Isoimperatorin

7,4-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]-1-benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Echinocystic

(4aR,5R,6aS,6bR,8aR,10S,12aR,12bR,14bS)-5,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Echinocystic acid is a triterpenoid. Echinocystic acid is a natural product found in Cucurbita foetidissima, Eclipta alba, and other organisms with data available. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Vincamine

Methyl (41S,12S,13aS)-13a-ethyl-12-hydroxy-2,3,41,5,6,12,13,13a-octahydro-1H-indolo[3,2,1-de]pyrido[3,2,1-ij][1,5]naphthyridine-12-carboxylate

C21H26N2O3 (354.1943)


Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Ginsenoside Rd

2-{[2-(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C48H82O18 (946.5501)


Ginsenoside Rd is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. It has a role as a vulnerary, a neuroprotective agent, an apoptosis inducer, an anti-inflammatory drug, an immunosuppressive agent and a plant metabolite. It is a ginsenoside, a beta-D-glucoside and a tetracyclic triterpenoid. It is functionally related to a (20S)-ginsenoside Rg3. Ginsenoside Rd is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside Rd is found in tea. Ginsenoside Rd is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rd is found in tea. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively.

   

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.0^{4,12}.0^{6,10}.0^{18,22}]tetracosa-1(24),4(12),5,10,17,22-hexaen-3-one

C20H19NO5 (353.1263)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Capsaicin

(E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide

C18H27NO3 (305.1991)


Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].

   

Adenine

7H-purin-6-amine

C5H5N5 (135.0545)


Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].

   

Spinosin

6-((2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C28H32O15 (608.1741)


Spinosin is a flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. It has a role as a plant metabolite and an anxiolytic drug. It is a flavone C-glycoside, a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Spinosin is a natural product found in Clutia abyssinica, Galipea trifoliata, and other organisms with data available. A flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3]. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3].

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

dehydrocorydalin

2,3,9,10-Tetramethoxy-13-methyl-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C22H24NO4+ (366.1705)


Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Methyl

(2S)-2-(3,4-dimethoxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chroman-4-one;Methyl-Hesperidin

C29H36O15 (624.2054)


Methyl hesperidin is a flavanone glycoside that is hesperidin in which the hydroxy group at position 3 has been replaced by a methoxy group. It is a monohydroxyflavanone, a dimethoxyflavanone, a disaccharide derivative, a flavanone glycoside, a rutinoside, a member of 4-methoxyflavanones and a member of 3-methoxyflavanones. It is functionally related to a hesperidin. Methyl hesperidin is a natural product found in Plantago depressa, Citrus deliciosa, and Citrus reticulata with data available. Methyl-Hesperidin is a vasodilating agent[1]. Methyl-Hesperidin is a vasodilating agent[1].

   

Ginsenoside F2

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,8R,9R,10R,12R,13R,14R, 17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S, 5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-2, 3,5,6,7,9,11,12,13,15,16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxane-3,4,5-triol

C42H72O13 (784.4973)


Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. Ginsenoside F2 is found in tea. Ginsenoside F2 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F2 is found in tea. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

   

Maleic acid

(2Z)-but-2-enedioic acid

C4H4O4 (116.011)


Maleic acid is a colorless crystalline solid having a faint odor. It is combustible though it may take some effort to ignite. It is soluble in water. It is used to make other chemicals and for dyeing and finishing naturally occurring fibers. Maleic acid is a butenedioic acid in which the double bond has cis- (Z)-configuration. It has a role as a plant metabolite, an algal metabolite and a mouse metabolite. It is a conjugate acid of a maleate(1-) and a maleate. Maleic acid is a natural product found in Populus tremula, Ardisia crenata, and other organisms with data available. Maleic Acid is an organic salt or ester of maleic acid that could be conjugated to free base compounds/drugs to improve the physiochemical properties including stability, solubility and dissolution rate. (NCI) Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. See also: Surfomer (monomer of); Ferropolimaler (monomer of). Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. [HMDB]. Maleic acid is found in many foods, some of which are cocoa bean, lovage, roselle, and corn. Maleic acid is a dicarboxylic acid, a molecule with two carboxyl groups. It consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 oC) is also much lower than that of fumaric acid (287 oC). Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. Maleic acid is used in making polyesters for fibre-reinforced laminated moldings and paint vehicles. More specifically it is used in the manufacture of phthalic-type alkyd and polyester resins, surface coatings, copolymers, plasticizers, lubricant additives and agricultural chemicals. It is also found in adhesives and sealants and as a preservative for oils and fats. In the natural world, maleic acid has been identified in ginseng, pineapple, cacao plants, sour cherries and corn. A large number of microbes are able to convert maleic acid to D-malate using the enzyme maleate hydratase (PMID: 1444397). A butenedioic acid in which the double bond has cis- (Z)-configuration. Maleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-16-7 (retrieved 2024-06-29) (CAS RN: 110-16-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes. Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Astragaloside

[(2S,3R,4S,5R)-4,5-dihydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C43H70O15 (826.4714)


Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.1162)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.2195)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is found in fruits. Steviol is isolated from Cucurbita maxima Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931. Isolated from Cucurbita maxima Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Sinapine

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

[C16H24NO5]+ (310.1654)


Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Cucurbitacin

(1S,2S,4R,6S,9S,10R,11R,14R,15R)-17-hydroxy-6-(2-hydroxypropan-2-yl)-2,9,11,14,19,19-hexamethyl-5-oxapentacyclo[12.8.0.02,11.04,10.015,20]docosa-16,20-diene-8,13,18-trione

C30H42O6 (498.2981)


Cucurbitacin S is an 11-oxo steroid. Cucurbitacin S is a natural product found in Cucurbita foetidissima with data available. Triterpenes that derive from LANOSTEROL by a shift of the C19 methyl to the C9 position. They are found in seeds and roots of CUCURBITACEAE and other plants and are noted for intense bitterness.

   

Jintan

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid;azane

C42H61O16.NH4 (839.4303)


Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.

   

Senegin III

6-deoxy-alpha-L-mannopyranosyl-(1->3)-[beta-D-galactopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->4)-6-deoxy-alpha-L-mannopyranosyl-(1->2)]-6-deoxy-1-O-[(2beta,3beta)-3-(beta-D-glucopyranosyloxy)-2,23,27-trihydroxy-23,28-dioxoolean-12-en-28-yl]-4-O-[3-(4-methoxyphenyl)prop-2-enoyl]-beta-D-galactopyranose

C75H112O35 (1572.6984)


A triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. Senegin III is a triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a cinnamate ester, a hydroxy monocarboxylic acid, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a 4-methoxycinnamic acid. It derives from a hydride of an oleanane. Senegin III is a natural product found in Polygala fallax, Polygala senega, and other organisms with data available. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1]. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1].

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

(R)-Citronellal

(R)-(+)-Citronellal, technical grade, 90\\%

C10H18O (154.1358)


(R)-(+)-citronellal is the (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). It is an enantiomer of a (S)-(-)-citronellal. (R)-(+)-Citronellal is a natural product found in Litsea cubeba, Backhousia citriodora, and other organisms with data available. (R)-Citronellal is found in citrus. (R)-Citronellal is a constituent of citronella oil. Also in citrus, lavender, eucalyptus oils and others. (R)-Citronellal is a flavouring agent Constituent of citronella oiland is) also in citrus, lavender, eucalyptus oils and others. Flavouring agent. (R)-Citronellal is found in lemon balm, citrus, and herbs and spices. The (3R)-stereoisomer of 3,7-dimethyloct-6-enal (citronellal). (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

Gnetol

2-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,3-diol

C14H12O4 (244.0736)


Gnetol is a natural product found in Gnetum edule, Gnetum hainanense, and other organisms with data available. Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC50 of 0.78 μM) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC50 of 4.5 μM for murine tyrosinase and suppresses melanin biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α-Amylase, α-glucosidase, and adipogenesis activities[1][2][3]. Gnetol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=86361-55-9 (retrieved 2024-12-11) (CAS RN: 86361-55-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2-Hexenal

InChI=1/C6H10O/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+

C6H10O (98.0732)


(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite. 2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available. 2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. 2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators Acquisition and generation of the data is financially supported in part by CREST/JST. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

Tramiprosate

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

3-Methylbenzaldehyde

3-methylbenzaldehyde;3-Methylbenzaldehyde, stab. with 0.1\\% hydroquinone

C8H8O (120.0575)


3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position. M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite. 3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available. Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde BHW21-S. 3-Methylbenzaldehyde is found in many foods, some of which are coffee and coffee products, nuts, tea, and garden tomato. A tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Vomifoliol

2-Cyclohexen-1-one, 4-hydroxy-4-((1E,3R)-3-hydroxy-1-buten-1-yl)-3,5,5-trimethyl-, (4S)-rel-

C13H20O3 (224.1412)


A fenchane monoterpenoid that is 3,5,5-trimethylcyclohex-2-en-1-one substituted by a hydroxy and a (1E)-3-hydroxybut-1-en-1-yl group at position 4. (6S,9R)-vomifoliol is a (6S)-vomifoliol with a R configuration for the hydroxy group at position 9. It has a role as a phytotoxin and a metabolite. It is an enantiomer of a (6R,9S)-vomifoliol. Vomifoliol is a natural product found in Sida acuta, Macrococculus pomiferus, and other organisms with data available. A (6S)-vomifoliol with a R configuration for the hydroxy group at position 9.

   

Proscillaridin

5-[(3S,8R,9S,10R,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-1,2,3,6,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C30H42O8 (530.288)


Proscillaridin is an organic molecular entity. Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines. Proscillaridin is a natural product found in Drimia indica with data available. A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill). C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1]. Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Pinobanksin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-3,5,7-TRIHYDROXY-2-PHENYL-, (2R,3R)-

C15H12O5 (272.0685)


Pinobanksin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. It has a role as an antimutagen, an antioxidant and a metabolite. It is a trihydroxyflavanone and a secondary alpha-hydroxy ketone. Pinobanksin is a natural product found in Populus koreana, Ozothamnus stirlingii, and other organisms with data available. Pinobanksin has apoptotic induction in a B-cell lymphoma cell line[1].

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.

   

Glutinone

(6aS,6aS,6bR,8aR,12aR,14aR,14bS)-4,4,6a,6b,8a,11,11,14a-octamethyl-2,6,6a,7,8,9,10,12,12a,13,14,14b-dodecahydro-1H-picen-3-one

C30H48O (424.3705)


Glutinone is a member of cyclohexanones. Glutinone is a natural product found in Uvaria concava, Dischidia formosana, and other organisms with data available.

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a glycoside formed from glucose and safranal. It is found in the spice saffron, which comes from the crocus flower. Picrocrocin has a bitter taste and is the chemical most responsible for the taste of saffron. It is believed that picrocrocin is a degradation product of the carotenoid zeaxanthin (Wikipedia). Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Isolated from saffron (stamens of Crocus sativus). Food colour and flavouring ingredient Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

Ferruginol

3-PHENANTHRENOL, 4B,5,6,7,8,8A,9,10-OCTAHYDRO-4B,8,8-TRIMETHYL-2-(1-METHYLETHYL)-, (4BS-TRANS)-

C20H30O (286.2297)


Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.

   

Obtusifoliol

(3S,4S,5S,10S,13R,14R,17R)-4,10,13,14-Tetramethyl-17-((R)-6-methyl-5-methyleneheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


Obtusifoliol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, obtusifoliol is considered to be a sterol lipid molecule. Obtusifoliol is found, on average, in the highest concentration within evening primroses. Obtusifoliol has also been detected, but not quantified in, several different foods, such as common chokecherries, jicama, pepper (C. frutescens), avocado, and pecan nuts. This could make obtusifoliol a potential biomarker for the consumption of these foods. Obtusifoliol is an intermediate in the biosynthesis of cholesterol: in a reaction catalyzed by the enzyme CYP51A1 (EC 1.14.13.70, sterol 14-demethylase) (PMID: 9559662). CYP51A1 is a housekeeping enzyme essential for the viability of mammals, an essential step in cholesterol biosynthesis. Sterol 14-demethylation occurs in all organisms exhibiting de novo sterol biosynthesis and CYP51A1 has been conserved throughout evolution (PMID: 8797093). Obtusifoliol is an intermediate in the biosynthesis of cholesterol, in a reaction catalyzed by the enzyme CYP51A1 (EC 1.14.13.70, sterol 14-demethylase). (PMID: 9559662); CYP51A1 is a housekeeping enzyme essential for viability of mammals, essential step in cholesterol biosynthesis; sterol 14-demethylation occurs in all organism exhibiting de novo sterol biosynthesis, and CYP51A1 has been conserved throughout evolution. (PMID: 8797093). Obtusifoliol is found in many foods, some of which are jews ear, mamey sapote, star fruit, and tinda. Obtusifoliol is a natural product found in Euphorbia chamaesyce, Euphorbia nicaeensis, and other organisms with data available. Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1]. Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1].

   

Safranal

InChI=1/C10H14O/c1-8-5-4-6-10(2,3)9(8)7-11/h4-5,7H,6H2,1-3H3

C10H14O (150.1045)


Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

3-Hexen-1-ol

(3Z)-3-Hexen-1-ol ; (z)-3-hexen-1-o;3-Hexen-1-ol;Cis-3-Hexenol

C6H12O (100.0888)


(Z)-hex-3-en-1-ol is a hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. It has a role as an insect attractant, a plant metabolite and a fragrance. cis-3-Hexen-1-ol is a natural product found in Lonicera japonica, Santolina corsica, and other organisms with data available. cis-3-hexen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. 3-Hexen-1-ol, also known as 1-hydroxy-3-hexene, is a colourless oily liquid with an intense grassy-green odour of freshly cut green grass and leaves. It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. 3-Hexen-1-ol is a very important aroma compound that is used in fruit and vegetable flavours and in perfumes. The yearly production is about 30 tonnes. 3-Hexen-1-ol is found in black elderberry. It is used as tea flavourant. Preferred to (E)-isomer in perfumes and flavours to add natural `green notes. Occurs in geranium, tea, citrus and other oils, and many fruits, e.g. banana, concord grape, quince. (Z)-3-Hexen-1-ol is found in many foods, some of which are allspice, dill, citrus, and garden tomato (variety). A hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

(E)-methyl ester 3-phenyl-2-propenoic acid

methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer

C10H10O2 (162.0681)


Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

2-Methoxy-4-vinylphenol

2-METHOXY-4-VINYLPHENOL (STABILIZED WITH TBC)

C9H10O2 (150.0681)


2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

   

Chelidonic acid

4-OXO-4H-PYRAN-2,6-DICARBOXYLIC ACID

C7H4O6 (184.0008)


Chelidonic acid, also known as 4-oxo-4h-pyran-2,6-dicarboxylic acid or chelidonate, belongs to pyranones and derivatives class of compounds. Those are compounds containing a pyran ring which bears a ketone. Chelidonic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Chelidonic acid can be found in corn, which makes chelidonic acid a potential biomarker for the consumption of this food product. Chelidonic acid is a heterocyclic organic acid with a pyran skeleton . Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].

   

Maltotetraose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Cyprodinil

4-Cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, 9ci

C14H15N3 (225.1266)


CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172

   

Propiconazole

(+-)-1-[2-(2,4-Dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazole

C15H17Cl2N3O2 (341.0698)


CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9740; ORIGINAL_PRECURSOR_SCAN_NO 9738 CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9692; ORIGINAL_PRECURSOR_SCAN_NO 9687 CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9695; ORIGINAL_PRECURSOR_SCAN_NO 9694 CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9733; ORIGINAL_PRECURSOR_SCAN_NO 9731 CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9714; ORIGINAL_PRECURSOR_SCAN_NO 9713 CONFIDENCE standard compound; INTERNAL_ID 1346; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9736; ORIGINAL_PRECURSOR_SCAN_NO 9735 CONFIDENCE Parent Substance (Level 1); INTERNAL_ID 2400 C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 212 CONFIDENCE standard compound; INTERNAL_ID 8415 CONFIDENCE standard compound; INTERNAL_ID 2576 CONFIDENCE standard compound; INTERNAL_ID 4035 KEIO_ID T108; [MS2] KO009255 KEIO_ID T108

   

Pyrimethanil

4,6-Dimethyl-N-phenylpyrimidin-2-amine

C12H13N3 (199.1109)


CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8499; ORIGINAL_PRECURSOR_SCAN_NO 8497 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8493; ORIGINAL_PRECURSOR_SCAN_NO 8491 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8504; ORIGINAL_PRECURSOR_SCAN_NO 8502 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8481; ORIGINAL_PRECURSOR_SCAN_NO 8479 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8459; ORIGINAL_PRECURSOR_SCAN_NO 8457 CONFIDENCE standard compound; INTERNAL_ID 405; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8532; ORIGINAL_PRECURSOR_SCAN_NO 8531 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2712 Pyrimethanil is a fungicide used on grape vines. COVID info from PDB, Protein Data Bank Fungicide used on grape vines. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Methylpyridine

2-Picolinium bromide

C6H7N (93.0578)


2-methylpyridine, also known as 2-picoline or 2-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2-methylpyridine is a bitter and sweat tasting compound found in tea, which makes 2-methylpyridine a potential biomarker for the consumption of this food product. 2-methylpyridine can be found primarily in saliva. 2-methylpyridine exists in all eukaryotes, ranging from yeast to humans. 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin . 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.

   

(RS)-3,5-DHPG

(S)-3,5-Dihydroxyphenylglycine

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

3-Hydroxybutyric acid

(R)-(-)-beta-Hydroxybutyric acid

C4H8O3 (104.0473)


3-Hydroxybutyric acid (CAS: 300-85-6), also known as beta-hydroxybutanoic acid, is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis. This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of 3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid, and is a ketone body. Like the other ketone bodies (acetoacetate and acetone), levels of 3-hydroxybutyrate in blood and urine are raised in ketosis. In humans, 3-hydroxybutyrate is synthesized in the liver from acetyl-CoA and can be used as an energy source by the brain when blood glucose is low. Blood levels of 3-hydroxybutyric acid levels may be monitored in diabetic patients to look for diabetic ketoacidosis. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing mammals. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for the synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for the synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmitoylphosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). 3-Hydroxybutyric acid is found to be associated with fumarase deficiency and medium-chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. 3-Hydroxybutyric acid is a metabolite of Alcaligenes and can be produced from plastic metabolization or incorporated into polymers, depending on the species (PMID: 7646009, 18615882). (R)-3-Hydroxybutyric acid is a butyric acid substituted with a hydroxyl group in the beta or 3 position. It is involved in the synthesis and degradation of ketone bodies. Like the other ketone bodies (acetoacetate and acetone), levels of beta-hydroxybutyrate are raised in the blood and urine in ketosis. Beta-hydroxybutyrate is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of D-3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. It can also be used for the synthesis of biodegradable plastics . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H022 (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1]. 3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].

   

3-Methylxanthine

3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C6H6N4O2 (166.0491)


3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550) 3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

4-Nitrocatechol

4-nitro-Pyrocatechol4-nitropyrocatechol NSC 80651

C6H5NO4 (155.0219)


4-Nitrocatechol is the by-product of the hydroxylation of 4-Nitrophenol by the human cytochrome P450 (CYP) 2E1. This reaction is a useful metabolic marker for the presence of functional cytochrome P450 2E1 in mammalian cell microsomes. Hepatic and extrahepatic microsomal cytochrome P450 isozymes further catalyze the reduction of p-nitrocatechol to p-aminophenol. (PMID: 8267647, 8214571, 8267647) [HMDB] 4-Nitrocatechol is the by-product of the hydroxylation of 4-nitrophenol by the human cytochrome P450 (CYP) 2E1. This reaction is a useful metabolic marker for the presence of functional cytochrome P450 2E1 in mammalian cell microsomes. Hepatic and extrahepatic microsomal cytochrome P450 isozymes further catalyze the reduction of p-nitrocatechol into p-aminophenol (PMID: 8267647, 8214571, 8267647). 4-Nitrocatechol is a potent lipoxygenase inhibitor[1]. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1].

   

Acetyl-N-formyl-5-methoxykynurenamine

N-[3-[2-(formylamino)-5-methoxyphenyl]-3-oxypropyl]-acetamide

C13H16N2O4 (264.111)


Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).

   

dADP

[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O9P2 (411.0345)


Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945) [HMDB]. dADP is found in many foods, some of which are medlar, oil palm, greenthread tea, and green vegetables. Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-Alanyl-D-alanine

(2R)-2-[(2R)-2-aminopropanamido]propanoic acid

C6H12N2O3 (160.0848)


The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

   

5,6-Dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Dihydrofolic acid

(2S)-2-[(4-{[(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C19H21N7O6 (443.1553)


Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. [HMDB] Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid.

   

Methyl red

Methyl red(to be removed)

C15H15N3O2 (269.1164)


D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9367; ORIGINAL_PRECURSOR_SCAN_NO 9363 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9443; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9443 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9467; ORIGINAL_PRECURSOR_SCAN_NO 9462 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9471; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; INTERNAL_ID 502; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9503; ORIGINAL_PRECURSOR_SCAN_NO 9501

   

N-Glycolylneuraminic acid

(2S,4S,5R,6R)-2,4-dihydroxy-5-(2-hydroxyacetamido)-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C11H19NO10 (325.1009)


N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid found in most mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells and biofluids. Humans cannot synthesize Neu5Gc because the human gene CMAH is irreversibly mutated, though it is found in apes. This loss of the CMAH gene was estimated to have occurred two to three million years ago, just before the emergence of the genus Homo. A dietary origin of Neu5Gc was suggested by human volunteer studies. These trace amounts of Neu5Gc were determined to come from the consumption of animals in the human diet (i.e. red meats such as lamb, pork, and beef). Neu5Gc can also be found in dairy products, but to a lesser extent. Neu5Gc is not found in poultry and is found in only trace amounts in fish (Wikipedia). Isolated from beef serum KEIO_ID G062

   

Octanoyl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C29H50N7O17P3S (893.2197)


Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase. [HMDB]. Octanoyl-CoA is found in many foods, some of which are millet, loganberry, horseradish, and sea-buckthornberry. Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase.

   

dTDP

{[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphoryl]oxy}phosphonic acid

C10H16N2O11P2 (402.0229)


Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) [HMDB]. dTDP is found in many foods, some of which are bog bilberry, poppy, garden tomato, and chanterelle. Is an intermediate in the Thymidylate kinase (EC 2.7.4.9; ATP:dTMP phosphotransferase) catalyzes the phosphorylation of dTMP (to form dTDP) in the dTTP synthesis pathway for DNA synthesis. (OMIM 188345 ) Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

Glucaric acid

(2S,3S,4S,5R)-2,3,4,5-tetrahydroxyhexanedioic acid

C6H10O8 (210.0376)


Glucaric acid, also known as glucarate or D-saccharic acid, belongs to the class of organic compounds known as glucuronic acid derivatives. Glucuronic acid derivatives are compounds containing a glucuronic acid moiety (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid. Glucaric acid is a sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. D-glucaric acid is found in fruits, vegetables, and mammals. The highest concentrations of glucaric acid are found in grapefruits, apples, oranges, and cruciferous vegetables (PMID: 18772850). Glucaric acid is produced through the oxidation of glucose. Cytochrome P450 is thought to be responsible for the production of D-glucaric acid in vivo (PMID: 3779687). In mammals, D-glucaric acid and D-glucaro-l,4-lactone are also known end-products of the D-glucuronic acid pathway (PMID: 18772850). Glucaric is available as a dietary supplement in the form of calcium D-glucarate and has been studied for therapeutic purposes including cholesterol reduction and cancer chemotherapy (PMID: 9101079). D-Glucaric acid has a potential use as a building block for a number of polymers, including new nylons and hyperbranched polyesters. D-glucaric acid produced from D-glucose has been successfully utilized to produce a hydroxylated nylon. A sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. [HMDB] KEIO_ID S025

   

D-myo-Inositol 1,4-bisphosphate

{[(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H14O12P2 (339.9961)


D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]

   

Etodolac

(1,8-Diethyl-1,3,4,9-tetrahydro-pyrano[3,4-b]indol-1-yl)-acetic acid

C17H21NO3 (287.1521)


Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034

   

(4-Chloro-2-methylphenoxy)acetic acid

2-(4-chloro-2-methylphenoxy)acetic acid

C9H9ClO3 (200.024)


CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4601; ORIGINAL_PRECURSOR_SCAN_NO 4597 CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4590; ORIGINAL_PRECURSOR_SCAN_NO 4587 CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4578; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4593; ORIGINAL_PRECURSOR_SCAN_NO 4590 CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4563; ORIGINAL_PRECURSOR_SCAN_NO 4559 CONFIDENCE standard compound; INTERNAL_ID 579; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4587; ORIGINAL_PRECURSOR_SCAN_NO 4585 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8421 D010575 - Pesticides > D006540 - Herbicides CONFIDENCE standard compound; ML_ID 2 D016573 - Agrochemicals

   

mecoprop-p

(R)-2-(4-chloro-o-tolyloxy)propionic acid

C10H11ClO3 (214.0397)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 308

   

pyrethrin I

Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methyl-1-propenyl)-, (1S)-2-methyl-4-oxo-3-(2Z)-2,4-pentadienyl-2-cyclopenten-1-yl ester, (1R,3R)-

C21H28O3 (328.2038)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins

   

Phosphoadenosine phosphosulfate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]sulfonic acid

C10H15N5O13P2S (506.9862)


3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms. [HMDB] 3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.

   

3-Methoxytyramine

4-(2-aminoethyl)-2-methoxyphenol

C9H13NO2 (167.0946)


3-methoxytyramine, also known as 4-(2-amino-Ethyl)-2-methoxy-phenol or 3-O-Methyldopamine, is classified as a member of the Methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3-methoxytyramine is considered to be slightly soluble (in water) and acidic. 3-methoxytyramine can be found primarily in human brain and most tissues tissues; and in blood, cerebrospinal fluid (csf) or urine. Within a cell, 3-methoxytyramine is primarily located in the cytoplasm The O-methylated derivative of dopamine. Dopamine is methylated by catechol-O-methyltransferase (COMT) to make 3-Methoxytyramine. This compound can be broken down to homovanillic acid by monoamine oxidase and aldehyde dehydrogenase. Elevated concentrations of this compound are indicated for a variety of brain and carcinoid tumors as well as certain mental disorders. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Amprenavir

(3S)-Tetrahydro-3-furanyl ((1S,2R)-3-(((4-aminophenyl)sulphonyl)(2-methylpropyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)carbamic acid

C25H35N3O6S (505.2246)


Amprenavir is only found in individuals that have used or taken this drug. It is a protease inhibitor used to treat HIV infection.Amprenavir inhibits the HIV viral proteinase enzyme which prevents cleavage of the gag-pol polyprotein, resulting in noninfectious, immature viral particles. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Dexamethasone Acetate

Dexamethasone-17-acetate

C24H31FO6 (434.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3264 CONFIDENCE standard compound; INTERNAL_ID 2835

   

Butylate

N,N-bis(2-methylpropyl)(ethylsulfanyl)formamide

C11H23NOS (217.15)


   

Carbimazole

ethyl 3-methyl-2-sulfanylidene-2,3-dihydro-1H-imidazole-1-carboxylate

C7H10N2O2S (186.0463)


Carbimazole is only found in individuals that have used or taken this drug. It is an imidazole antithyroid agent. Carbimazole is metabolized to methimazole, which is responsible for the antithyroid activity. [PubChem]Carbimazole is an aitithyroid agent that decreases the uptake and concentration of inorganic iodine by thyroid, it also reduces the formation of di-iodotyrosine and thyroxine. Once converted to its active form of methimazole, it prevents the thyroid peroxidase enzyme from coupling and iodinating the tyrosine residues on thyroglobulin, hence reducing the production of the thyroid hormones T3 and T4. H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations > H03BB - Sulfur-containing imidazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C885 - Antithyroid Agent

   

typhon

1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one

C14H16ClN3O2 (293.0931)


CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9255 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9197; ORIGINAL_PRECURSOR_SCAN_NO 9195 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9205; ORIGINAL_PRECURSOR_SCAN_NO 9203 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9250; ORIGINAL_PRECURSOR_SCAN_NO 9246 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4784; ORIGINAL_PRECURSOR_SCAN_NO 4780 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4767; ORIGINAL_PRECURSOR_SCAN_NO 4764 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4773; ORIGINAL_PRECURSOR_SCAN_NO 4771 ORIGINAL_ACQUISITION_NO 4761; CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4756 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9251; ORIGINAL_PRECURSOR_SCAN_NO 9247 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9148; ORIGINAL_PRECURSOR_SCAN_NO 9147 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4768; ORIGINAL_PRECURSOR_SCAN_NO 4764 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4761; ORIGINAL_PRECURSOR_SCAN_NO 4756 CONFIDENCE standard compound; INTERNAL_ID 553; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4740; ORIGINAL_PRECURSOR_SCAN_NO 4739 KEIO_ID T112; [MS2] KO009258 KEIO_ID T112; [MS3] KO009259 KEIO_ID T112; [MS3] KO009260 D016573 - Agrochemicals D010575 - Pesticides KEIO_ID T112

   

Loxapine

13-chloro-10-(4-methylpiperazin-1-yl)-2-oxa-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,9,12,14-heptaene

C18H18ClN3O (327.1138)


Loxapine is only found in individuals that have used or taken this drug. It is an antipsychotic agent used in schizophrenia. [PubChem]Loxapine is a dopamine antagonist, and also a serotonin 5-HT2 blocker. The exact mode of action of Loxapine has not been established, however changes in the level of excitability of subcortical inhibitory areas have been observed in several animal species in association with such manifestations of tranquilization as calming effects and suppression of aggressive behavior. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].

   

Gesfid

methyl (E)-3-dimethoxyphosphoryloxybut-2-enoate

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Difloxacin

1-(4-Fluorophenyl)-6-fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid

C21H19F2N3O3 (399.1394)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3666 CONFIDENCE standard compound; INTERNAL_ID 1028

   

(R)-Myclobutanil

2-(4-chlorophenyl)-2-[(1H-1,2,4-triazol-1-yl)methyl]hexanenitrile

C15H17ClN4 (288.1142)


CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9239; ORIGINAL_PRECURSOR_SCAN_NO 9237 CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9204; ORIGINAL_PRECURSOR_SCAN_NO 9201 CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9323; ORIGINAL_PRECURSOR_SCAN_NO 9321 CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9296; ORIGINAL_PRECURSOR_SCAN_NO 9295 CONFIDENCE standard compound; INTERNAL_ID 705; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9303; ORIGINAL_PRECURSOR_SCAN_NO 9300 CONFIDENCE standard compound; INTERNAL_ID 8383 CONFIDENCE standard compound; INTERNAL_ID 2563 D016573 - Agrochemicals D010575 - Pesticides

   

4,4'-Methylenedianiline

4,4-Diaminodiphenylmethane, sodium chloride (3:1)

C13H14N2 (198.1157)


4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens

   

4-Aminophenyl ether

4,4-Diaminodiphenyl ether

C12H12N2O (200.095)


   

Dimethoate

Phosphorodithioic acid, O,O-dimethyl S-(2-(methylamino)-2-oxoethyl) ester

C5H12NO3PS2 (228.9996)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2761 EAWAG_UCHEM_ID 2761; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8379 CONFIDENCE standard compound; INTERNAL_ID 4003 CONFIDENCE standard compound; INTERNAL_ID 3009 D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Oleamide

(9Z)-octadec-9-enamide

C18H35NO (281.2719)


Oleamide is an amide of the fatty acid oleic acid. It is an endogenous substance: it occurs naturally in the body of animals. It accumulates in the cerebrospinal fluid during sleep deprivation and induces sleep in animals. It is being studied as a potential medical treatment for mood and sleep disorders, and cannabinoid-regulated depression. The mechanism of action of oleamides sleep inducing effects is an area of current research. It is likely that oleamide interacts with multiple neurotransmitter systems. Oleamide is structurally related to the endogenous cannabinoid anandamide, and has the ability to bind to the CB1 receptor as a full agonist. Oleamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=301-02-0 (retrieved 2024-07-02) (CAS RN: 301-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

Mepanipyrim

4-methyl-N-phenyl-6-(prop-1-yn-1-yl)pyrimidin-2-amine

C14H13N3 (223.1109)


CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9352; ORIGINAL_PRECURSOR_SCAN_NO 9351 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9350; ORIGINAL_PRECURSOR_SCAN_NO 9348 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9332 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9294; ORIGINAL_PRECURSOR_SCAN_NO 9293 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9316; ORIGINAL_PRECURSOR_SCAN_NO 9313 CONFIDENCE standard compound; INTERNAL_ID 1114; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3062

   

Estazolam

12-chloro-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C16H11ClN4 (294.0672)


Estazolam is only found in individuals that have used or taken this drug. It is a benzodiazepine with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Phosmet

S-((1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl)phosphorodithioic acid O,O-dimethyl ester

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Isatidine

retrorsine

C18H25NO6 (351.1682)


Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

Phosphatidylcholine O-34:2

Phosphorodithioic acid, O,O-diethyl S-((ethylthio)methyl) ester

C7H17O2PS3 (260.0128)


Phosphatidylcholine O-34:2, also known as Thimet or O,O-Diethyl S-ethylmercaptomethyl dithiophosphate, is classified as a member of the Dithiophosphate O-esters. Dithiophosphate O-esters are o-ester derivatives of dithiophosphates, with the general structure RSP(O)(O)=S (R = organyl group). Phosphatidylcholine O-34:2 is a non-carcinogenic (not listed by IARC) potentially toxic compound D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Penbutolol

(2S)-1-(tert-butylamino)-3-(2-cyclopentylphenoxy)propan-2-ol

C18H29NO2 (291.2198)


Penbutolol is only found in individuals that have used or taken this drug. It is a medication in the class of beta blockers, used in the treatment of high blood pressure. [Wikipedia]Penbutolol competes with adrenergic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart and vascular smooth muscle and beta(2)-receptors in the bronchial and vascular smooth muscle. Beta(1)-receptor blockade results in a decrease in resting and exercise heart rate and cardiac output, a decrease in both systolic and diastolic blood pressure, and, possibly, a reduction in reflex orthostatic hypotension. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Trihexyphenidyl

Pharmaceutical associates brand OF trihexyphenidyl hydrochloride

C20H31NO (301.2406)


Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Fenthion

Phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-(methylthio)phenyl) ester

C10H15O3PS2 (278.02)


Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

2-hydroxyflutamide

2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]propanimidic acid

C11H11F3N2O4 (292.0671)


2-hydroxyflutamide is a metabolite of flutamide. Flutamide is an oral nonsteroidal antiandrogen drug primarily used to treat prostate cancer. It competes with testosterone and its powerful metabolite, dihydrotestosterone (DHT) for binding to androgen receptors in the prostate gland. By doing so, it prevents them from stimulating the prostate cancer cells to grow. Flutamide has been largely replaced by a newer member of this class, bicalutamide, due to a better side-effect profile. (Wikipedia) CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4455; ORIGINAL_PRECURSOR_SCAN_NO 4452 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4545; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4476; ORIGINAL_PRECURSOR_SCAN_NO 4471 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4446; ORIGINAL_PRECURSOR_SCAN_NO 4442 CONFIDENCE standard compound; INTERNAL_ID 401; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4449; ORIGINAL_PRECURSOR_SCAN_NO 4447 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen

   

Fludrocortisone acetate

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; INTERNAL_ID 2101 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Meclizine

1-[(4-chlorophenyl)(phenyl)methyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


Meclizine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist used in the treatment of motion sickness, vertigo, and nausea during pregnancy and radiation sickness. [PubChem]Along with its actions as an antagonist at H1-receptors, meclizine also possesses anticholinergic, central nervous system depressant, and local anesthetic effects. Meclizine depresses labyrinth excitability and vestibular stimulation and may affect the medullary chemoreceptor trigger zone. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3084 D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

Hexobarbital

2,4,6(1H,3H,5H)-Pyrimidinetrione,5-(1-cyclohexen-1-yl)-1,5-dimethyl-

C12H16N2O3 (236.1161)


Hexobarbital is only found in individuals that have used or taken this drug. It is a barbiturate that is effective as a hypnotic and sedative. [PubChem]Hexobarbital binds at a distinct binding site associated with a Cl- ionopore at the GABA-A receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Carprofen

(+/-)-2-(3-chloro-9H-carbazol-7-yl)propanoic acid

C15H12ClNO2 (273.0557)


Carprofen is a non-steroidal anti-inflammatory drug (NSAID) that is used by veterinarians as a supportive treatment for the relief of arthritic symptoms in geriatric dogs. Carprofen was previously used in human medicine for over 10 years (1985-1995). It was generally well tolerated, with the majority of adverse effects being mild, such as gastro-intestinal pain and nausea, similar to those recorded with aspirin and other non-steroidal anti-inflammatory drugs. It is no longer marketed for human usage, after being withdrawn on commercial grounds. [Wikipedia] C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Carprofen is a nonsteroid anti-inflammatory agent, acts as a multi-target FAAH/COX inhibitor, with IC50s of 3.9 μM, 22.3 μM and 78.6 μM for COX-2, COX-1 and FAAH, respectively.

   

aniracetam

1-(4-methoxybenzoyl)pyrrolidin-2-one

C12H13NO3 (219.0895)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].

   

Daunorubicin

(8S,10S)-8-acetyl-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-6,8,11-trihydroxy-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione

C27H29NO10 (527.1791)


Daunorubicin is only found in individuals that have used or taken this drug. It is a very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of leukemia and other neoplasms. [PubChem]Daunorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Daunorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors KEIO_ID D106

   

Natamycin

(1R,3S,5R,7R,8E,12R,14E,16E,18E,20E,22R,24S,25R,26S)-22-{[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead. Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

Confertin

Anhydrocumanin

C15H20O3 (248.1412)


A natural product found in Inula hupehensis. A pseudoguaianolide that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by an oxo group at position 5, methyl groups at positions 4a and 8 and a methylidene group at position 3. It has been isolated from the aerial parts of Inula hupehensis.

   

Rhein

4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid

C15H8O6 (284.0321)


Rhein appears as yellow needles (from methanol) or yellow-brown powder. (NTP, 1992) Rhein is a dihydroxyanthraquinone. Rhein is an anthraquinone metabolite of rheinanthrone and senna glycoside is present in many medicinal plants including Rheum palmatum, Cassia tora, Polygonum multiflorum, and Aloe barbadensis. It is known to have hepatoprotective, nephroprotective, anti-cancer, anti-inflammatory, and several other protective effects. Rhein is a natural product found in Cassia renigera, Rheum compactum, and other organisms with data available. Present in Rheum palmatum (Chinese rhubarb). Rhein is found in dock, green vegetables, and garden rhubarb. Rhein is found in dock. Rhein is present in Rheum palmatum (Chinese rhubarb D004791 - Enzyme Inhibitors KEIO_ID R037

   

9-Oxo-ODE

(10E,12Z)-9-Oxooctadeca-10,12-dienoic acid

C18H30O3 (294.2195)


9-OxoODE results from oxidation of the allylic hydroxyl of either 9(S)- or 9(R)-HODE. Rabbit reticulocyte plasma and mitochondrial membranes contain both 9- and 13-oxoODEs, representing about 2\\% of the total linoleate residues in the membranes. Most of these oxidized linoleate residues are esterified to membrane lipids. [HMDB] 9-OxoODE results from oxidation of the allylic hydroxyl of either 9(S)- or 9(R)-HODE. Rabbit reticulocyte plasma and mitochondrial membranes contain both 9- and 13-oxoODEs, representing about 2\\% of the total linoleate residues in the membranes. Most of these oxidized linoleate residues are esterified to membrane lipids.

   

Diguanosine tetraphosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C20H28N10O21P4 (868.0381)


P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).

   

Gluconolactone

(3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-one

C6H10O6 (178.0477)


Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar. Food additive; uses include acidifier, pH control agent, sequestrant C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.

   

2-Aminobenzimidazole

2-Aminobenzimidazole tartrate(2:1), (L)-(+)-isomer

C7H7N3 (133.064)


CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042

   

Bentazone

3-(propan-2-yl)-3,4-dihydro-1H-2λ⁶,1,3-benzothiadiazine-2,2,4-trione

C10H12N2O3S (240.0569)


CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3883; ORIGINAL_PRECURSOR_SCAN_NO 3880 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3853; ORIGINAL_PRECURSOR_SCAN_NO 3852 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3871 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3882; ORIGINAL_PRECURSOR_SCAN_NO 3878 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3897; ORIGINAL_PRECURSOR_SCAN_NO 3895 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3868 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8380 CONFIDENCE standard compound; EAWAG_UCHEM_ID 253 CONFIDENCE standard compound; INTERNAL_ID 2313 CONFIDENCE standard compound; INTERNAL_ID 3258 D010575 - Pesticides > D006540 - Herbicides KEIO_ID B072; [MS2] KO008894 D016573 - Agrochemicals KEIO_ID B072

   

Propionylcarnitine

O-propanoyl-carnitine

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents An O-acylcarnitine compound having propanoyl as the acyl substituent. D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

N-Phenyl-2-naphthylamine

N-beta -Naphthyl-N-phenylamine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28

   

5,6-dihydrouracil

5,6-Dihydro-2,4(1H,3H)-pyrimidinedione

C4H6N2O2 (114.0429)


Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. 3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].

   

3-Methylamino-L-alanine

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Diphenoxylate

Ethyl 1-(3-cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid

C30H32N2O2 (452.2464)


A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Indole-3-acetamide

Indole-3-acetamide (6ci,8ci)

C10H10N2O (174.0793)


Indole-3-acetamide, also known as 2-(3-indolyl)acetamide or IAM, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-acetamide has been detected, but not quantified, in several different foods, such as Alaska wild rhubarbs, lingonberries, butternut squash, pineapples, and agaves. Indole-3-acetamide is also found in the common pea and has been isolated from the etiolated seedlings of the black gram (Phaseolus mungo). Isolated from etiolated seedlings of the black gram (Phaseolus mungo). 1H-Indole-3-acetamide is found in many foods, some of which are elderberry, barley, american cranberry, and herbs and spices. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids KEIO_ID I030 Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].

   

N-(3-Methylbut-2-EN-1-YL)-9H-purin-6-amine

(3-Methyl-but-2-enyl)-(7(9)H-purin-6-yl)-amine

C10H13N5 (203.1171)


N6-prenyladenine, also known as isopentenyladenine or ip, is a member of the class of compounds known as 6-alkylaminopurines. 6-alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. N6-prenyladenine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N6-prenyladenine can be found in a number of food items such as lime, lemon thyme, nectarine, and napa cabbage, which makes n6-prenyladenine a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 74 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance. 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance.

   

Tolterodine

2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-methylphenol

C22H31NO (325.2406)


Tolterodine is only found in individuals that have used or taken this drug. It is an antimuscarinic drug that is used to treat urinary incontinence. Tolterodine acts on M2 and M3 subtypes of muscarinic receptors.Both tolterodine and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This antagonism results in inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

Acetylenedicarboxylic acid

2-Butynedioic acid, potassium salt

C4H2O4 (113.9953)


KEIO_ID A128

   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0634)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

p-Toluenesulfonic acid

4-methylbenzenesulfonic acid

C7H8O3S (172.0194)


p-Toluenesulfonic acid, also known as tosylate or para-toluene sulfonate, is a member of the class of compounds known as p-methylbenzenesulfonates. p-Methylbenzenesulfonates are benzenesulfonic acids (or derivative thereof) carrying a methyl group at the para- position. p-Toluenesulfonic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). p-Toluenesulfonic acid (PTSA or pTsOH) or tosylic acid (TsOH) is an organic compound with the formula CH3C6H4SO3H. It is a white solid that is soluble in water, alcohols, and other polar organic solvents. The CH3C6H4SO2– group is known as the tosyl group and is often abbreviated as Ts or Tos. Most often, TsOH refers to the monohydrate, TsOH•H2O. It is a white solid that is soluble in water, alcohols, and other polar organic solvents (Wikipedia). CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2502; ORIGINAL_PRECURSOR_SCAN_NO 2501 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2509; ORIGINAL_PRECURSOR_SCAN_NO 2508 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2534; ORIGINAL_PRECURSOR_SCAN_NO 2533 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2493; ORIGINAL_PRECURSOR_SCAN_NO 2492 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2571; ORIGINAL_PRECURSOR_SCAN_NO 2570 CONFIDENCE standard compound; INTERNAL_ID 337; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2508; ORIGINAL_PRECURSOR_SCAN_NO 2507

   

13-HOTE

(9Z,11E,15Z)-(13S)-13-Hydroxyoctadeca-9,11,15-trienoic acid

C18H30O3 (294.2195)


13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795) [HMDB] 13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795).

   

Myricitrin

5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.0955)


Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

Ononin

3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O9 (430.1264)


Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Proteinase inhibitor E 64

3-[[[(1S)-1-[[[4-[(aminoiminomethyl)amino]butyl]amino]carbonyl]-3-methylbutyl]amino]carbonyl]-(2S,3S)-oxiranecarboxylic acid

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015

   

N-Formyl-L-aspartate

(2S)-2-[(hydroxymethylidene)amino]butanedioic acid

C5H7NO5 (161.0324)


This compound belongs to the family of Dicarboxylic Acids and Derivatives. These are organic compounds containing exactly two carboxylic acid groups KEIO_ID F022

   

Glutamylglutamic acid

(2S)-2-[(2S)-2-amino-4-carboxybutanamido]pentanedioic acid

C10H16N2O7 (276.0957)


Glutamylglutamic acid is a dipeptide composed of two glutamic acid residues, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamylglutamic acid is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. KEIO_ID G043; [MS2] KO008970 KEIO_ID G043

   

Phenoxyacetic acid

Glycollic acid phenyl ether

C8H8O3 (152.0473)


Phenoxyacetic acid is found in cocoa and cocoa products. Phenoxyacetic acid is a flavouring ingredient. Phenoxyacetic acid is present in cocoa bean Phenoxyacetic acid is a flavouring ingredient. It is found in cocoa and cocoa products. COVID info from PDB, Protein Data Bank KEIO_ID P129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.

   

Succinimide

Dihydro-3-pyrroline-2,5-dione

C4H5NO2 (99.032)


Succinimide is an organic compound with the formula (CH2)2(CO)2NH. This white solid is used in a variety of organic syntheses, as well as in some industrial silver plating processes. The compound is classified as a cyclic imide. It may be prepared by thermal decomposition of ammonium succinate.[4] Succinimide, also known as butanimide, belongs to the class of organic compounds known as pyrrolidine-2-ones. These are pyrrolidines that bear a C=O group at position 2 of the pyrrolidine ring. Succinimide has been identified in urine (PMID: 22409530). Succinimides refers to compounds that contain the succinimide group. These compounds have some notable uses. Several succinimides are used as anticonvulsant drugs, including ethosuximide, phensuximide, and methsuximide.[5] Succinimides are also used to form covalent bonds between proteins or peptides and plastics, which is useful in a variety of assay techniques. Succinimide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-56-8 (retrieved 2024-06-29) (CAS RN: 123-56-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Decanoylcarnitine (C10)

(3R)-3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


Decanoylcarnitine is a member of the class of compounds known as acylcarnitines. More specifically, it is a decanoic acid ester of carnitine. Acylcarnitines were first discovered in the 1940s (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Decanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine decanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular decanoylcarnitine is elevated in the blood or plasma of individuals with obesity in adolescence (PMID: 26910390 ). It is also decreased in the blood or plasma of individuals with adolescent idiopathic scoliosis (PMID: 26928931 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. Acylcarnitine useful in the diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency deficiencyoxidation disorders.(PMID: 12385891) [HMDB]

   

Butyrylcarnitine

(3R)-3-(Butyryloxy)-4-(trimethylammonio)butanoic acid

C11H21NO4 (231.1471)


Butyrylcarnitine, also known as (3R)-3-(butyryloxy)-4-(trimethylammonio)butanoate or L-carnitine butyryl ester, is classified as a member of the acylcarnitines. Acylcarnitines are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. Butyrylcarnitine is considered to be practically insoluble (in water) and acidic. Butyrylcarnitine is elevated in patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, in infants with acute acidosis and generalized muscle weakness, and in middle-aged patients with chronic myopathy localized in muscle (OMIM: 201470). Butyrylcarnitine is elevated in patients with acyl-coa dehydrogenase, short-chain (SCAD) deficiencyin; in infants with acute acidosis and generalized muscle weakness; and in middle-aged patients with chronic myopathy localized in muscle. (OMIM 201470) [HMDB] Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.

   

Mesobilirubinogen

3-(2-{[3-(2-carboxyethyl)-5-[(4-ethyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)methyl]-4-methyl-1H-pyrrol-2-yl]methyl}-5-[(3-ethyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)methyl]-4-methyl-1H-pyrrol-3-yl)propanoic acid

C33H44N4O6 (592.3261)


Mesobilirubinogen (also known as I-urobilinogen) is a tetrapyrrole chemical compound that is closely related to two other compounds: urobilinogen (also known as D-urobilinogen) and stercobilinogen (also known as L-urobilinogen). Specifically, urobilinogen can be reduced to form mesobilirubinogen, and mesobilirubinogen can be further reduced to form stercobilinogen. Confusingly, all three of these compounds are frequently collectively referred to as "urobilinogens". Urobilinogen is the parent compound of both stercobilin (the pigment that is responsible for the brown colour of feces) and urobilin (the pigment that is responsible for the yellow colour of urine). Urobilinogen is formed through the microbial degradation of its parent compound bilirubin. Urobilinogen is actually generated through the degradation of heme, the red pigment in hemoglobin and red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole known as biliverdin along with ferric iron (Fe3+), and carbon monoxide (CO). In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the colour of the biliverdin molecule from blue-green (vert or verd for green) to yellow-red, which is the colour of bilirubin (ruby or rubi for red). In plasma, virtually all the bilirubin is tightly bound to plasma proteins, largely albumin, because it is only sparingly soluble in aqueous solutions at physiological pH. In the sinusoids, unconjugated bilirubin dissociates from albumin, enters the liver cells across the cell membrane through non-ionic diffusion to the smooth endoplasmatic reticulum. In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds 2 additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. The bilirubin diglucuronide is transferred rapidly across the canalicular membrane into the bile canaliculi where it is then excreted as bile into the large intestine. The bilirubin is further degraded (reduced) by microbes present in the large intestine to form a colourless product known as urobilinogen. Urobilinogen that remains in the colon can either be reduced to stercobilinogen and finally oxidized to stercobilin, or it can be directly reduced to stercobilin. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the enterohepatic circulation. This reabsorbed urobilinogen is oxidized and converted to urobilin. The urobilin is processed through the kidneys and then excreted in the urine, which causes the yellowish colour in urine. Urobilinogen is an uribiniloid, the product of bilirubin reduction in multiple sequential reactions. Urobilinogens are colorless chromogens that may in turn be oxidized to respective yellow oxidation products, urobilins. Under normal conditions only small amounts of bilirubin can be found in stools of adults while urobilinoids are predominant bile pigments (50-250 mg/day). Only negligible amounts of fecal urobilinoids are present in the intestinal lumen of infants during the first months of their life, due to undeveloped intestinal microflora capable of reducing bilirubin. This presumably contributes importantly to the pathogenesis of neonatal jaundice. In adults, the urobilinoid production is highly efficient. At times, it is re-excreted in the urine, where it may be later oxidized to urobilin. (PMID: 16504607) [HMDB]

   

delta-Tocotrienol

(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.3028)


delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Tectochrysin

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-phenyl- (9CI)

C16H12O4 (268.0736)


7-methylchrysin, also known as 5-hydroxy-7-methoxyflavone or techtochrysin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 7-methylchrysin is considered to be a flavonoid lipid molecule. 7-methylchrysin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-methylchrysin can be found in pine nut, prunus (cherry, plum), sour cherry, and sweet cherry, which makes 7-methylchrysin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.330 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Sennoside A

(9R)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracen-9-yl]-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-2-carboxylic acid

C42H38O20 (862.1956)


Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Prunetin

5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI

C16H12O5 (284.0685)


Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

4-Octylphenol

1-(p-Hydroxyphenyl)octane

C14H22O (206.1671)


CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4924; ORIGINAL_PRECURSOR_SCAN_NO 4922 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4929; ORIGINAL_PRECURSOR_SCAN_NO 4926 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5507; ORIGINAL_PRECURSOR_SCAN_NO 5506 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5486; ORIGINAL_PRECURSOR_SCAN_NO 5483 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4941; ORIGINAL_PRECURSOR_SCAN_NO 4939 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5519; ORIGINAL_PRECURSOR_SCAN_NO 5518 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

9,10-Phenanthrenequinone

9,10-dihydrophenanthrene-9,10-dione

C14H8O2 (208.0524)


CONFIDENCE standard compound; INTERNAL_ID 19 D009676 - Noxae > D009153 - Mutagens

   

(-)-Wikstromol

dihydro-3-hydroxy-3,4-bis((4-hydroxy-3-methoxyphenyl)methyl)-2(3H)-furanone

C20H22O7 (374.1365)


(-)-Wikstromol is found in fruits. (-)-Wikstromol is obtained from Pinus palustris (pitch pine) and Carissa edulis (agam obtained from Pinus palustris (pitch pine) and Carissa edulis (agam). (-)-Wikstromol is found in fruits and sesame.

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Glucocapangulin

1,6-dihydroxy-3-methyl-8-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C21H20O10 (432.1056)


Glucocapangulin, also known as anthraglycoside b, is a member of the class of compounds known as hydroxyanthraquinones. Hydroxyanthraquinones are compounds containing a hydroxyanthraquinone moiety, which consists of an anthracene bearing a quinone, and hydroxyl group. Thus, glucocapangulin is considered to be an aromatic polyketide lipid molecule. Glucocapangulin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Glucocapangulin can be found in capers, which makes glucocapangulin a potential biomarker for the consumption of this food product. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1].

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.1103)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

5alpha-Cholestane

(1S,2S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane

C27H48 (372.3756)


5alpha-Cholestane is found in potato. Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. (Wikipedia). Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. 5alpha-Cholestane is found in potato.

   

1-Methylguanidine

1-Methylguanidine hydrochloride

C2H7N3 (73.064)


Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

1-Hydroxyisoquinoline

1,2-dihydroisoquinolin-1-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 70 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

14,15-DiHETrE

(±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid

C20H34O4 (338.2457)


14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).

   

12-oxo-PDA

8-[(1S,5S)-4-oxo-5-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoic acid

C18H28O3 (292.2038)


12-oxo-pda, also known as (15z)-12-oxophyto-10,15-dienoate or 12-oxo-10,15(Z)-phytodienoic acid, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, 12-oxo-pda is considered to be an octadecanoid lipid molecule. 12-oxo-pda is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 12-oxo-pda can be found in corn, which makes 12-oxo-pda a potential biomarker for the consumption of this food product. D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

PE(16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H76NO8P (717.5308)


PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PG(16:0/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C40H77O10P (748.5254)


PG(16:0/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

Ubiquinone 6

2-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C39H58O4 (590.4335)


Ubiquinone-6 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-6 has just 6 isoprene units. Normally in humans it has 10. Ubiquinone-6 is an intermediate in the synthesis of Ubiquionone 10. It is an endogenouse compound but it has also been isolated from foods containing bakers yeast. Ubiquionone 10 (CoQ10) is involved in cellular respiration. It is fat-soluble and is therefore mobile in cellular membranes; it plays a unique role in the electron transport chain (ETC). In the inner bacterial membrane, electrons from NADH and succinate pass through the ETC to the oxygen, which is then reduced to water. The transfer of electrons through ETC results in the pumping of H+ across the membrane creating a proton gradient across the membrane, which is used by ATP synthase (located on the membrane) to generate ATP. Isolated from bakers yeast (Saccharomyces cerevisiae)

   

Cytidine triphosphate

({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H16N3O14P3 (482.9845)


Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

1-Pentanol

N-Pentanol, 1-(13)C-labeled CPD

C5H12O (88.0888)


1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient

   

Methyl isobutyl ketone

2-Methylpropyl methyl ketone

C6H12O (100.0888)


Methyl isobutyl ketone (MIBK) is an organic solvent. MIBK is among the top ten most popular organic solvents used in industry. MIBK is occasionally found as a volatile component of urine. MIBK in urine is considered as a biological marker of occupational exposure to this solvent. Olfactory perception is significant but adaptation may occur. The typical toxicity effects of MIBK in humans exposed at 50 to 100 ppm are mucous membrane irritation and weak effects on the central nervous system (CNS) such as headache. Visual dysfunction has been reported in workers exposed to a mixture of organic solvents containing MIBK. Memory impairment was detected in clinical observation on a 44-year-old man who had been exposed to MIBK at 100 ppm for more than 10 years. Regarding to the route of absorption, skin penetration of MIBK is substantial. (PMID: 12592578, 17485256, 16464817, 5556886). Present in orange, lemon, concord grape, vinegar, cheeses, cooked beef, roasted peanut and other foodstuffs. Flavouring ingredient

   

Sulcatone

6-Methylheptan-5-ene-2-one

C8H14O (126.1045)


Sulcatone, also known as methylheptenone or fema 2707, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Sulcatone is a very hydrophobic methylketone, practically insoluble in water, and relatively neutral. It exists as a clear, colorless liquid. Sulcatone can be found in all eukaryotes, ranging from yeast to plants to humans. Sulcatone has a musty, apple green-bean, and pear-like taste. and a citrus-like lemongrass odor. It is a volatile oil component of citronella oil, lemon-grass oil and palmarosa oil. Sulcatone is naturally found in bay leaf, blackberry fruit, sour cherries, cloves, ginger and lavender. In insects and animals, it has a role as an alarm or attractant pheromone. In fact, sulcatone is one of a number of mosquito attractants, especially for those species such as Aedes aegypti with the odor receptor gene Or4 (PMID:25391959 ). Sulcatone is secreted by humans in their sweat and is a compound frequently found in human body odors (but in few other mammals). Sulcoatone is used as a pheromone by ferrets, european badgers, red foxes, treefrogs, bedbugs, wasps and butterflies. Sulcatone is one of several ketones found in Cannabis sativa (PMID:6991645 ). Sulcatone, also known as 6-methylhept-5-en-2-one, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, sulcatone is considered to be an oxygenated hydrocarbon lipid molecule. Sulcatone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Sulcatone is an apple, bitter, and citrus tasting compound and can be found in a number of food items such as oil palm, winter savory, european plum, and swamp cabbage, which makes sulcatone a potential biomarker for the consumption of these food products. Sulcatone can be found primarily in feces and saliva. Sulcatone exists in all eukaryotes, ranging from yeast to humans. Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Formamide

Ameisensaeureamid

CH3NO (45.0215)


Formamide, also known as methanamide or ameisensaeureamid, belongs to the class of organic compounds known as carboximidic acids. These are organic acids with the general formula RC(=N)-OH (R=H, organic group). Formamide, in its pure state, has been used as an alternative solvent for the electrostatic self-assembly of polymer nanofilms. Formamide exists in all living organisms, ranging from bacteria to humans. Formamide has been detected, but not quantified in several different foods, such as hyssops, rose hips, asian pears, brassicas, and green bell peppers. It has been used as a softener for paper and fiber. Inhalation of large amounts of formamide vapor may require medical attention. In the past, formamide was produced by treating formic acid with ammonia, which produces ammonium formate, which in turn yields formamide upon heating:HCOOH + NH3 → HCOO−NH+4HCOO−NH+4 → HCONH2 + H2O. Formamide is also generated by aminolysis of ethyl formate: HCOOCH2CH3 + NH3 → HCONH2 + CH3CH2OH. The current industrial process for the manufacture of formamide involves either the carbonylation of ammonia: CO + NH3 → HCONH2. An alternative two-stage process involves the ammonolysis of methyl formate, which is formed from carbon monoxide and methanol: CO + CH3OH → HCOOCH3HCO2CH3 + NH3 → HCONH2 + CH3OH. Formamide is used in the industrial production of hydrogen cyanide. Formamide has been shown to exhibit hematoxicity in animals and is considered hazardous by prolonged exposure through inhalation, oral intake and dermal absorption. Formamide is a metabolite used for biological monitoring of workers exposed to N-N-dimethylformamide (DMF).(PMID 7622279).

   

CYCLOHEXANOL

CYCLOHEXANOL

C6H12O (100.0888)


Cyclohexanol, also known as hexahydrophenol or hexalin, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Cyclohexanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclohexanol is a camphor, menthol, and phenol tasting compound found in garden tomato (variety), okra, and sweet basil, which makes cyclohexanol a potential biomarker for the consumption of these food products. Cyclohexanol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cyclohexanol is the organic compound with the formula (CH2)5CHOH. The molecule is related to cyclohexane ring by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Billions of kilograms are produced annually, mainly as a precursor to nylon .

   

Gentamicinc1A

gentamycin C1a

C19H39N5O7 (449.2849)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

UDP-N-acetylmuraminate

(2r)-2-{[(2r,3r,4r,5s,6r)-3-(Acetylamino)-2-{[(S)-{[(R)-{[(2r,3s,4r,5r)-5-(2,4-Dioxo-3,4-Dihydropyrimidin-1(2h)-Yl)-3,4-Dihydroxytetrahydrofuran-2-Yl]methoxy}(Hydroxy)phosphoryl]oxy}(Hydroxy)phosphoryl]oxy}-5-Hydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-4-Yl]oxy}propanoic Acid

C20H31N3O19P2 (679.1027)


UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]

   

Desulfoglucotropeolin

Desulfobenzylglucosinolate

C14H19NO6S (329.0933)


A aralkylglucosinolate consisting of glucotropeolin lacking the oxime O-sulfo group.

   

7-Dehydrocholesterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H44O (384.3392)


7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

Lathosterol

(1R,2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C27H46O (386.3548)


Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB] Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

6-Phosphonoglucono-D-lactone

[(2R,3S,4S,5R)-3,4,5-Trihydroxy-6-oxotetrahydro-2H-pyran-2-yl]methyl dihydrogen phosphoric acid

C6H11O9P (258.0141)


6-phosphonoglucono-d-lactone, also known as D-glucono-1,5-lactone 6-phosphate or 6-pgdl, is a member of the class of compounds known as hexose phosphates. Hexose phosphates are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. 6-phosphonoglucono-d-lactone is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphonoglucono-d-lactone can be found in a number of food items such as chicory leaves, pepper (c. chinense), opium poppy, and green bell pepper, which makes 6-phosphonoglucono-d-lactone a potential biomarker for the consumption of these food products. 6-phosphonoglucono-d-lactone can be found primarily in cellular cytoplasm. 6-phosphonoglucono-d-lactone exists in all living species, ranging from bacteria to humans. In humans, 6-phosphonoglucono-d-lactone is involved in warburg effect, which is a metabolic disorder. 6-phosphoglucono-delta-lactone (d-6PGL) is the immediate product of the Glucose-6-phosphate dehydrogenase (G-6-PD), the first enzyme of the hexose monophosphate pathway. (PMID 3711719). The pentose-phosphate pathway provides reductive power and nucleotide precursors to the cell through oxidative and nonoxidative branches. 6-Phosphogluconolactonase is the second enzyme of the oxidative branch and catalyzes the hydrolysis of 6-phosphogluconolactones, the products of glucose 6-phosphate oxidation by glucose-6-phosphate dehydrogenase. By efficiently catalyzing the hydrolysis of d-6PGL, 6-phosphogluconolactonase prevents the reaction between d-6PGL and intracellular nucleophiles; such a reaction would interrupt the functioning of the pentose-phosphate pathway. (PMID 11457850).

   

Anisole

Methoxy-benzene (anisol)

C7H8O (108.0575)


Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent

   

N,N'-diacetylchitobiose

N-[(3R,4R,5S,6R)-5-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,4-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide

C16H28N2O11 (424.1693)


N,N-diacetylchitobiose, also known as (GlcNAc)2, is classified as a member of the Acylaminosugars. Acylaminosugars are organic compounds containing a sugar linked to a chain through N-acyl group. N,N-diacetylchitobiose is considered to be soluble (in water) and acidic. N,N-diacetylchitobiose may be a unique E.coli metabolite N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].

   

Perillyl aldehyde

4-(1-Methylethenyl)-1-cyclohexene1-carboxyaldehyde

C10H14O (150.1045)


(s)-perillaldehyde, also known as P-mentha-1,8-dien-7-al, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (s)-perillaldehyde is considered to be an isoprenoid lipid molecule (s)-perillaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (s)-perillaldehyde is a cherry, fat, and fatty tasting compound found in herbs and spices, which makes (s)-perillaldehyde a potential biomarker for the consumption of this food product (s)-perillaldehyde can be found primarily in saliva. Perillaldehyde, or perilla aldehyde, is a natural organic compound found most abundantly in the perennial herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.

   

Coproporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C36H44N4O8 (660.3159)


Coproporphyrinogen III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrinogen III is a tetrapyrrole dead-end product resulting from the spontaneous oxidation of the methylene bridges of coproporphyrinogen arising from heme synthesis. It is secreted in feces and urine. Coproporphyrinogen III is biosynthesized from the tetrapyrrole hydroxymethylbilane, which is converted by the action of uroporphyrinogen III synthase to uroporphyrinogen III. Uroporphyrinogen III is subsequently converted into coproporphyrinogen III through a series of four decarboxylations. Increased levels of coproporphyrinogens can indicate congenital erythropoietic porphyria or sideroblastic anemia, which are inherited disorders. Porphyria is a pathological state characterized by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: (1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, (2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, and (3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors include disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss and diminished utilization of coproporphyrinogen in the hepatocytes. This may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine. Decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion. Therefore, the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function, intrahepatic cholestasis, and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms (PMID: 3327428). Under certain conditions, coproporphyrinogen III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, hereditary coproporphyria (HCP), congenital erythropoietic porphyria, and sideroblastic anemia. In particular, coproporphyrinogen III is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Coproporphyrinogen III oxidase is deficient in hereditary coproporphyria. These persons usually have enhanced excretion even in a subclinical state of the disease.(PubMed ID 14605502 ) [HMDB]. Coproporphyrinogen III is found in many foods, some of which are cucumber, climbing bean, horseradish, and pepper (c. frutescens). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

NSC627046

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate

[(2R,3S)-2,3-dihydroxy-3-(1H-indol-3-yl)propoxy]phosphonic acid

C11H14NO6P (287.0559)


Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

3,4-Dihydroxyphenylacetaldehyde

Dopal (3,4-Dihydroxyphenyl)acetaldehyde)

C8H8O3 (152.0473)


3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664 [HMDB]. 3,4-Dihydroxyphenylacetaldehyde is found in many foods, some of which are asian pear, pak choy, papaya, and abiyuch. 3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Difructose anhydride III

bis-beta-D-fructofuranose 1,2:2,3-dianhydride

C12H20O10 (324.1056)


   

4-Nitrophenyl β-D-galactopyranoside

4-Nitrophenol-alpha-D-galactopyranoside

C12H15NO8 (301.0798)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

Bryostatins

[(1S,3S,5Z,7R,8E,11S,12S,13E,15S,21R,23R,25S)-25-acetyloxy-1,11,21-trihydroxy-17-[(1R)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.13,7.111,15]nonacos-8-en-12-yl] (2E,4E)-octa-2,4-dienoate

C47H68O17 (904.4456)


Bryostatin 1 is a macrocyclic lactone isolated from the bryozoan Bugula neritina with antineoplastic activity. Bryostatin 1 binds to and inhibits the cell-signaling enzyme protein kinase C, resulting in the inhibition of tumor cell proliferation, the promotion of tumor cell differentiation, and the induction of tumor cell apoptosis. This agent may act synergistically with other chemotherapeutic agents. (NCI04) Bryostatin 1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83314-01-6 (retrieved 2024-12-16) (CAS RN: 83314-01-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Hydroxyacetone

Hydroxymethyl methyl ketone

C3H6O2 (74.0368)


Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

Diazene

Diimide

H2N2 (30.0218)


   

Leucodopachrome

(2S)-5,6-dihydroxy-2,3-dihydro-1H-indole-2-carboxylic acid

C9H9NO4 (195.0532)


Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatically product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus dopa. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis. (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639) [HMDB]. Leucodopachrome is found in many foods, some of which are chives, saffron, leek, and red beetroot. Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatic product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus DOPA. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639).

   

3-CHLOROCATECHOL

3-Chloro-1,2-benzenediol

C6H5ClO2 (143.9978)


D004791 - Enzyme Inhibitors

   

Indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


Indoxyl, also known as 1H-indol-3-ol, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. Indoxyl is isomeric with oxindol and is obtained as an oily liquid. Indoxyl exists in all living organisms, ranging from bacteria to humans. Indoxyl is obtained from indican, which is a glycoside. Obermayers reagent is a dilute solution FeCl3 in hydrochloric acid. The hydrolysis of indican yields β-D-glucose and indoxyl. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent such as atmospheric oxygen. In chemistry, indoxyl is a nitrogenous substance with the chemical formula: C8H7NO. Indoxyl can be found in urine and is titrated with Obermayers reagent. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, eg. atmospheric oxygen.

   

Coproporphyrin III

3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid

C36H38N4O8 (654.269)


Coproporphyrin III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrin III is a tetrapyrrole dead-end product from the spontaneous oxidation of the methylene bridges of coproporphynogen, arising from heme synthesis and secreted in feces and urine. Increased levels of coproporphyrins can indicate congenital erythropoietic porphyria or sideroblastic anaemia, which are inherited disorders. Porphyria is a pathological state characterised by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: 1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, 2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, 3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors includes disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss from, and diminished utilization of coproporphyrinogen in the hepatocytes, which may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine; decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion, so that the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function and intrahepatic cholestasis; and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms. (PMID: 3327428). Excreted in small amounts in urine and faeces, found in blood, yeast, microorganisms etc. By-product of Haem formation in vivo, due to oxidation of the porphyrinogen (CCD) Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

   

Biotinyl-5'-AMP

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({5-[(4S)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl]pentanoyl}oxy)phosphinic acid

C20H28N7O9PS (573.1407)


5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2). Carboxylase biotinylation is catalyzed by the enzyme holocarboxylase synthetase (HCS) through a reaction that involves the transformation of biotin into B-AMP and its subsequent attachment to a specific lysine residue in the carboxylases. B-AMP is also required to activate a signal transduction cascade that includes a soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG). The regulatory role of biotin in the biotin cycle seems to be limited to the expression of proteins involved in the transport and utilization of exogenous vitamin while having no effect on biotinidase mRNA levels, enzyme responsible for biotin recycling during carboxylase turnover. Multiple carboxylase deficiency (MCD) is a life-threatening disease characterized by the lack of carboxylase activities because of deficiency of HCS activity. (PMID: 15905112, 11959985). 5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2).

   

Diadenosine triphosphate

{[(2S,3R,4S,5S)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid

C20H27N10O16P3 (756.0819)


Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors. AP3A FHIT (Fragile histidine Triad) is a human tumor suppressor gene. The Fhit protein is believed to inhibit tumor growth by inducing apoptosis through interaction with AP3A. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 12833632, 11896678). Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors.

   

Lacto-N-biose I

N-[(2S,3R,4R,5S,6R)-2,5-Dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]ethanimidate

C14H25NO11 (383.1428)


Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).

   

Algestone

16alpha,17-dihydroxypregn-4-ene-3,20-dione

C21H30O4 (346.2144)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents

   

Prostaglandin E3

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.

   

1,1-Bis(p-chlorophenyl)-2-chloroethene

1-chloro-4-[2-chloro-1-(4-chlorophenyl)ethenyl]benzene

C14H9Cl3 (281.977)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Chloroacetaldehyde

Chloroacetaldehyde hydrate

C2H3ClO (77.9872)


Being bifunctional, chloroacetaldehyde is a versatile precursor to many heterocyclic compounds. It condenses with thiourea derivatives to give aminothiazoles. This reaction was once important as a precursor to sulfathiazole, one of the first sulfa drugs. Chloroacetaldehyde is the organic compound with the formula ClCH2CHO. Like some related compounds, it is highly electrophilic reagent and a potentially dangerous alkylating agent. The compound is not normally encountered in the anhydrous form, but rather as the hydrate (acetal), ClCH2CH(OH)2. Chloroacetaldehyde is a useful intermediate in the synthesis, e.g. of 2-aminothiazole or many pharmaceutical compounds. Another use is to facilitate bark removal from tree trunks.

   

Nedocromil

9-Ethyl-6,9-dihydro-4,6-dioxo-10-propyl-4H-pyrano(3,2-g)quinoline-2,8-dicarboxylic acid

C19H17NO7 (371.1005)


Nedocromil is only found in individuals that have used or taken this drug. It is a pyranoquinolone derivative that inhibits activation of inflammatory cells which are associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. [PubChem]Nedocromil has been shown to inhibit the in vitro activation of, and mediator release from, a variety of inflammatory cell types associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. Nedocromil inhibits activation and release of inflammatory mediators such as histamine, prostaglandin D2 and leukotrienes c4 from different types of cells in the lumen and mucosa of the bronchial tree. These mediators are derived from arachidonic acid metabolism through the lipoxygenase and cyclo-oxygenase pathways. The mechanism of action of nedocromil may be due partly to inhibition of axon reflexes and release of sensory neuropeptides, such as substance P, neurokinin A, and calcitonin-geneñrelated peptides. The result is inhibition of bradykinin-induced bronchoconstriction. Nedocromil does not posess any bronchodilator, antihistamine, or corticosteroid activity. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).

   

Quazepam

7-chloro-5-(2-fluorophenyl)-1-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-1,4-benzodiazepine-2-thione

C17H11ClF4N2S (386.0268)


Quazepam is only found in individuals that have used or taken this drug. It is a drug which is a benzodiazepine derivative. It induces impairment of motor function and has hypnotic properties. Quazepam is used to treat insomnia.Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Diacetylmonoxime

3-hydroxyiminobutan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

Sertindole

1-(2-(4-(5-Chloro-1-(4-fluorophenyl)-1H-indol-3-yl)-1-piperidinyl)ethyl)-2-imidazolidinone

C24H26ClFN4O (440.1779)


Sertindole, a neuroleptic, is one of the newer antipsychotic medications available. Serdolect is developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it has activity at dopamine and serotonin receptors in the brain. It is used in the treatment of schizophrenia. It is classified chemically as a phenylindole derivative. It was first marketed in 1996 in several European countries before being withdrawn two years later because of numerous cardiac adverse effects. It has once again been approved and should soon be available on the French and Australian market. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Succimer

Butanedioic acid, 2,3-dimercapto-, (r*,s*)-isomer

C4H6O4S2 (181.9708)


Succimer is only found in individuals that have used or taken this drug. It is a mercaptodicarboxylic acid used as an antidote to heavy metal poisoning because it forms strong chelates with them. [PubChem]Succimer is a heavy metal chelator. It binds with high specificity to ions of lead in the blood to form a water-soluble complex that is subsequently excreted by the kidneys. Succimer can also chelate mercury, cadmium, and arsenic in this manner. D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes

   

Quinestrol

(1S,10R,11S,14R,15S)-5-(cyclopentyloxy)-14-ethynyl-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-ol

C25H32O2 (364.2402)


Quinestrol is only found in individuals that have used or taken this drug. It is a 3-cyclopentyl ether of ethinyl estradiol.Estrogens diffuse into their target cells and interact with a protein receptor (the estrogen receptor). Estrogen interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. The combination of an estrogen with a progestin suppresses the hypothalamic-pituitary system, decreasing the secretion of gonadotropin-releasing hormone (GnRH). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

Brinzolamide

(R)-4-(Ethylamino)-3,4-dihydro-2-(3-methoxypropyl)-2H-thieno(3,2-e)-1,2-thiazine-6-sulfonamide 1,1-dioxide

C12H21N3O5S3 (383.0643)


Brinzolamide is a highly specific, non-competitive, reversible carbonic anhydrase inhibitor. Carbonic anhydrase (CA) is an enzyme found in many tissues of the body including the eye. It catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In humans, carbonic anhydrase exists as a number of isoenzymes, the most active being carbonic anhydrase II (CA-II). Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. The result is a reduction in intraocular pressure. Brinzolamide is indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

Lithium carbonate

Lithium carbonate

CLi2O3 (74.0168)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D004791 - Enzyme Inhibitors

   

Cinoxacin

5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylic acid

C12H10N2O5 (262.059)


Cinoxacin is only found in individuals that have used or taken this drug. It is a synthetic antimicrobial related to oxolinic acid and nalidixic acid and used in urinary tract infections. [PubChem]Evidence exists that cinoxacin binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. It appears to also inhibit DNA gyrase. This enzyme is necessary for proper replicated DNA separation. By inhibiting this enzyme, DNA replication and cell division is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors

   

Iopanoic acid

2-[(3-amino-2,4,6-triiodophenyl)methyl]butanoic acid

C11H12I3NO2 (570.8002)


CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5478; ORIGINAL_PRECURSOR_SCAN_NO 5476 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5461 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5564; ORIGINAL_PRECURSOR_SCAN_NO 5559 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5494; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5460 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5485; ORIGINAL_PRECURSOR_SCAN_NO 5483 V - Various > V08 - Contrast media > V08A - X-ray contrast media, iodinated > V08AC - Watersoluble, hepatotropic x-ray contrast media

   

Ustiloxin A

2-Amino-5-({4-[(carboxymethyl)-C-hydroxycarbonimidoyl]-3-ethyl-6,9,11,15-tetrahydroxy-3-methyl-10-(methylamino)-7-(propan-2-yl)-2-oxa-5,8-diazabicyclo[10.3.1]hexadeca-1(16),5,8,12,14-pentaen-13-yl}sulphinyl)-4-hydroxypentanoic acid

C28H43N5O12S (673.2629)


Ustiloxin A is found in cereals and cereal products. Ustiloxin A is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Isolated from the false smut balls caused by Ustilaginoidea virens on rice. Ustiloxin A is found in cereals and cereal products.

   

Fucosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(E,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosus. Fucosterol is found in lemon grass and coconut. Fucosterol is found in coconut. Characteristic sterol of seaweeds; isolated from bladderwrack Fucus vesiculosu Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

Jatrophon

Jatrophone

C20H24O3 (312.1725)


   

Simplexin

CID 442086

C30H44O8 (532.3036)


   

alpha-Cubebene

(1R,5S,6R,7S,10R)-4,10-dimethyl-7-(propan-2-yl)tricyclo[4.4.0.0^{1,5}]dec-3-ene

C15H24 (204.1878)


alpha-Cubebene is found in cloves. alpha-Cubebene is a constituent of oil of cubeb pepper (Piper cubeba).

   

Cyanobenzene

Benzonitrile; Phenyl cyanide; Cyanobenzene

C7H5N (103.0422)


   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1358)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

5,6,7-Trimethoxyflavone

Baicalein 5,6,7-trimethyl ether

C18H16O5 (312.0998)


5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1]. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1].

   

Streptamine

1,2,3,5-Cyclohexanetetrol, 4,6-diamino-

C6H14N2O4 (178.0954)


   

(R)-Oxypeucedanin

7H-Furo[3,2-g][1]benzopyran-7-one, 4-((3,3-dimethyloxiranyl)methoxy)-, (S-)-

C16H14O5 (286.0841)


(r)-oxypeucedanin, also known as hishigado or phosphine, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one (r)-oxypeucedanin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-oxypeucedanin can be found in carrot, lemon, parsley, and wild carrot, which makes (r)-oxypeucedanin a potential biomarker for the consumption of these food products. (R)-Oxypeucedanin is a member of psoralens. 4-[(3,3-Dimethyloxiran-2-yl)methoxy]furo[3,2-g]chromen-7-one is a natural product found in Prangos latiloba, Citrus medica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (R)-Oxypeucedanin is found in herbs and spices. (R)-Oxypeucedanin is isolated from Angelica glauc Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2]. Oxypeucedanin is a furocoumarin derivative isolated from Angelica dahurica. Oxypeucedanin is a selective open-channel blocker, inhibits the hKv1.5 current with an IC50 value of 76 nM.?Oxypeucedanin prolongs cardiac action potential duration (APD), is a potential antiarrhythmic agent for atrial fibrillation[1]. Oxypeucedanin induces cell?apoptosis through inhibition of cancer cell migration[2].

   

Gartanin

1,3,5,8-Tetrahydroxy-2,4-bis(3-methyl-2-butenyl)-9H-xanthen-9-one, 9CI

C23H24O6 (396.1573)


Gartanin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. It has a role as an antineoplastic agent and a plant metabolite. It is a member of xanthones and a polyphenol. Gartanin is a natural product found in Morus insignis, Pentadesma butyracea, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. Constituent of the fruits of Garcinia mangostana (mangosteen). Gartanin is found in fruits and purple mangosteen. Gartanin is found in fruits. Gartanin is a constituent of the fruits of Garcinia mangostana (mangosteen) Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2]. Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2].

   

Usnic acid

2,6-Diacetyl-3,7,9-trihydroxy-8,9b-dimethyldibenzofuran-1-one

C18H16O7 (344.0896)


A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Pedunculagin

(2S,22R)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.02,19.05,10.011,16.026,31.032,37]nonatriaconta-5,7,9,11,13,15,26,28,30,32,34,36-dodecaene-4,17,25,38-tetrone

C34H24O22 (784.0759)


   

Embelin

2,5-dihydroxy-3-undecylcyclohexa-2,5-diene-1,4-dione

C17H26O4 (294.1831)


Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Pratensein

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


Pratensein is a member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a pratensein(1-). Pratensein is a natural product found in Dalbergia sissoo, Cicer chorassanicum, and other organisms with data available. See also: Trifolium pratense flower (part of). A member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. Constituent of Cicer arietinum (chickpea). 3-Hydroxybiochanin A is found in peanut, chickpea, and pulses. Pratensein is found in chickpea. Pratensein is a constituent of Cicer arietinum (chickpea)

   

Diphyllin

9-(1,3-Benzodioxol-5-yl)-4-hydroxy-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; NSC 309691

C21H16O7 (380.0896)


Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].

   

justicidin A

justicidin A

C22H18O7 (394.1052)


   

Graveoline

2-(2H-1,3-benzodioxol-5-yl)-1-methyl-1,4-dihydroquinolin-4-one

C17H13NO3 (279.0895)


Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

methoxychlor

1-methoxy-4-[2,2,2-trichloro-1-(4-methoxyphenyl)ethyl]benzene

C16H15Cl3O2 (344.0138)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Methylmercury chloride

Methylmercury chloride

CH3ClHg (251.963)


   

Pifithrin-Beta

2-p-Tolyl-5,6,7,8-tetrahydrobenzo[d]imidazo[2,1-b]thiazole

C16H16N2S (268.1034)


   

Chloramphenicol Succinate

Chloramphenicol Succinate

C15H16Cl2N2O8 (422.0284)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Same as: D07675

   

Lavoltidine

{1-methyl-5-[(3-{3-[(piperidin-1-yl)methyl]phenoxy}propyl)amino]-1H-1,2,4-triazol-3-yl}methanol

C19H29N5O2 (359.2321)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

dTDP-D-desosamine

dTDP-D-desosamine; dTDP-3-dimethylamino-3,4,6-trideoxy-D-glucose; dTDP-alpha-D-desosamine; dTDP-3-dimethylamino-3,4,6-trideoxy-alpha-D-glucose; dTDP-3-dimethylamino-3,4,6-trideoxy-alpha-D-glucopyranose

C18H31N3O13P2 (559.1332)


   

Pikromycin

Albomycetin

C28H47NO8 (525.3302)


A macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.

   

heliomycin

Resistomycin

C22H16O6 (376.0947)


C254 - Anti-Infective Agent > C258 - Antibiotic

   

daunomycinol

(13S)-13-Dihydrodaunorubicin

C27H31NO10 (529.1948)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent The (13S)-diastereomer of 13-dihydrodaunorubicin. An aminoglycoside antibiotic that is (1S,3S)-3,5,12-trihydroxy-3-(1-hydroxyethyl)-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene having a 3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl residue attached at position 1 via a glycosidic linkage.

   

5'-Deoxy-5-fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-4-hydroxy-1,2-dihydropyrimidin-2-one

C9H11FN2O5 (246.0652)


5-Deoxy-5-fluorouridine is a metabolite of capecitabine. Capecitabine (Xeloda, Roche) is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to 5-fluorouracil in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. (Wikipedia) D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].

   

Nedaplatin

Nedaplatin

C2H8N2O3Pt (303.0183)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent > C1450 - Platinum Compound D000970 - Antineoplastic Agents Same as: D01416

   

BPAquinone

4,5-Bisphenol-o-quinone

C15H14O3 (242.0943)


   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

delta-Guanidinovaleric acid

5-carbamimidamidopentanoic acid

C6H13N3O2 (159.1008)


   

IAA-94

(S)-2-((6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)acetic acid

C17H18Cl2O4 (356.0582)


D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

NS-102

5-Nitro-6,7,8,9-tetrahydrobenzo(G)indole-2,3-dione-3-oxime

C12H11N3O4 (261.075)


NS-102 is a selective kainate (GluK2) receptor antagonist. NS-102 is a potent GluR6/7 receptor antagonist[1][2][3].

   

Domoic acid

4-[(2E,4Z)-6-carboxy-6-methylhexa-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-carboxylic acid

C15H21NO6 (311.1369)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Isodomoic acid F is found in mollusks. Isodomoic acid F is isolated from mussels. Isolated from mussels. Isodomoic acid F is found in mollusks.

   

PS(16:0/18:1(9Z))

(2S)-2-amino-3-({[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H76NO10P (761.5207)


PS(16:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

5-Hydroxynorvaline-betaxanthin

1,1-Dichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethylene

C14H8Cl4 (315.938)


   

1,2-Dichlorobenzene

Ortho-dichlorobenzene

C6H4Cl2 (145.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

alpha-Methylstyrene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


alpha-Methylstyrene belongs to the family of Phenylpropenes. These are compounds containing a phenylpropene moeity, which consists of a propene substituent bound to a phenyl group.

   

Tridecanol

1-Tridecanol, trialuminum salt

C13H28O (200.214)


1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium. [HMDB] 1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium.

   

Silux

2-Hydroxy-3-{4-[2-(4-{2-hydroxy-3-[(2-methylprop-2-enoyl)oxy]propoxy}phenyl)propan-2-yl]phenoxy}propyl 2-methylprop-2-enoic acid

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

Deforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor Same as: D08900

   

CE(18:2(9Z,12Z))

(2R,5S,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl (9Z,12Z)-octadeca-9,12-dienoate

C45H76O2 (648.5845)


Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694) [HMDB] Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694). Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

Benzeneacetonitrile

laquo omegaraquo -Cyanotoluene

C8H7N (117.0578)


Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi. Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.

   

2-Nitrobenzoic acid

O-Carboxynitrobenzene

C7H5NO4 (167.0219)


   

Isophosphamide mustard

N,N-di-(2-chloroethyl)phosphorodiamidic acid

C4H11Cl2N2O2P (219.9935)


Isophosphamide mustard is a metabolite of ifosfamide. Ifosfamide (also marketed as Mitoxana and Ifex) is a nitrogen mustard alkylating agent used in the treatment of cancer. It is sometimes abbreviated IFO. (Wikipedia) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents Same as: D09364

   

Chavicol

laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene

C9H10O (134.0732)


Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.

   

Aplysin

[3S-(3alpha,3abeta,8bbeta)]-7-Bromo-2,3,3a,8b-tetrahydro-3,3a,6,8b-tetramethyl-1H-cyclopenta[b]benzofuran

C15H19BrO (294.0619)


   

Actinamine

4,6-bis(methylamino)cyclohexane-1,2,3,5-tetrol

C8H18N2O4 (206.1267)


   

Vinyl ether

(ethenyloxy)ethene

C4H6O (70.0419)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AA - Ethers

   

Mecoprop

4-Chloro-2-methylphenoxy-alpha-propionic acid

C10H11ClO3 (214.0397)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8420 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Graveoline

Graveoline

C17H13NO3 (279.0895)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

Cnidin

4-[(3-Methyl-2-buten-1-yl)oxy]-7H-Furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-[(3-methyl-2-butenyl)oxy]- (8CI,9CI); Isoimperatorin (6CI); 4-[(3-Methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one

C16H14O4 (270.0892)


Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Senna

(9S)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracen-9-yl]-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracene-2-carboxylic acid

C42H38O20 (862.1956)


Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Usnic_acid

4,10-diacetyl-11,13-dihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(9),6,10,12-tetraene-3,5-dione

C18H16O7 (344.0896)


7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Methyl_cinnamate

InChI=1/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7

C10H10O2 (162.0681)


Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Chelidonic_acid

InChI=1/C7H4O6/c8-3-1-4(6(9)10)13-5(2-3)7(11)12/h1-2H,(H,9,10)(H,11,12)

C7H4O6 (184.0008)


Chelidonic acid is a carbonyl compound and a member of pyrans. Chelidonic acid is a natural product found in Zea mays, Leucojum aestivum, and other organisms with data available. See also: Chelidonium majus flowering top (part of). Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].

   

Methyl cinnamate

3-Phenyl-methyl ester(2E)-2-propenoic acid

C10H10O2 (162.0681)


Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

pimaricin

22-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


   

(1S,2S)-(+)-1,2-Diaminocyclohexane

1,2-Cyclohexanediamine, (trans)-(S)-isomer

C6H14N2 (114.1157)


   

3,5-Dihydroxyphenylglycine

2-amino-2-(3,5-dihydroxyphenyl)acetic acid

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

D-Gluconic acid, delta-lactone

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-one

C6H10O6 (178.0477)


   

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enimidate

C18H27NO3 (305.1991)


   

Bryo 1

25-(Acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl octa-2,4-dienoic acid

C47H68O17 (904.4456)


   

Chebulagic acid

2-[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM.

   

Cholestane

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane

C27H48 (372.3756)


   

Gabexate

ethyl 4-[(6-carbamimidamidohexanoyl)oxy]benzoate

C16H23N3O4 (321.1688)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

Hexenal

alpha,beta-Hexylenaldehyde

C6H10O (98.0732)


Constituent of many foods. Flavouring ingredient. 2-Hexenal is found in many foods, some of which are black elderberry, ginkgo nuts, cucumber, and burdock. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

Methyl red

2-{2-[4-(dimethylamino)phenyl]diazen-1-yl}benzoic acid

C15H15N3O2 (269.1164)


D004396 - Coloring Agents

   

Proscillaridin

5-{11-hydroxy-2,15-dimethyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl}-2H-pyran-2-one

C30H42O8 (530.288)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

5,6-dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   
   

DL-beta-Hydroxybutyric acid

DL-beta-Hydroxybutyric acid

C4H8O3 (104.0473)


(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].

   

Techtochrysin

5-Hydroxy-7-methylflavone; 7-O-Methylchrysin; Tectochrysine

C16H12O4 (268.0736)


Tectochrysin is a monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. It has a role as a plant metabolite, an antidiarrhoeal drug and an antineoplastic agent. It is a monohydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Tectochrysin is a natural product found in Hedychium spicatum, Populus laurifolia, and other organisms with data available. A monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Embelin

2,5-Cyclohexadiene-1,4-dione, 2,5-dihydroxy-3-undecyl- (9CI)

C17H26O4 (294.1831)


Embelin is a member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. It has a role as a hepatitis C protease inhibitor, an antimicrobial agent, an antineoplastic agent and a plant metabolite. Embelin is a natural product found in Ardisia paniculata, Embelia tsjeriam-cottam, and other organisms with data available. A member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Ononin

3-(4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O9 (430.1264)


Ononin is a 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of 4-methoxyisoflavones and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a formononetin. Ononin is a natural product found in Cicer chorassanicum, Thermopsis lanceolata, and other organisms with data available. See also: Astragalus propinquus root (part of). A 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

anthraglycoside B

1,6-Dihydroxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C21H20O10 (432.1056)


Emodin 8-glucoside is a dihydroxyanthraquinone. Emodin-8-glucoside is a natural product found in Rheum palmatum, Rumex patientia, and other organisms with data available. See also: Reynoutria multiflora root (has part). Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

Myricitrin

5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.0955)


Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-). Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available. A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

UsnicAcid

(2R)-4,10-diacetyl-3,11,13-trihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(13),3,6,9,11-pentaen-5-one

C18H16O7 (344.0896)


(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].

   

Maleic Acid

Maleic Acid

C4H4O4 (116.011)


D004791 - Enzyme Inhibitors Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes. Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

   

Benzyl cyanide

Benzeneacetonitrile

C8H7N (117.0578)


A nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a phenyl group.

   

Dehydrocorydaline

13-Methylpalmatine

C22H24NO4+ (366.1705)


Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

dihydrouracil

"5,6-DIHYDROURACIL"

C4H6N2O2 (114.0429)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].

   

6-METHYL-5-HEPTEN-2-ONE

6-METHYL-5-HEPTEN-2-ONE

C8H14O (126.1045)


Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Emodin 8-glucoside

1-beta-D-Glucopyranosyloxy-3-methyl-6-hydroxy-8-hydroxy-9,10-anthraquinone

C21H20O10 (432.1056)


Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-1-O-β-D-glucopyranoside, isolated from medicinal plant Polygonum cuspidatum Sieb. & Zucc, is a potent and noncompetitive bacterial neuraminidase (BNA) inhibitor with an IC50 of 0.85 μM[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

Pinobanksin

(2R) -2,3-Dihydro-3beta,5,7-trihydroxy-2alpha-phenyl-4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Pinobanksin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. It has a role as an antimutagen, an antioxidant and a metabolite. It is a trihydroxyflavanone and a secondary alpha-hydroxy ketone. Pinobanksin is a natural product found in Populus koreana, Ozothamnus stirlingii, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. Pinobanksin has apoptotic induction in a B-cell lymphoma cell line[1].

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

ononin

3-(4-methoxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O9 (430.1264)


Origin: Plant; Formula(Parent): C22H22O9; Bottle Name:Ononin; PRIME Parent Name:Formononetin-7-O-glucoside; PRIME in-house No.:S0305, Pyrans Annotation level-1 Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Prunetin

4H-1-Benzopyran-4-one, 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

Pratensein

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Schleimsaure

Saccharic acid

C6H10O8 (210.0376)


   

Gedunin

NCGC00179126-03_C28H34O7_(6R,6aS,6bR,7aS,10S,10aS,12bR)-10-(3-Furyl)-4,4,6a,10a,12b-pentamethyl-3,8-dioxo-3,4,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydronaphtho[2,1-f]oxireno[d]isochromen-6-yl acetate

C28H34O7 (482.2304)


A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.

   

GLUTARIC ANHYDRIDE

GLUTARIC ANHYDRIDE

C5H6O3 (114.0317)


   

gabexate

gabexate

C16H23N3O4 (321.1688)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D006401 - Hematologic Agents > D000925 - Anticoagulants C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

Fucosterol

(24E)-24-n-propylidenecholesterol;(3beta,24E)-stigmasta-5,24(28)-dien-3-ol;(E)-stigmasta-5,24(28)-dien-3beta-ol;24E-ethylidene-cholest-5-en-3beta-ol;fucosterin;trans-24-ethylidenecholesterol

C29H48O (412.3705)


A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24 (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol can be found in horseradish tree and sunflower, which makes (3b,5a,24(28)e)-stigmasta-7,24(28)-dien-3-ol a potential biomarker for the consumption of these food products. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

ACon1_001643

4H-1-Benzopyran-4-one,5,6,7-trimethoxy-2-phenyl-

C18H16O5 (312.0998)


5,6,7-trimethoxyflavone is a trimethoxyflavone that is the 5,6,7-trimethyl ether derivative of baicalein. It has been isolated from the plant Callicarpa japonica and has been shown to exhibit antiviral activity. It has a role as a plant metabolite and an anti-HSV-1 agent. It is functionally related to a baicalein. 5,6,7-Trimethoxyflavone is a natural product found in Callicarpa japonica, Friesodielsia velutina, and other organisms with data available. A trimethoxyflavone that is the 5,6,7-trimethyl ether derivative of baicalein. It has been isolated from the plant Callicarpa japonica and has been shown to exhibit antiviral activity. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1]. 5,6,7-Trimethoxyflavone is a novel p38-α MAPK inhibitor with an anti-inflammatory effect. 5,6,7-Trimethoxyflavone is isolated from several plants including Zeyhera tuberculosa, Callicarpa japonica, and Kickxia lanigera[1].

   

Terpenol

3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, sodium salt, (1S)-

C10H18O (154.1358)


Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

1ST40320

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methyl-, (3Z,5R,6S,14aR,14bR)-

C18H25NO6 (351.1682)


Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

2-AMINOBENZIMIDAZOLE

1-METHYLBENZOTRIAZOLE

C7H7N3 (133.064)


A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003

   

fenthion

fenthion

C10H15O3PS2 (278.02)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480

   

13-HoTrE

13-HoTrE

C18H30O3 (294.2195)


A hydroxyoctadecatrienoic acid that consists of 9Z,11E,15Z-octadecatrienoic acid bearing an additional 13-hydroxy substituent. CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0099.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001341.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]

   

9-Keto-Octadecadienoic Acid

9-keto-octadeca-10E,12Z-dienoic acid

C18H30O3 (294.2195)


   

MCPA

(4-Chloro-2-methylphenoxy)acetic acid

C9H9ClO3 (200.024)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 261

   

Myclobutanil

Pesticide4_Myclobutanil_C15H17ClN4_2-(4-Chlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)hexanenitrile

C15H17ClN4 (288.1142)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2957

   

Phosmet

Phosmet

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3101

   

fludrocortisone

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3240 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

etodolac

etodolac

C17H21NO3 (287.1521)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308

   

Protopine

Protopine

C20H19NO5 (353.1263)


Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Sinapine

Sinapoylcholine

[C16H24NO5]+ (310.1654)


Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2601; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Diphenoxylate

Diphenoxylate(to be removed)

C30H32N2O2 (452.2464)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Dehydrocorydaline

Dehydrocorydaline

[C22H24NO4]+ (366.1705)


Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Rhein

2-Anthracenecarboxylic acid, 9,10-dihydro-4,5-dihydroxy-9,10-dioxo-

C15H8O6 (284.0321)


D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.164 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.166

   

cinoxacin

cinoxacin

C12H10N2O5 (262.059)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.746 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740

   

aniracetam

aniracetam

C12H13NO3 (219.0895)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].

   

Amprenavir

Amprenavir (Agenerase)

C25H35N3O6S (505.2246)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Carbimazole

Carbimazole

C7H10N2O2S (186.0463)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H03 - Thyroid therapy > H03B - Antithyroid preparations > H03BB - Sulfur-containing imidazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C885 - Antithyroid Agent CONFIDENCE standard compound; INTERNAL_ID 719; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6042; ORIGINAL_PRECURSOR_SCAN_NO 6040 CONFIDENCE standard compound; INTERNAL_ID 719; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6076; ORIGINAL_PRECURSOR_SCAN_NO 6074 CONFIDENCE standard compound; INTERNAL_ID 719; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6075; ORIGINAL_PRECURSOR_SCAN_NO 6072 CONFIDENCE standard compound; INTERNAL_ID 719; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6087; ORIGINAL_PRECURSOR_SCAN_NO 6085 CONFIDENCE standard compound; INTERNAL_ID 719; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6102; ORIGINAL_PRECURSOR_SCAN_NO 6100

   

Coproporphyrin III

Coproporphyrin III

C36H38N4O8 (654.269)


Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

   

METHYLGUANIDINE

N-methylguanidine

C2H7N3 (73.064)


A guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group.

   

3-Methoxytyramine

4-(2-Aminoethyl)-2-methoxyphenol

C9H13NO2 (167.0946)


A monomethoxybenzene that is dopamine in which the hydroxy group at position 3 is replaced by a methoxy group. It is a metabolite of the neurotransmitter dopamine and considered a potential biomarker of pheochromocytomas and paragangliomas. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. A flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

3-Methylxanthine

3-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMSNIKWWOQHZGF-UHFFFAOYSA-N_STSL_0034_3-Methylxanthine_0500fmol_180410_S2_LC02_MS02_57; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.

   

δ-Tocotrienol

NCGC00253541-03_C27H40O2_(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrien-1-yl]-6-chromanol

C27H40O2 (396.3028)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.

   

dimethoate

Pesticide1_Dimethoate_C5H12NO3PS2_Phosphorodithioic acid, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] ester

C5H12NO3PS2 (228.9996)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3009

   

mevinphos

Pesticide1_Mevinphos Isomer 1*_C7H13O6P_2-Butenoic acid, 3-[(dimethoxyphosphinyl)oxy]-, methyl ester, (2E)-

C7H13O6P (224.045)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

7-Dehydrocholesterol

(3β)-7-Dehydro Cholesterol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Dihydrothymine

5,6-Dihydrothymine

C5H8N2O2 (128.0586)


A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Glucaric acid

2S,3S,4S,5R-tetrahydroxy-hexanedioic acid

C6H10O8 (210.0376)


   

N-acetyllactosamine

N-Acetyl-D-lactosamine

C14H25NO11 (383.1428)


A beta-D-galactopyranosyl-(1->4)-N-acetyl-D-glucosamine having beta-configuration at the reducing end anomeric centre. N-Acetyllactosamine (LacNAc), a nitrogen-containing disaccharide, is an important component of various oligosaccharides such as glycoproteins and sialyl Lewis X. N-Acetyllactosamine can be used as the starting material for the synthesis of various oligosaccharides. N-Acetyllactosamine has prebiotic effects[1][2].

   

Methyl isobutyl ketone

Methyl isobutyl ketone

C6H12O (100.0888)


   

indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


   

indole-3-acetamide

indole-3-acetamide

C10H10N2O (174.0793)


A member of the class of indoles that is acetamide substituted by a 1H-indol-3-yl group at position 2. It is an intermediate in the production of plant hormone indole acetic acid (IAA). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].

   

loxapine

loxapine

C18H18ClN3O (327.1138)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Loxapine is an orally active dopamine inhibitor, 5-HT receptor antagonist and also a dibenzoxazepine anti-psychotic agent[1][4].

   

Tolterodine

Tolterodine-L-tartrate

C22H31NO (325.2406)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

4-nitrocatechol

4-nitrocatechol

C6H5NO4 (155.0219)


A member of the class of catechols that is benzene-1,2-diol substituted by a nitro group at position 4.It is the by-product of the hydroxylation of p-nitrophenol. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1]. 4-Nitrocatechol is a potent lipoxygenase inhibitor[1].

   

P-TOLUENESULFONIC ACID

P-TOLUENESULFONIC ACID

C7H8O3S (172.0194)


   

Isoimperatorin

Isoimperatorin

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Cholestane

(1S,2S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane

C27H48 (372.3756)


   

Oleamide

9Z-octadecenamide

C18H35NO (281.2719)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D000074385 - Food Ingredients > D005503 - Food Additives A fatty amide derived from oleic acid. Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

estazolam

estazolam

C16H11ClN4 (294.0672)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Penbutolol

Penbutolol

C18H29NO2 (291.2198)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

PE 34:1

7-Octadecenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]- (9CI)

C39H76NO8P (717.5308)


Found in mouse brain; TwoDicalId=80; MgfFile=160720_brain_AA_18_Neg; MgfId=1248

   

PG 34:1

1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1-rac-glycerol)

C40H77O10P (748.5254)


A phosphatidylglycerol in which the 1- and 2-acyl groups are specified as palmitoyl and oleoyl respectively. Found in mouse lung; TwoDicalId=7; MgfFile=160901_Lung_normal_Neg_03; MgfId=540

   

Vincamin

Vincamine

C21H26N2O3 (354.1943)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.2195)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

PROPICONAZOLE

Pesticide6_Propiconazole Isomer 1*_C15H17Cl2N3O2_1-{[2-(2,4-Dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl}-1H-1,2,4-triazole

C15H17Cl2N3O2 (341.0698)


C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Cyprodinil

Pesticide4_Cyprodinil_C14H15N3_2-Pyrimidinamine, 4-cyclopropyl-6-methyl-N-phenyl-

C14H15N3 (225.1266)


   

TRIADIMEFON

Pesticide4_Triadimefon_C14H16ClN3O2_2-Butanone, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-

C14H16ClN3O2 (293.0931)


D016573 - Agrochemicals D010575 - Pesticides

   

UROBILINOGEN

UROBILINOGEN

C33H44N4O6 (592.3261)


A member of the class of bilanes that is a colourless product formed in the intestine by the reduction of bilirubin.

   

Diguanosine tetraphosphate

Diguanosine tetraphosphate

C20H28N10O21P4 (868.0381)


   

CHOLESTERYL LINOLEATE

Cholesteryl 9,12-octadecadienoate

C45H76O2 (648.5845)


Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

Prostaglandin E3

9-oxo-11R,15S-dihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H30O5 (350.2093)


   

CAR 3:0

(3S)-3-(propionyloxy)-4-(trimethylammonio)butanoate

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

CAR 10:0

3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

C17H33NO4 (315.2409)


   

PS 34:1

L-Serine, 3-[(1-oxohexadecyl)oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl hydrogen phosphate (ester), [R-(Z)]-

C40H76NO10P (761.5207)


A 3-sn-phosphatidyl-L-serine compound with a palmitoyl group at the 1-position and an oleoyl group at the 2-position.

   

7-DHC

cholesta-5,7-dien-3beta-ol

C27H44O (384.3392)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lathosterol

(3S,5S,9R,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

Quinestrol

3-o-cyclopentyl-17alpha-ethinyl-estra-1,3,5(10)-triene-3,17beta-diol

C25H32O2 (364.2402)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen

   

alpha-Cubebene

(-)-Alpha-Cubebene

C15H24 (204.1878)


A tricyclic sesquiterpene with formula C15H24, isolated from Hungarian thyme, citrus fruit, chamomile, and several other flowering plants. Constituent of oil of cubeb pepper (Piper cubeba). alpha-Cubebene is found in many foods, some of which are parsley, ginger, nutmeg, and lemon balm.

   

Coenzyme Q6

ubiquinone-6

C39H58O4 (590.4335)


   

ANISOLE

ANISOLE

C7H8O (108.0575)


A monomethoxybenzene that is benzene substituted by a methoxy group.

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

C40H77O10P (748.5254)


   

N,N-Diacetylchitobiose

di(N-acetyl-D-glucosamine)

C16H28N2O11 (424.1693)


The N,N-diacetylated derivative of chitobiose, but with no stereodesignation for the anomeric carbon atom. N,N'-Diacetylchitobiose is a dimer of β(1,4) linked N-acetyl-D glucosamine. N,N'-Diacetylchitobiose is the hydrolysate of chitin and can be used as alternative carbon source by?E. coli[1].

   

dTDP-alpha-D-desosamine

dTDP-alpha-D-desosamine

C18H31N3O13P2 (559.1332)


   
   

3-Methoxy-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzaldehyde

3-Methoxy-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybenzaldehyde

C14H18O8 (314.1002)


   
   

Ridaforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor

   

methoxychlor

Benzene,1,1-(2,2,2-trichloroethylidene)bis[4-methoxy-

C16H15Cl3O2 (344.0138)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

alpha-terpineol

alpha-terpineol

C10H18O (154.1358)


α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Hexobarbital

2,4,6(1H,3H,5H)-Pyrimidinetrione,5-(1-cyclohexen-1-yl)-1,5-dimethyl-

C12H16N2O3 (236.1161)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Doxifluridine

1-[(4S,5R)-3,4-dihydroxy-5-methyl-2-oxolanyl]-5-fluoropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].

   

Difloxacin

Difloxacin

C21H19F2N3O3 (399.1394)


A quinolone that is pefloxacin in which the ethyl group at position 1 of the quinolone has been replaced by a p-fluorophenyl group. A broad-spectrum antibiotic effective against both Gram-positive and Gram-negative bacteria, it is used (usually as the monohydrochloride salt) for the treatment of bacterial infections in dogs. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic

   

Palifosfamide

Isophosphoramide mustard

C4H11Cl2N2O2P (219.9935)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents Same as: D09364

   

2-NITROBENZOIC ACID

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

AI3-00579

InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7

C10H10O2 (162.0681)


Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Nonox D

InChI=1\C16H13N\c1-2-8-15(9-3-1)17-16-11-10-13-6-4-5-7-14(13)12-16\h1-12,17

C16H13N (219.1048)


   

Safranal

InChI=1\C10H14O\c1-8-5-4-6-10(2,3)9(8)7-11\h4-5,7H,6H2,1-3H

C10H14O (150.1045)


Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Jerva acid

5-18-08-00646 (Beilstein Handbook Reference)

C7H4O6 (184.0008)


Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].

   

LS-2530

3-06-00-04981 (Beilstein Handbook Reference)

C9H10O2 (150.0681)


2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

   

Glucofrangulin

1,6-dihydroxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C21H20O10 (432.1056)


Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1]. Emodin-8-glucoside is an anthraquinone derivative isolated from Aloe vera, binds to minor groove of DNA[1].

   

482-45-1

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3-methyl-2-butenyl)oxy)-

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

LS-2049

Isopropenylbenzene [UN2303] [Flammable liquid]

C9H10 (118.0782)


   

AI3-34793

4-01-00-02141 (Beilstein Handbook Reference)

C6H12O (100.0888)


cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

Sulcatone

4-01-00-03493 (Beilstein Handbook Reference)

C8H14O (126.1045)


A heptenone that is hept-5-en-2-one substituted by a methyl group at position 6. It is a volatile oil component of citronella oil, lemon-grass oil and palmarosa oil. Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Hexenal

4-01-00-03468 (Beilstein Handbook Reference)

C6H10O (98.0732)


Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

Chavicol

.gamma.-(p-Hydroxyphenyl)-.alpha.-propylene

C9H10O (134.0732)


   

Amylol

4-01-00-01640 (Beilstein Handbook Reference)

C5H12O (88.0888)


   

Echinocystic acid

aster saponin F_qt

C30H48O4 (472.3552)


Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Anizol

InChI=1\C7H8O\c1-8-7-5-3-2-4-6-7\h2-6H,1H

C7H8O (108.0575)


   

c0647

Phenylacetonitrile, liquid [UN2470] [Poison]

C8H7N (117.0578)


   

tridecanol

4-01-00-01860 (Beilstein Handbook Reference)

C13H28O (200.214)


   

Acetol

4-01-00-03977 (Beilstein Handbook Reference)

C3H6O2 (74.0368)


A propanone that is acetone in which one of the methyl hydrogens is replaced by a hydroxy group. Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.

   

FR-0140

2,4(1H,3H)-Pyrimidinedione, dihydro- (9CI)

C4H6N2O2 (114.0429)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].

   

CHEBI:299

6-Octenal, 3,7-dimethyl-, (theta)-

C10H18O (154.1358)


(R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. (R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2].

   

Hexone

Methyl isobutyl ketone [UN1245] [Flammable liquid]

C6H12O (100.0888)


   

c0242

InChI=1\C8H8O\c1-7-3-2-4-8(5-7)6-9\h2-6H,1H

C8H8O (120.0575)


m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Monotropein

(1S,4aS,7R,7aS)-7-hydroxy-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4a,7a-dihydro-1H-cyclopenta[d]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Obtusifoliol

(3S,4S,5S,10S,13R,14R,17R)-4,10,13,14-tetramethyl-17-[(2R)-6-methyl-5-methylidene-heptan-2-yl]-1,2,3,4,5,6,7,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1]. Obtusifoliol is a specific CYP51 inhibitor, Obtusifoliol shows the affinity with Kd values of 1.2 μM and 1.4 μM for Trypanosoma brucei (TB) and human CYP51, respectively[1].

   

Picoline

o-Picoline [UN2313] [Flammable liquid]

C6H7N (93.0578)


   

phorate

6Z-8-Hydroxygeraniol 8-O-glucoside

C7H17O2PS3 (260.0128)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals Constituent of fresh ginger (Zingiber officinale). 6Z-8-Hydroxygeraniol 8-O-glucoside is found in herbs and spices.

   

Benzonitrile

Benzonitrile

C7H5N (103.0422)


Flavouring compound [Flavornet]

   

Diacetyl monoxime

3-(hydroxyimino)butan-2-one

C4H7NO2 (101.0477)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D002863 - Chromogenic Compounds D004793 - Enzyme Reactivators D004791 - Enzyme Inhibitors D004396 - Coloring Agents

   

GS-Rd

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C48H82O18 (946.5501)


Ginsenoside Rd is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. It has a role as a vulnerary, a neuroprotective agent, an apoptosis inducer, an anti-inflammatory drug, an immunosuppressive agent and a plant metabolite. It is a ginsenoside, a beta-D-glucoside and a tetracyclic triterpenoid. It is functionally related to a (20S)-ginsenoside Rg3. Ginsenoside Rd is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is (20S)-ginsenoside Rg3 in which the hydroxy group at position 20 has been converted to its beta-D-glucopyranoside. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively. Ginsenoside Rd inhibits TNFα-induced NF-κB transcriptional activity with an IC50 of 12.05±0.82 μM in HepG2 cells. Ginsenoside Rd inhibits expression of COX-2 and iNOS mRNA. Ginsenoside Rd also inhibits Ca2+ influx. Ginsenoside Rd inhibits CYP2D6, CYP1A2, CYP3A4, and CYP2C9, with IC50s of 58.0±4.5 μM, 78.4±5.3 μM, 81.7±2.6 μM, and 85.1±9.1 μM, respectively.

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. D000970 - Antineoplastic Agents Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

   

Sinapine

Ethanaminium, 2-(((2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxo-2-propen-1-yl)oxy)-N,N,N-trimethyl-

C16H24NO5+ (310.1654)


Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. An acylcholine in which the acyl group specified is sinapoyl. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].

   

Monotropein

(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O11 (390.1162)


Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].

   

Homotaurine

Acamprosate impurity A, European Pharmacopoeia (EP) Reference Standard

C3H9NO3S (139.0303)


3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists An amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

Avenein

3-Methoxy-4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde

C14H18O8 (314.1002)


Glucovanillin is a glycoside. Glucovanillin is a natural product found in Dendrobium moniliforme, Stereospermum cylindricum, and other organisms with data available. See also: Elymus repens root (part of). Glucovanillin extracted from Vanilla planifolia Andrews and simultaneously transformed to vanillin by a combination of enzyme activities involving cell wall degradation and glucovanillin hydrolysis.

   

cellotetrose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages.

   

formamide

formamide

CH3NO (45.0215)


   

meclizine

meclizine

C25H27ClN2 (390.1863)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

IOPANOIC ACID

IOPANOIC ACID

C11H12I3NO2 (570.8002)


V - Various > V08 - Contrast media > V08A - X-ray contrast media, iodinated > V08AC - Watersoluble, hepatotropic x-ray contrast media

   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

9,10-Phenanthrenequinone

9,10-Phenanthrenequinone

C14H8O2 (208.0524)


D009676 - Noxae > D009153 - Mutagens

   

carprofen

carprofen

C15H12ClNO2 (273.0557)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Carprofen is a nonsteroid anti-inflammatory agent, acts as a multi-target FAAH/COX inhibitor, with IC50s of 3.9 μM, 22.3 μM and 78.6 μM for COX-2, COX-1 and FAAH, respectively.

   

Brinzolamide

Brinzolamide

C12H21N3O5S3 (383.0643)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

PHENOXYACETIC ACID

PHENOXYACETIC ACID

C8H8O3 (152.0473)


A monocarboxylic acid that is the O-phenyl derivative of glycolic acid. A metabolite of 2-phenoxyethanol, it is used in the manufacture of pharmaceuticals, pesticides, fungicides and dyes. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.

   

CHLOROACETALDEHYDE

CHLOROACETALDEHYDE

C2H3ClO (77.9872)


   

PERILLALDEHYDE

dl-Perillaldehyde

C10H14O (150.1045)


   

(R)-3-Hydroxybutyric acid

(R)-3-Hydroxybutanoic acid

C4H8O3 (104.0473)


The R-enantiomer of 3-hydroxybutyric acid. Involved in the synthesis and degradation of ketone bodies, it can be used as an energy source by the brain during hypoglycaemia, and for the synthesis of biodegradable plastics. It is a sex pheremone in the European spider Linyphia triangularis. (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].

   

SUCCINIMIDE

SUCCINIMIDE

C4H5NO2 (99.032)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals

   

SERTINDOLE

SERTINDOLE

C24H26ClFN4O (440.1779)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

NEDOCROMIL

NEDOCROMIL

C19H17NO7 (371.1005)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).

   

p-Allylphenol

p-Allylphenol

C9H10O (134.0732)


   

quazepam

quazepam

C17H11ClF4N2S (386.0268)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Fludrocortisone acetate

Fludrocortisone acetate

C23H31FO6 (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Vinyl ether

Vinyl ether

C4H6O (70.0419)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AA - Ethers

   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

Dihydrofolic acid

Dihydrofolic acid

C19H21N7O6 (443.1553)


A folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division and is targeted by various drugs to prevent nucleic acid synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid.

   

CYTIDINE-5-triphosphATE

cytidine 5-(tetrahydrogen triphosphate)

C9H16N3O14P3 (482.9845)


Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

N(6)-dimethylallyladenine

N-(3-Methylbut-2-EN-1-YL)-9H-purin-6-amine

C10H13N5 (203.1171)


A 6-isopentenylaminopurine in which has the isopentenyl double bond is located between the 2 and 3 positions of the isopentenyl group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance. 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance.

   

AFMK

N-Acetyl-N-formyl-5-methoxykynurenamine

C13H16N2O4 (264.111)


   

coproporphyrinogen III

coproporphyrinogen III

C36H44N4O8 (660.3159)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Phosphoadenosine phosphosulfate

Phosphoadenosine phosphosulfate

C10H15N5O13P2S (506.9862)


   

O-Decanoyl-L-carnitine

O-Decanoyl-L-carnitine

C17H33NO4 (315.2409)


An O-acyl-L-carnitine that is L-carnitine having decanoyl as the acyl substituent.

   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

Pimafucin

Pimafucin

C33H47NO13 (665.3047)


A macrolide antibiotic that has formula C33H47NO13, produced by several Streptomyces species including Streptomyces natalensis. It exhibits broad spectrum antifungal activity and used in eye drops, and as a food preservative, and also as a postharvest biofungicide for citrus and other fruit crops. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

2-Butynedioic acid

Acetylenedicarboxylic acid

C4H2O4 (113.9953)


   

gentamycin C1a

gentamycin C1a

C19H39N5O7 (449.2849)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

3,4-Dihydroxyphenylacetaldehyde

3,4-Dihydroxyphenylacetaldehyde

C8H8O3 (152.0473)


A phenylacetaldehyde in which the 3 and 4 positions of the phenyl group are substituted by hydroxy groups. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4,4-DDMU

1,1-Bis(p-chlorophenyl)-2-chloroethene

C14H9Cl3 (281.977)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   
   

2-Deoxyadenosine-5-diphosphate

2-Deoxyadenosine-5-diphosphate

C10H15N5O9P2 (411.0345)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thymidine-5-diphosphate

Thymidine-5-diphosphate

C10H16N2O11P2 (402.0229)


A thymidine phosphate having a diphosphate group at the 5-position. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

1-Hydroxyisoquinoline

ISOQUINOLIN-1(2H)-ONE

C9H7NO (145.0528)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diazene

Diazene

H2N2 (30.0218)


   

e-64

e-64

C15H27N5O5 (357.2012)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

12-oxo-phytodienoic acid

12-oxo-phytodienoic acid

C18H28O3 (292.2038)


D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

Glu-Glu

Glu-Glu

C10H16N2O7 (276.0957)


A dipeptide composed of two L-glutamic acid units joined by a peptide linkage.

   

N,N-Dimethyladenosine

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

For-Asp-OH

N-Formyl-L-aspartic acid

C5H7NO5 (161.0324)


A N-formyl amino acid that is the N-formyl-derivative of L-aspartic acid.

   

Leucodopachrome

Leucodopachrome

C9H9NO4 (195.0532)


Indoline substituted with hydroxy groups at C-5 and -6 and a carboxy group at C-2, and with S stereochemistry at C-2.

   

D-Glucono-1,5-lactone 6-phosphate

D-Glucono-1,5-lactone 6-phosphate

C6H11O9P (258.0141)


   

1D-myo-inositol 1,4-bisphosphate

1D-myo-inositol 1,4-bisphosphate

C6H14O12P2 (339.9961)


   

Cholesten

Cholesten

C27H48 (372.3756)


   

Uralsaponin A

Uralsaponin A

C42H62O16 (822.4038)


Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Galbeta1,3GlcNAc

6-chloro-2-(n-(2-diethylaminoethyl)-n-methylamino)-ortho-acetotoluidide dihydrochloride

C14H25NO11 (383.1428)


An amino disaccharide consisting of beta-D-galactose linked via a (1->3)-glycosidic bond to N-acetyl-D-glucosamine.

   

Diadenosine triphosphate

Diadenosine triphosphate

C20H27N10O16P3 (756.0819)


   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   
   
   

4,5-Bisphenol-o-quinone

4,5-Bisphenol-o-quinone

C15H14O3 (242.0943)


   

dichlorobenzene

1,2-DICHLOROBENZENE

C6H4Cl2 (145.969)


A dichlorobenzene carrying chloro substituents at positions 1 and 2. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

CE 18:2

(Z,Z)-(3beta)-Cholest-5-en-3-ol 9,12-octadecadienoate

C45H76O2 (648.5845)


The (9Z,12Z)-stereoisomer of cholesteryl octadeca-9,12-dienoate. Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.

   

loxtidine

LAVOLTIDINE

C19H29N5O2 (359.2321)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists

   

O-Nitrobenzoate

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

pentanol

Isoamyl alcohol

C5H12O (88.0888)


   
   

Butyrylcarnitine

Butyrylcarnitine

C11H21NO4 (231.1471)


Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.

   

D-Gluconic acid, delta-lactone

D-Gluconic acid, delta-lactone

C6H10O6 (178.0477)


   

12,13-DHOA

(9Z)-12,13-Dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


A DiHOME obtained by formal dihydroxylation of the 12,13-double bond of octadeca-9,12-dienoic acid (the 9Z-geoisomer).

   

delta-Guanidinovaleric acid

delta-Guanidinovaleric acid

C6H13N3O2 (159.1008)


   

Pyrimethanil

Pyrimethanil

C12H13N3 (199.1109)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Phenylpropene

1-Methyl-1-phenylethylene

C9H10 (118.0782)


   

2-picoline

2-METHYLPYRIDINE

C6H7N (93.0578)


   

Neozone

2-Phenylaminonaphthalene

C16H13N (219.1048)


   

4,4-Methylenedianiline

4,4′-methylenedianiline

C13H14N2 (198.1157)


D009676 - Noxae > D002273 - Carcinogens

   

P-Octylphenol

4-N-Octylphenol

C14H22O (206.1671)


A member of the class of phenols that is phenol which is substituted at the para- position by an octyl group. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

1,2-Diaminocyclohexane

1,2-Diaminocyclohexane

C6H14N2 (114.1157)


   

Mepanipyrim

4-METHYL-N-PHENYL-6-(PROP-1-YNYL)PYRIMIDIN-2-AMINE

C14H13N3 (223.1109)


   

2,4-DDE

1,1-Dichloro-2-(O-chlorophenyl)-2-(p-chlorophenyl)ethylene

C14H8Cl4 (315.938)


   

Silux

2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane

C29H36O8 (512.241)


D001697 - Biomedical and Dental Materials > D003764 - Dental Materials

   

5alpha-Cholestane

5alpha-Cholestane

C27H48 (372.3756)


   

UDP-N-acetylmuraminate

UDP-N-acetylmuraminate

C20H31N3O19P2 (679.1027)


   

DL-Alanyl-DL-alanine

DL-Alanyl-DL-alanine

C6H12N2O3 (160.0848)


   

4,4-Oxydianiline

4,4-Oxydianiline

C12H12N2O (200.095)


   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

1-C-(Indol-3-yl)glycerol 3-phosphate

1-C-(Indol-3-yl)glycerol 3-phosphate

C11H14NO6P (287.0559)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents