoxyeicosatrienoic acid from 5,6-trans-arachidonic acid.
The Biochemical journal.
2005 Sep; 390(Pt 3):719-27. doi:
10.1042/bj20050681
. [PMID: 15916533] - Ambra Pozzi, Ines Macias-Perez, Tristin Abair, Shouzuo Wei, Yan Su, Roy Zent, John R Falck, Jorge H Capdevila. Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids.
The Journal of biological chemistry.
2005 Jul; 280(29):27138-46. doi:
10.1074/jbc.m501730200
. [PMID: 15917237] - Houli Jiang, John C McGiff, John Quilley, David Sacerdoti, L Manmohan Reddy, John R Falck, Fan Zhang, Kenneth M Lerea, Patrick Y-K Wong. Identification of 5,6-trans-epoxyeicosatrienoic acid in the phospholipids of red blood cells.
The Journal of biological chemistry.
2004 Aug; 279(35):36412-8. doi:
10.1074/jbc.m403962200
. [PMID: 15213230] - Silvia I Pomposiello, John Quilley, Mairead A Carroll, John R Falck, John C McGiff. 5,6-epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR.
Hypertension (Dallas, Tex. : 1979).
2003 Oct; 42(4):548-54. doi:
10.1161/01.hyp.0000090095.87899.36
. [PMID: 12939232] - Rama Natarajan, Marpadga Amarender Reddy. HETEs/EETs in renal glomerular and epithelial cell functions.
Current opinion in pharmacology.
2003 Apr; 3(2):198-203. doi:
10.1016/s1471-4892(03)00015-8
. [PMID: 12681244] - A Zosmer, M G Elder, M H F Sullivan. The regulation of arachidonic acid metabolism in human first trimester trophoblast by cyclic AMP.
Prostaglandins & other lipid mediators.
2003 Apr; 71(1-2):43-53. doi:
10.1016/s0090-6980(03)00005-4
. [PMID: 12749593] - Kathryn M Gauthier, Christina Deeter, U Murali Krishna, Y Krishna Reddy, Muralidhar Bondlela, J R Falck, William B Campbell. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries.
Circulation research.
2002 May; 90(9):1028-36. doi:
10.1161/01.res.0000018162.87285.f8
. [PMID: 12016270] - Dany Salvail, Martin Cloutier, Eric Rousseau. Functional reconstitution of an eicosanoid-modulated Cl- channel from bovine tracheal smooth muscle.
American journal of physiology. Cell physiology.
2002 Mar; 282(3):C567-77. doi:
10.1152/ajpcell.00029.2001
. [PMID: 11832342] - M Medhora, J Narayanan, D Harder. Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids.
Trends in cardiovascular medicine.
2001 Jan; 11(1):38-42. doi:
10.1016/s1050-1738(01)00082-2
. [PMID: 11413051] - D Fulton, J R Falck, J C McGiff, M A Carroll, J Quilley. A method for the determination of 5,6-EET using the lactone as an intermediate in the formation of the diol.
Journal of lipid research.
1998 Aug; 39(8):1713-21. doi:
. [PMID: 9717733]
- S Imaoka, Y Funae. [The physiological role of P450-derived arachidonic acid metabolites].
Nihon yakurigaku zasshi. Folia pharmacologica Japonica.
1998 Jul; 112(1):23-31. doi:
10.1254/fpj.112.23
. [PMID: 9755459] - J S Grider, J C Falcone, E L Kilpatrick, C E Ott, B A Jackson. P450 arachidonate metabolites mediate bradykinin-dependent inhibition of NaCl transport in the rat thick ascending limb.
Canadian journal of physiology and pharmacology.
1997 Feb; 75(2):91-6. doi:
. [PMID: 9114929]
- J D Imig, L G Navar, R J Roman, K K Reddy, J R Falck. Actions of epoxygenase metabolites on the preglomerular vasculature.
Journal of the American Society of Nephrology : JASN.
1996 Nov; 7(11):2364-70. doi:
10.1681/asn.v7112364
. [PMID: 8959626] - D Fulton, M Balazy, J C McGiff, J Quilley. Possible contribution of platelet cyclooxygenase to the renal vascular action of 5,6-epoxyeicosatrienoic acid.
The Journal of pharmacology and experimental therapeutics.
1996 Jun; 277(3):1195-9. doi:
NULL
. [PMID: 8667178] - E Hildebrandt, J P Albanesi, J R Falck, W B Campbell. Regulation of calcium influx and catecholamine secretion in chromaffin cells by a cytochrome P450 metabolite of arachidonic acid.
Journal of lipid research.
1995 Dec; 36(12):2599-608. doi:
10.1016/s0022-2275(20)41096-x
. [PMID: 8847486] - M VanRollins, P M Kochanek, R W Evans, J K Schiding, E M Nemoto. Optimization of epoxyeicosatrienoic acid syntheses to test their effects on cerebral blood flow in vivo.
Biochimica et biophysica acta.
1995 Jun; 1256(3):263-74. doi:
10.1016/0005-2760(95)00029-c
. [PMID: 7786887] - Y Sakairi, H R Jacobson, T D Noland, J H Capdevila, J R Falck, M D Breyer. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis.
The American journal of physiology.
1995 May; 268(5 Pt 2):F931-9. doi:
10.1152/ajprenal.1995.268.5.f931
. [PMID: 7771521] - B A Escalante, R Staudinger, M Schwartzman, N Abraham. Amiloride-sensitive ion transport inhibition by epoxyeicosatrienoic acids in renal epithelial cells.
Advances in prostaglandin, thromboxane, and leukotriene research.
1995; 23(?):207-9. doi:
NULL
. [PMID: 7732836] - M VanRollins, T L Kaduce, H R Knapp, A A Spector. 14,15-Epoxyeicosatrienoic acid metabolism in endothelial cells.
Journal of lipid research.
1993 Nov; 34(11):1931-42. doi:
. [PMID: 8263417]
- S Andreatta-van Leyen, M F Romero, M C Khosla, J G Douglas. Modulation of phospholipase A2 activity and sodium transport by angiotensin-(1-7).
Kidney international.
1993 Nov; 44(5):932-6. doi:
10.1038/ki.1993.334
. [PMID: 8264152] - M A Carroll, M Balazy, P Margiotta, J R Falck, J C McGiff. Renal vasodilator activity of 5,6-epoxyeicosatrienoic acid depends upon conversion by cyclooxygenase and release of prostaglandins.
The Journal of biological chemistry.
1993 Jun; 268(17):12260-6. doi:
10.1016/s0021-9258(18)31383-8
. [PMID: 8509363] - M A Carroll, M P Garcia, J R Falck, J C McGiff. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites.
The Journal of pharmacology and experimental therapeutics.
1992 Jan; 260(1):104-9. doi:
. [PMID: 1731035]
- Z T Madhun, D A Goldthwait, D McKay, U Hopfer, J G Douglas. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells.
The Journal of clinical investigation.
1991 Aug; 88(2):456-61. doi:
10.1172/jci115325
. [PMID: 1650793] - J C McGiff, M A Carroll. Cytochrome P450-dependent arachidonate metabolites, renal function and blood pressure regulation.
Advances in prostaglandin, thromboxane, and leukotriene research.
1991; 21B(?):675-82. doi:
NULL
. [PMID: 1847570] - M F Romero, Z T Madhun, U Hopfer, J G Douglas. An epoxygenase metabolite of arachidonic acid 5,6 epoxy-eicosatrienoic acid mediates angiotensin-induced natriuresis in proximal tubular epithelium.
Advances in prostaglandin, thromboxane, and leukotriene research.
1991; 21A(?):205-8. doi:
NULL
. [PMID: 1847766] - K Takahashi, J Capdevila, A Karara, J R Falck, H R Jacobson, K F Badr. Cytochrome P-450 arachidonate metabolites in rat kidney: characterization and hemodynamic responses.
The American journal of physiology.
1990 Apr; 258(4 Pt 2):F781-9. doi:
10.1152/ajprenal.1990.258.4.f781
. [PMID: 2109933] - G A Ulsaker, G Teien. Gas chromatographic-mass spectrometric identification of four triene monoepoxides of arachidonic acid in human plasma.
The Analyst.
1990 Mar; 115(3):259-62. doi:
10.1039/an9901500259
. [PMID: 2327589] - M A Carroll, M Schwartzman, D Sacerdoti, J C McGiff. Novel renal arachidonate metabolites.
The American journal of the medical sciences.
1988 Apr; 295(4):268-74. doi:
10.1097/00000441-198804000-00009
. [PMID: 2834948] - D Schlondorff, E Petty, J A Oates, M Jacoby, S D Levine. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder.
The American journal of physiology.
1987 Sep; 253(3 Pt 2):F464-70. doi:
10.1152/ajprenal.1987.253.3.f464
. [PMID: 2820243] - R Toto, A Siddhanta, S Manna, B Pramanik, J R Falck, J Capdevila. Arachidonic acid epoxygenase: detection of epoxyeicosatrienoic acids in human urine.
Biochimica et biophysica acta.
1987 Jun; 919(2):132-9. doi:
10.1016/0005-2760(87)90199-8
. [PMID: 3580381]