octanoyl-coenzyme A (BioDeep_00001868812)

Main id: BioDeep_00000001692

 


代谢物信息卡片


octanoyl-coenzyme A

化学式: C29H50N7O17P3S (893.2197)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C29H50N7O17P3S/c1-4-5-6-7-8-9-20(38)57-13-12-31-19(37)10-11-32-27(41)24(40)29(2,3)15-50-56(47,48)53-55(45,46)49-14-18-23(52-54(42,43)44)22(39)28(51-18)36-17-35-21-25(30)33-16-34-26(21)36/h16-18,22-24,28,39-40H,4-15H2,1-3H3,(H,31,37)(H,32,41)(H,45,46)(H,47,48)(H2,30,33,34)(H2,42,43,44)/t18-,22-,23-,24+,28-/m1/s1

描述信息

同义名列表

2 个代谢物同义名

octanoyl-coenzyme A; Octanoyl-CoA



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(8)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ACADL, ACADM, ALB, CAT, COASY, FASN, PFDN5
Golgi apparatus, trans-Golgi network membrane 1 FURIN
Peripheral membrane protein 2 CRAT, HSD17B6
Endosome membrane 1 FURIN
Endoplasmic reticulum membrane 1 MBOAT4
Nucleus 5 ACADM, ALB, CBX4, CS, PFDN5
cytosol 6 ALB, CAT, CRAT, FASN, PFDN5, SLC22A16
dendrite 1 PCSK1
mitochondrial membrane 3 ACADL, ACADM, IVD
nuclear body 1 CBX4
trans-Golgi network 2 FURIN, PCSK1
centrosome 1 ALB
nucleoplasm 2 CBX4, IVD
Cell membrane 2 FURIN, SLC22A16
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 2 MBOAT4, SLC22A16
cell surface 1 FURIN
glutamatergic synapse 1 GHRL
Golgi apparatus 3 ALB, FASN, FURIN
Golgi membrane 1 FURIN
mitochondrial inner membrane 1 CRAT
postsynapse 1 GHRL
Cytoplasmic vesicle, secretory vesicle 1 PCSK1
plasma membrane 3 FASN, FURIN, SLC22A16
Membrane 7 CAT, CS, FASN, FURIN, MBOAT4, PCSK1, SLC22A16
axon 2 ACADM, GHRL
extracellular exosome 7 ALB, CAT, COASY, CPN2, CS, FASN, FURIN
Lumenal side 1 HSD17B6
endoplasmic reticulum 5 ALB, CRAT, FURIN, HSD17B6, MBOAT4
extracellular space 4 ALB, CPN2, GHRL, PCSK1
perinuclear region of cytoplasm 1 PCSK1
Schaffer collateral - CA1 synapse 1 GHRL
mitochondrion 9 ACAD8, ACADL, ACADM, CAT, COASY, CRAT, CS, GCDH, IVD
protein-containing complex 2 ALB, CAT
intracellular membrane-bounded organelle 2 CAT, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 FURIN
Secreted 3 ALB, FURIN, GHRL
extracellular region 5 ALB, CAT, CPN2, FURIN, GHRL
mitochondrial outer membrane 1 COASY
Mitochondrion matrix 6 ACADL, ACADM, COASY, CS, GCDH, IVD
mitochondrial matrix 8 ACAD8, ACADL, ACADM, CAT, COASY, CS, GCDH, IVD
anchoring junction 1 ALB
neuronal dense core vesicle lumen 1 GHRL
perikaryon 1 PCSK1
Mitochondrion inner membrane 1 CRAT
Matrix side 1 CRAT
Membrane raft 1 FURIN
focal adhesion 1 CAT
extracellular matrix 1 CPN2
Peroxisome 2 CAT, CRAT
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, CRAT
peroxisomal membrane 1 CAT
nuclear speck 1 CBX4
neuron projection 1 PCSK1
ciliary basal body 1 ALB
centriole 1 ALB
[Isoform 1]: Mitochondrion 1 CRAT
spindle pole 1 ALB
blood microparticle 2 ALB, CPN2
Melanosome 1 FASN
Nucleus speckle 1 CBX4
intermediate filament cytoskeleton 1 PFDN5
trans-Golgi network transport vesicle 1 FURIN
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, GHRL, PCSK1
Golgi lumen 1 FURIN
endoplasmic reticulum lumen 2 ALB, GHRL
PcG protein complex 1 CBX4
PRC1 complex 1 CBX4
platelet alpha granule lumen 1 ALB
axon terminus 1 PCSK1
transport vesicle 1 PCSK1
prefoldin complex 1 PFDN5
catalase complex 1 CAT
[Isoform 2]: Peroxisome 1 CRAT
glycogen granule 1 FASN
ciliary transition fiber 1 ALB


文献列表

  • Jing Hou, Heping Zheng, Wen-Shyong Tzou, David R Cooper, Maksymilian Chruszcz, Mahendra D Chordia, Keehwan Kwon, Marek Grabowski, Wladek Minor. Differences in substrate specificity of V. cholerae FabH enzymes suggest new approaches for the development of novel antibiotics and biofuels. The FEBS journal. 2018 08; 285(15):2900-2921. doi: 10.1111/febs.14588. [PMID: 29917313]
  • Kira-Lee Koster, Marga Sturm, Diran Herebian, Sander H J Smits, Ute Spiekerkoetter. Functional studies of 18 heterologously expressed medium-chain acyl-CoA dehydrogenase (MCAD) variants. Journal of inherited metabolic disease. 2014 Nov; 37(6):917-28. doi: 10.1007/s10545-014-9732-5. [PMID: 24966162]
  • Lilian Brites Campos, Eduardo Hideo Gilglioni, Rosângela Fernandes Garcia, Márcia do Nascimento Brito, Maria Raquel Marçal Natali, Emy Luiza Ishii-Iwamoto, Clairce Luzia Salgueiro-Pagadigorria. Cimicifuga racemosa impairs fatty acid β-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension. Free radical biology & medicine. 2012 Aug; 53(4):680-9. doi: 10.1016/j.freeradbiomed.2012.05.043. [PMID: 22684021]
  • Claudio F Gonzalez, Anatoli Tchigvintsev, Greg Brown, Robert Flick, Elena Evdokimova, Xiaohui Xu, Jerzy Osipiuk, Marianne E Cuff, Susan Lynch, Andrzej Joachimiak, Alexei Savchenko, Alexander F Yakunin. Structure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801. The Biochemical journal. 2012 Jun; 444(3):445-55. doi: 10.1042/bj20112032. [PMID: 22439787]
  • Takashi Akamizu, Nobuo Sakura, Yosuke Shigematsu, Go Tajima, Akira Ohtake, Hiroshi Hosoda, Hiroshi Iwakura, Hiroyuki Ariyasu, Kenji Kangawa. Analysis of plasma ghrelin in patients with medium-chain acyl-CoA dehydrogenase deficiency and glutaric aciduria type II. European journal of endocrinology. 2012 Feb; 166(2):235-40. doi: 10.1530/eje-11-0785. [PMID: 22048973]
  • Marga Sturm, Diran Herebian, Martina Mueller, Maurice D Laryea, Ute Spiekerkoetter. Functional effects of different medium-chain acyl-CoA dehydrogenase genotypes and identification of asymptomatic variants. PloS one. 2012; 7(9):e45110. doi: 10.1371/journal.pone.0045110. [PMID: 23028790]
  • Osbaldo Resendis-Antonio, Magdalena Hernández, Emmanuel Salazar, Sandra Contreras, Gabriel Martínez Batallar, Yolanda Mora, Sergio Encarnación. Systems biology of bacterial nitrogen fixation: high-throughput technology and its integrative description with constraint-based modeling. BMC systems biology. 2011 Jul; 5(?):120. doi: 10.1186/1752-0509-5-120. [PMID: 21801415]
  • Hye In Woo, Hyung-Doo Park, Yong-Wha Lee, Dong Hwan Lee, Chang-Seok Ki, Soo-Youn Lee, Jong-Won Kim. Clinical, biochemical and genetic analyses in two Korean patients with medium-chain acyl-CoA dehydrogenase deficiency. The Korean journal of laboratory medicine. 2011 Jan; 31(1):54-60. doi: 10.3343/kjlm.2011.31.1.54. [PMID: 21239873]
  • Anna A Dobritsa, Zhentian Lei, Shuh-Ichi Nishikawa, Ewa Urbanczyk-Wochniak, David V Huhman, Daphne Preuss, Lloyd W Sumner. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant physiology. 2010 Jul; 153(3):937-55. doi: 10.1104/pp.110.157446. [PMID: 20442277]
  • Hisami Shinohara, Jian Wu, Toshiaki Aoyama. Effect of randomly interesterified triacylglycerol containing medium- and long-chain fatty acids on hepatic fatty acid oxidation after a single administration to rats. Bioscience, biotechnology, and biochemistry. 2010; 74(11):2336-8. doi: 10.1271/bbb.100412. [PMID: 21071855]
  • Wai W Cheung, Robert H Mak. Ghrelin in chronic kidney disease. International journal of peptides. 2010; 2010(?):. doi: 10.1155/2010/567343. [PMID: 20721357]
  • Yasuzo Nishina, Kyosuke Sato, Haruhiko Tamaoki, Chiaki Setoyama, Retsu Miura, Kiyoshi Shiga. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase. Journal of biochemistry. 2009 Sep; 146(3):351-7. doi: 10.1093/jb/mvp077. [PMID: 19470521]
  • Seigo Korematsu, Yujiro Kosugi, Toshihide Kumamoto, Seiji Yamaguchi, Tatsuro Izumi. Novel mutation of early, perinatal-onset, myopathic-type very-long-chain acyl-CoA dehydrogenase deficiency. Pediatric neurology. 2009 Aug; 41(2):151-3. doi: 10.1016/j.pediatrneurol.2009.02.020. [PMID: 19589468]
  • Frank ter Veld, Martina Mueller, Simone Kramer, Ulrike Haussmann, Diran Herebian, Ertan Mayatepek, Maurice D Laryea, Sonja Primassin, Ute Spiekerkoetter. A novel tandem mass spectrometry method for rapid confirmation of medium- and very long-chain acyl-CoA dehydrogenase deficiency in newborns. PloS one. 2009 Jul; 4(7):e6449. doi: 10.1371/journal.pone.0006449. [PMID: 19649258]
  • Esther M Maier, Søren W Gersting, Kristina F Kemter, Johanna M Jank, Maria Reindl, Dunja D Messing, Marietta S Truger, Christian P Sommerhoff, Ania C Muntau. Protein misfolding is the molecular mechanism underlying MCADD identified in newborn screening. Human molecular genetics. 2009 May; 18(9):1612-23. doi: 10.1093/hmg/ddp079. [PMID: 19224950]
  • Clinton R Bruce, Camilla Brolin, Nigel Turner, Mark E Cleasby, Feike R van der Leij, Gregory J Cooney, Edward W Kraegen. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. American journal of physiology. Endocrinology and metabolism. 2007 Apr; 292(4):E1231-7. doi: 10.1152/ajpendo.00561.2006. [PMID: 17179390]
  • Ravi J Tolwani, Doug A Hamm, Liqun Tian, J Daniel Sharer, Jerry Vockley, Piero Rinaldo, Dietrich Matern, Trenton R Schoeb, Philip A Wood. Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice. PLoS genetics. 2005 Aug; 1(2):e23. doi: 10.1371/journal.pgen.0010023. [PMID: 16121256]
  • E B Taylor, W J Ellingson, J D Lamb, D G Chesser, W W Winder. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. American journal of physiology. Endocrinology and metabolism. 2005 Jun; 288(6):E1055-61. doi: 10.1152/ajpendo.00516.2004. [PMID: 15644453]
  • Jiaquan Wu, Alasdair F Bell, Lian Luo, Avery W Stephens, Marian T Stankovich, Peter J Tonge. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy. Biochemistry. 2003 Oct; 42(40):11846-56. doi: 10.1021/bi0344578. [PMID: 14529297]
  • Jocelyn E Manning Fox, Jarkko Magga, Wayne R Giles, Peter E Light. Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner. Metabolism: clinical and experimental. 2003 Oct; 52(10):1313-9. doi: 10.1016/s0026-0495(03)00199-9. [PMID: 14564684]
  • I Rudik, C Thorpe. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution. Archives of biochemistry and biophysics. 2001 Aug; 392(2):341-8. doi: 10.1006/abbi.2001.2467. [PMID: 11488611]
  • K M Peterson, D K Srivastava. Energetic consequences of accommodating a bulkier ligand at the active site of medium chain acyl-CoA dehydrogenase by creating a complementary enzyme site cavity. Biochemistry. 2000 Oct; 39(41):12678-87. doi: 10.1021/bi001317e. [PMID: 11027148]
  • K L Peterson, E E Sergienko, Y Wu, N R Kumar, A W Strauss, A E Oleson, W W Muhonen, J B Shabb, D K Srivastava. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules. Biochemistry. 1995 Nov; 34(45):14942-53. doi: 10.1021/bi00045a039. [PMID: 7578106]
  • A K Bhuiyan, S V Pande. Carnitine palmitoyltransferase activities: effects of serum albumin, acyl-CoA binding protein and fatty acid binding protein. Molecular and cellular biochemistry. 1994 Oct; 139(2):109-16. doi: 10.1007/bf01081733. [PMID: 7862101]
  • N R Kumar, D K Srivastava. Reductive half-reaction of medium-chain fatty acyl-CoA dehydrogenase utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair: similarity in the microscopic pathways of octanoyl-CoA oxidation and octenoyl-CoA binding. Biochemistry. 1994 Jul; 33(29):8833-41. doi: 10.1021/bi00195a027. [PMID: 8038175]
  • J G Cummings, C Thorpe. 3-Methyleneoctanoyl-CoA and 3-methyl-trans-2-octenoyl-CoA: two new mechanism-based inhibitors of medium chain acyl-CoA dehydrogenase from pig kidney. Biochemistry. 1994 Jan; 33(3):788-97. doi: 10.1021/bi00169a021. [PMID: 8292607]
  • J G Cummings, C Thorpe. Stereoselective interaction of 2-halo-acyl-CoA derivatives with medium chain acyl-CoA dehydrogenase from pig kidney. Archives of biochemistry and biophysics. 1993 Apr; 302(1):85-91. doi: 10.1006/abbi.1993.1184. [PMID: 8470910]
  • Y Nishina, K Sato, K Shiga, S Fujii, K Kuroda, R Miura. Resonance Raman study on complexes of medium-chain acyl-CoA dehydrogenase. Journal of biochemistry. 1992 Jun; 111(6):699-706. doi: 10.1093/oxfordjournals.jbchem.a123822. [PMID: 1500413]
  • B E Corkey, D E Hale, M C Glennon, R I Kelley, P M Coates, L Kilpatrick, C A Stanley. Relationship between unusual hepatic acyl coenzyme A profiles and the pathogenesis of Reye syndrome. The Journal of clinical investigation. 1988 Sep; 82(3):782-8. doi: 10.1172/jci113679. [PMID: 3417871]
  • S M Lau, C Thorpe. The nature of enzyme-substrate complexes in acyl-coenzyme A dehydrogenases. Archives of biochemistry and biophysics. 1988 Apr; 262(1):293-7. doi: 10.1016/0003-9861(88)90191-9. [PMID: 3355170]
  • B A Amendt, W J Rhead. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. The Journal of clinical investigation. 1986 Jul; 78(1):205-13. doi: 10.1172/jci112553. [PMID: 3722376]
  • B A Amendt, W J Rhead. Catalytic defect of medium-chain acyl-coenzyme A dehydrogenase deficiency. Lack of both cofactor responsiveness and biochemical heterogeneity in eight patients. The Journal of clinical investigation. 1985 Sep; 76(3):963-9. doi: 10.1172/jci112096. [PMID: 3840178]
  • M Madden, S M Lau, C Thorpe. The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other flavoproteins. The Biochemical journal. 1984 Dec; 224(2):577-80. doi: 10.1042/bj2240577. [PMID: 6517865]
  • Z Y Jiang, C Thorpe. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione. The Biochemical journal. 1982 Dec; 207(3):415-9. doi: 10.1042/bj2070415. [PMID: 7165702]