Antheraxanthin A (BioDeep_00000003677)

 

Secondary id: BioDeep_00000402885

human metabolite PANOMIX_OTCML-2023 Endogenous natural product Volatile Flavor Compounds


代谢物信息卡片


6-[(1E,3Z,5E,7E,9E,11Z,13E,15E,17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

化学式: C40H56O3 (584.4229226)
中文名称: 环氧玉米黄素
谱图信息: 最多检出来源 Viridiplantae(plant) 0.11%

分子结构信息

SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@]12C(C)(C)C[C@@H](C[C@@]1(C)O2)O)/C=C/C=C(\C)/C=C/C1=C(C)C[C@H](CC1(C)C)O
InChI: InChI=1S/C40H56O3/c1-29(17-13-19-31(3)21-22-36-33(5)25-34(41)26-37(36,6)7)15-11-12-16-30(2)18-14-20-32(4)23-24-40-38(8,9)27-35(42)28-39(40,10)43-40/h11-24,34-35,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,22-21+,24-23+,29-15-,30-16+,31-19+,32-20-

描述信息

Antheraxanthin a is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Antheraxanthin a is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Antheraxanthin a can be found in herbs and spices, which makes antheraxanthin a a potential biomarker for the consumption of this food product.
Antheraxanthin A is found in herbs and spices. Antheraxanthin A is a constituent of Capsicum fruit; potential nutriceutical
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

同义名列表

5 个代谢物同义名

6-[(1E,3Z,5E,7E,9E,11Z,13E,15E,17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol; ANTHERAXANTHIN(SH); Antheraxanthin A; ANTHERAXANTHIN; Antheraxanthin



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(1)

代谢反应

483 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(234)

INOH(0)

PlantCyc(246)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

45 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Sushil S Changan, Vaibhav Kumar, Aruna Tyagi. Expression pattern of candidate genes and their correlation with various metabolites of abscisic acid biosynthetic pathway under drought stress in rice. Physiologia plantarum. 2023 Nov; 175(6):e14102. doi: 10.1111/ppl.14102. [PMID: 38148246]
  • Caterina D'Ambrosio, Adriana Lucia Stigliani, José L Rambla, Sarah Frusciante, Gianfranco Diretto, Eugenia M A Enfissi, Antonio Granell, Paul D Fraser, Giovanni Giorio. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts. Plant science : an international journal of experimental plant biology. 2023 Mar; 328(?):111575. doi: 10.1016/j.plantsci.2022.111575. [PMID: 36572066]
  • Huali Zhang, Shiya Zhang, Hua Zhang, Xi Chen, Fang Liang, Helan Qin, Yue Zhang, Richen Cong, Haibo Xin, Zhao Zhang. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Scientific reports. 2020 10; 10(1):16835. doi: 10.1038/s41598-020-73859-7. [PMID: 33033300]
  • M Pilar Cano, Andrea Gómez-Maqueo, Rebeca Fernández-López, Jorge Welti-Chanes, Tomás García-Cayuela. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food research international (Ottawa, Ont.). 2019 09; 123(?):538-549. doi: 10.1016/j.foodres.2019.05.017. [PMID: 31285003]
  • Raquel Esteban, Javier Buezo, José M Becerril, José I García-Plazaola. Modified Atmosphere Packaging and Dark/Light Refrigerated Storage in Green Leafy Vegetables Have an Impact on Nutritional Value. Plant foods for human nutrition (Dordrecht, Netherlands). 2019 Mar; 74(1):99-106. doi: 10.1007/s11130-018-0705-y. [PMID: 30610553]
  • Saki Shimode, Kana Miyata, Michiko Araki, Kazutoshi Shindo. Antioxidant Activities of the Antheraxanthin-related Carotenoids, Antheraxanthin, 9-cis-Antheraxanthin, and Mutatoxanthins. Journal of oleo science. 2018; 67(8):977-981. doi: 10.5650/jos.ess18060. [PMID: 30068828]
  • Erik Ingmar Hallin, Kuo Guo, Hans-Erik Åkerlund. Functional and structural characterization of domain truncated violaxanthin de-epoxidase. Physiologia plantarum. 2016 Aug; 157(4):414-21. doi: 10.1111/ppl.12428. [PMID: 26864799]
  • Erik Ingmar Hallin, Mahmudul Hasan, Kuo Guo, Hans-Erik Åkerlund. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation. Photosynthesis research. 2016 Jul; 129(1):29-41. doi: 10.1007/s11120-016-0261-y. [PMID: 27116125]
  • Elodie Merlier, Gabriel Hmimina, Eric Dufrêne, Kamel Soudani. Explaining the variability of the photochemical reflectance index (PRI) at the canopy-scale: Disentangling the effects of phenological and physiological changes. Journal of photochemistry and photobiology. B, Biology. 2015 Oct; 151(?):161-71. doi: 10.1016/j.jphotobiol.2015.08.006. [PMID: 26295453]
  • Chunfeng Guan, Jing Ji, Xuqiang Zhang, Xiaozhou Li, Chao Jin, Wenzhu Guan, Gang Wang. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis. Journal of plant physiology. 2015 Mar; 175(?):26-36. doi: 10.1016/j.jplph.2014.06.022. [PMID: 25460873]
  • Zhimin Gao, Qing Liu, Bo Zheng, Ying Chen. Molecular characterization and primary functional analysis of PeVDE, a violaxanthin de-epoxidase gene from bamboo (Phyllostachys edulis). Plant cell reports. 2013 Sep; 32(9):1381-91. doi: 10.1007/s00299-013-1450-1. [PMID: 23640082]
  • Alessandra Fratianni, Donatella Albanese, Rossella Mignogna, Luciano Cinquanta, Gianfranco Panfili, Marisa Di Matteo. Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process. Plant foods for human nutrition (Dordrecht, Netherlands). 2013 Sep; 68(3):241-6. doi: 10.1007/s11130-013-0369-6. [PMID: 23807280]
  • José Javier Peguero-Pina, Eustaquio Gil-Pelegrín, Fermín Morales. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection. Journal of experimental botany. 2013 Apr; 64(6):1649-61. doi: 10.1093/jxb/ert024. [PMID: 23390289]
  • Husen Jia, Britta Förster, Wah Soon Chow, Barry James Pogson, C Barry Osmond. Decreased photochemical efficiency of photosystem II following sunlight exposure of shade-grown leaves of avocado: because of, or in spite of, two kinetically distinct xanthophyll cycles?. Plant physiology. 2013 Feb; 161(2):836-52. doi: 10.1104/pp.112.209692. [PMID: 23213134]
  • Ramón Aparicio-Ruiz, Beatriz Gandul-Rojas. Thermal degradation kinetics of neoxanthin, violaxanthin, and antheraxanthin in virgin olive oils. Journal of agricultural and food chemistry. 2012 May; 60(20):5180-91. doi: 10.1021/jf300332m. [PMID: 22509927]
  • Dariusz Latowski, Reimund Goss, Monika Bojko, Kazimierz Strzałka. Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems. Acta biochimica Polonica. 2012; 59(1):101-3. doi: . [PMID: 22428134]
  • Beatriz Fernández-Marín, Fátima Míguez, José María Becerril, José Ignacio García-Plazaola. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC plant biology. 2011 Dec; 11(?):181. doi: 10.1186/1471-2229-11-181. [PMID: 22269024]
  • Xiaoying Chen, Wei Li, Qingtao Lu, Xiaogang Wen, Hongwei Li, Tingyun Kuang, Zhensheng Li, Congming Lu. The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress. Journal of plant physiology. 2011 Oct; 168(15):1828-36. doi: 10.1016/j.jplph.2011.05.019. [PMID: 21737175]
  • Ernesto Garcia-Mendoza, Hector Ocampo-Alvarez, Govindjee. Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications. Journal of photochemistry and photobiology. B, Biology. 2011 Jul; 104(1-2):377-85. doi: 10.1016/j.jphotobiol.2011.04.004. [PMID: 21571542]
  • Andrzej Kornas, Elke Fischer-Schliebs, Ulrich Lüttge, Zbigniew Miszalski. Adaptation of the obligate CAM plant Clusia alata to light stress: Metabolic responses. Journal of plant physiology. 2009 Nov; 166(17):1914-22. doi: 10.1016/j.jplph.2009.06.005. [PMID: 19592134]
  • Beatrycze Nowicka, Wojciech Strzalka, Kazimierz Strzalka. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. Journal of plant physiology. 2009 Jul; 166(10):1045-56. doi: 10.1016/j.jplph.2008.12.010. [PMID: 19278749]
  • Britta Förster, C Barry Osmond, Barry J Pogson. De novo synthesis and degradation of Lx and V cycle pigments during shade and sun acclimation in avocado leaves. Plant physiology. 2009 Feb; 149(2):1179-95. doi: 10.1104/pp.108.131417. [PMID: 19060099]
  • Jun-Jie Zhu, Jiao-Lin Zhang, Hong-Cheng Liu, Kun-Fang Cao. Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China. Physiologia plantarum. 2009 Jan; 135(1):62-72. doi: 10.1111/j.1399-3054.2008.01171.x. [PMID: 19121100]
  • Peter Jahns, Dariusz Latowski, Kazimierz Strzalka. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochimica et biophysica acta. 2009 Jan; 1787(1):3-14. doi: 10.1016/j.bbabio.2008.09.013. [PMID: 18976630]
  • María L Pérez-Bueno, Peter Horton. The role of lutein in the acclimation of higher plant chloroplast membranes to suboptimal conditions. Physiologia plantarum. 2008 Sep; 134(1):227-36. doi: 10.1111/j.1399-3054.2008.01124.x. [PMID: 18466360]
  • Ljudmila Kalituho, Jennifer Rech, Peter Jahns. The roles of specific xanthophylls in light utilization. Planta. 2007 Jan; 225(2):423-39. doi: 10.1007/s00425-006-0356-3. [PMID: 16896791]
  • Reimund Goss, Bernard Lepetit, Christian Wilhelm. Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. Journal of plant physiology. 2006 Mar; 163(5):585-90. doi: 10.1016/j.jplph.2005.07.009. [PMID: 16473664]
  • Franco Cardini, Susanna Pucci, Roberto Calamassi. Quantitative variations of individual carotenoids in relationship with the leaflet development of six species of the genus Ceratozamia (Cycads). Journal of plant physiology. 2006 Feb; 163(2):128-40. doi: 10.1016/j.jplph.2005.05.012. [PMID: 16399003]
  • A L Shvaleva, F Costa E Silva, E Breia, J Jouve, J F Hausman, M H Almeida, J P Maroco, M L Rodrigues, J S Pereira, M M Chaves. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree physiology. 2006 Feb; 26(2):239-48. doi: 10.1093/treephys/26.2.239. [PMID: 16356921]
  • J Masojídek, J Kopecký, M Koblízek, G Torzillo. The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus. Plant biology (Stuttgart, Germany). 2004 May; 6(3):342-9. doi: 10.1055/s-2004-820884. [PMID: 15143443]
  • Li Tian, Maria Magallanes-Lundback, Valeria Musetti, Dean DellaPenna. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. The Plant cell. 2003 Jun; 15(6):1320-32. doi: 10.1105/tpc.011403. [PMID: 12782726]
  • Claudio Varotto, Paolo Pesaresi, Peter Jahns, Angela Lessnick, Marco Tizzano, Fabio Schiavon, Francesco Salamini, Dario Leister. Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant physiology. 2002 Jun; 129(2):616-24. doi: 10.1104/pp.002089. [PMID: 12068106]
  • Patricia Müller-Moulé, Patricia L Conklin, Krishna K Niyogi. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant physiology. 2002 Mar; 128(3):970-7. doi: 10.1104/pp.010924. [PMID: 11891252]
  • A David Hieber, Robert C Bugos, Amy S Verhoeven, Harry Y Yamamoto. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding. Planta. 2002 Jan; 214(3):476-83. doi: 10.1007/s00425-001-0704-2. [PMID: 11855651]
  • A M Gilmore, H Y Yamamoto. Time-resolution of the antheraxanthin- and delta pH-dependent chlorophyll a fluorescence components associated with photosystem II energy dissipation in Mantoniella squamata. Photochemistry and photobiology. 2001 Aug; 74(2):291-302. doi: 10.1562/0031-8655(2001)074<0291:trotaa>2.0.co;2. [PMID: 11547568]
  • D Latowski, K Burda, K Strzałka. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. Journal of theoretical biology. 2000 Oct; 206(4):507-14. doi: 10.1006/jtbi.2000.2141. [PMID: 11013111]
  • S Pasqualini, P Batini, L Ederli, M Antonielli. Responses of the xanthophyll cycle pool and ascorbate-glutathione cycle to ozone stress in two tobacco cultivars. Free radical research. 1999 Dec; 31 Suppl(?):S67-73. doi: 10.1080/10715769900301341. [PMID: 10694043]
  • A M Gilmore, N Mohanty, H Y Yamamoto. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH. FEBS letters. 1994 Aug; 350(2-3):271-4. doi: 10.1016/0014-5793(94)00784-5. [PMID: 8070578]