Phosphoadenosine phosphosulfate (BioDeep_00000001832)
Secondary id: BioDeep_00001868634
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C10H15N5O13P2S (506.9862)
中文名称:
谱图信息:
最多检出来源 Macaca mulatta(otcml) 6.27%
分子结构信息
SMILES: C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)OS(=O)(=O)O)OP(=O)(O)O)O)N
InChI: InChI=1S/C10H15N5O13P2S/c11-8-5-9(13-2-12-8)15(3-14-5)10-6(16)7(27-29(17,18)19)4(26-10)1-25-30(20,21)28-31(22,23)24/h2-4,6-7,10,16H,1H2,(H,20,21)(H2,11,12,13)(H2,17,18,19)(H,22,23,24)/t4-,6-,7-,10-/m1/s1
描述信息
3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms. [HMDB]
3-Phosphoadenosine-5-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.
同义名列表
48 个代谢物同义名
[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]sulfonic acid; Adenosine 3’-phosphate 5’-sulfatophosphate; 3-Phosphoadenosine 5-phosphosulphuric acid; Adenosine 5’-phosphosulphate 3’-phosphate; 3-Phosphoadenosine 5-phosphosulfuric acid; Adenosine 3’-phosphate 5’-phosphosulphate; Adenosine 3’-phosphate 5’-phosphosulfate; Adenosine 3-phosphate 5-sulfatophosphate; Adenosine 5’-phosphosulfate 3’-phosphate; Adenosine 3-phosphate 5-phosphosulphate; Adenosine 5-phosphosulphate 3-phosphate; Adenosine 3 phosphate 5 phosphosulfate; 3’-Phosphoadenosine 5’-phosphosulphate; Adenosine-3-phosphate-5-phosphosulfate; Adenosine 5-phosphosulfate 3-phosphate; Adenosine 3-phosphate 5-phosphosulfate; Phosphoadenosine phosphosulphuric acid; 3’-Phosphoadenosine 5’-phosphosulfate; Phosphoadenosine phosphosulfuric acid; 3-Phosphoadenosine-5-phosphosulphate; 5-Phosphoadenosine 3-phosphosulphate; 3-Phosphoadenosine 5-phosphosulphate; 3-Phospho-5-adenylyl sulphuric acid; 3-Phosphoadenosine 5-phosphosulfate; 5-Phosphoadenosine 3-phosphosulfate; 3-Phosphoadenosine-5-phosphosulfate; 3-Phospho-5-adenylyl sulfuric acid; 5’-Adenylyl sulphate 3’-phosphate; 3-Phosphoadenylyl sulphuric acid; 5’-Adenylyl sulfate 3’-phosphate; 3-Phosphoadenylyl sulfate (PAPS); Phosphoadenosine phosphosulphate; Phosphosulfate, phosphoadenosine; 3-Phosphoadenylyl sulfuric acid; 5-Adenylyl sulphate 3-phosphate; Phosphoadenosine phosphosulfate; 5-Adenylyl sulfate 3-phosphate; 3-Phospho-5-adenylyl sulphate; 3-Phospho-5-adenylyl sulfate; 3’-Phosphoadenylyl sulphate; 3-Phosphoadenylyl-sulphate; 3-Phosphoadenylyl sulphate; 3’-Phosphoadenylyl sulfate; 3-Phosphoadenylyl sulfate; 3-Phosphoadenylyl-sulfate; PAPS tetraanion; PAPS; 3'-Phosphoadenylyl sulfate
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:17980
- KEGG: C00053
- PubChem: 10214
- PubChem: 990
- HMDB: HMDB0001134
- Metlin: METLIN3587
- DrugBank: DB02902
- Wikipedia: 3-Phosphoadenosine-5-phosphosulfate
- MeSH: Phosphoadenosine Phosphosulfate
- MetaCyc: PAPS
- KNApSAcK: C00007446
- foodb: FDB022445
- chemspider: 9799
- CAS: 482-67-7
- PMhub: MS000001249
- PubChem: 3355
- PDB-CCD: PPS
- 3DMET: B01139
- NIKKAJI: J372.802A
- KNApSAcK: 17980
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
112 个相关的代谢反应过程信息。
Reactome(39)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
3,5,3'-triiodothyronine + PAPS ⟶ 3,5,3'-triiodothyronine 4-sulfate + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfate assimilation:
ATP + H2O + SubI--sulfate complex ⟶ ADP + Pi + SO4(2-) + SubI
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Transport and synthesis of PAPS:
ATP + SO4(2-) ⟶ APS + PPi
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Transport and synthesis of PAPS:
ATP + SO4(2-) ⟶ APS + PPi
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Transport to the Golgi and subsequent modification:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- N-glycan antennae elongation in the medial/trans-Golgi:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- Reactions specific to the complex N-glycan synthesis pathway:
HNK1 carbohydrate + PAPS ⟶ PAP + S-HNK1 carbohydrate
- O-linked glycosylation:
PAPS ⟶ PAP
- O-linked glycosylation of mucins:
PAPS ⟶ PAP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Transport and synthesis of PAPS:
APS + ATP ⟶ ADP + PAPS
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate biosynthesis:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG biosynthesis:
H2O ⟶ CH3COO-
- Chondroitin sulfate/dermatan sulfate metabolism:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Chondroitin sulfate biosynthesis:
PAPS + chondroitin(3)-core proteins ⟶ C4S-PG + PAP
- Dermatan sulfate biosynthesis:
D4S-PGs + PAPS ⟶ D2,4(S)2-PG + PAP
BioCyc(3)
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- sulfate activation for sulfonation:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate assimilation:
SO3-2 + adenosine 3',5'-bisphosphate + an oxidized thioredoxin ⟶ PAPS + a reduced thioredoxin
Plant Reactome(0)
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(68)
- Tamoxifen Action Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Tamoxifen Metabolism Pathway:
4-Hydroxytamoxifen + Phosphoadenosine phosphosulfate ⟶ 4-Hydroxytamoxifen sulfate + Adenosine 3',5'-diphosphate
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Estrone Metabolism:
2-Hydroxyestrone + S-Adenosylmethionine ⟶ 2-Methoxyestrone + S-Adenosylhomocysteine
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Acetaminophen Metabolism Pathway:
Acetaminophen + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Paracetamol sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Flavone and Flavonol Biosynthesis:
Phosphoadenosine phosphosulfate + Quercetin ⟶ Adenosine 3',5'-diphosphate + Hydrogen Ion + Quercetin 3'-sulfate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Katsuhisa Kurogi, Masahito Suiko, Yoichi Sakakibara. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases (SULTs) across species.
Bioscience, biotechnology, and biochemistry.
2024 Jan; ?(?):. doi:
10.1093/bbb/zbae008
. [PMID: 38271594] - Yue Li, Dongming Yan, Jingyi Jin, Bo Tan, Xi Chen, Bin Zou, Guochao Song, Fengyi Weng, Chenghai Liu, Furong Qiu. Clarify the potential cholestatic hepatotoxicity components from Chinese Herb Medicine and metabolism's role via hBSEP vesicles and S9/hBSEP vesicles.
Toxicology in vitro : an international journal published in association with BIBRA.
2022 Apr; 80(?):105324. doi:
10.1016/j.tiv.2022.105324
. [PMID: 35101544] - Agnieszka Mlynarska-Cieslak, Mikolaj Chrominski, Tomasz Spiewla, Marek R Baranowski, Marcelina Bednarczyk, Jacek Jemielity, Joanna Kowalska. Fluorinated Phosphoadenosine 5'-Phosphosulfate Analogues for Continuous Sulfotransferase Activity Monitoring and Inhibitor Screening by 19F NMR Spectroscopy.
ACS chemical biology.
2022 03; 17(3):661-669. doi:
10.1021/acschembio.1c00978
. [PMID: 35196009] - Manuel Balparda, Alejandro M Armas, Diego F Gomez-Casati, María Ayelén Pagani. PAP/SAL1 retrograde signaling pathway modulates iron deficiency response in alkaline soils.
Plant science : an international journal of experimental plant biology.
2021 Mar; 304(?):110808. doi:
10.1016/j.plantsci.2020.110808
. [PMID: 33568304] - Thomas Wong, Richard J Bloomer, Rodney L Benjamin, Randal K Buddington. Small Intestinal Absorption of Methylsulfonylmethane (MSM) and Accumulation of the Sulfur Moiety in Selected Tissues of Mice.
Nutrients.
2017 Dec; 10(1):. doi:
10.3390/nu10010019
. [PMID: 29295596] - Anna Koprivova, Stanislav Kopriva. Sulfation pathways in plants.
Chemico-biological interactions.
2016 Nov; 259(Pt A):23-30. doi:
10.1016/j.cbi.2016.05.021
. [PMID: 27206694] - Rua Kareem Dowood, Ravi Adusumalli, Emil Tykesson, Elin Johnsen, Elsa Lundanes, Kristian Prydz, Steven Ray Wilson. Determination of 3'-phosphoadenosine-5'-phosphosulfate in cells and Golgi fractions using hydrophilic interaction liquid chromatography-mass spectrometry.
Journal of chromatography. A.
2016 Oct; 1470(?):70-75. doi:
10.1016/j.chroma.2016.10.001
. [PMID: 27720175] - Gunnar Dick, Linn Kristin Akslen-Hoel, Frøy Grøndahl, Ingrid Kjos, Marco Maccarana, Kristian Prydz. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells.
Glycobiology.
2015 Jan; 25(1):30-41. doi:
10.1093/glycob/cwu084
. [PMID: 25138304] - Benjamin H Hudson, John D York. Tissue-specific regulation of 3'-nucleotide hydrolysis and nucleolar architecture.
Advances in biological regulation.
2014 Jan; 54(?):208-13. doi:
10.1016/j.jbior.2013.11.002
. [PMID: 24309248] - Tamara Gigolashvili, Melanie Geier, Natallia Ashykhmina, Henning Frerigmann, Sabine Wulfert, Stephan Krueger, Sarah G Mugford, Stanislav Kopriva, Ilka Haferkamp, Ulf-Ingo Flügge. The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol.
The Plant cell.
2012 Oct; 24(10):4187-204. doi:
10.1105/tpc.112.101964
. [PMID: 23085732] - Paul A Dawson. Sulfate in fetal development.
Seminars in cell & developmental biology.
2011 Aug; 22(6):653-9. doi:
10.1016/j.semcdb.2011.03.004
. [PMID: 21419855] - Fuqiang Yin, Agnieszka Pajak, Ralph Chapman, Andrew Sharpe, Shangzhi Huang, Frédéric Marsolais. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins.
BMC genomics.
2011 May; 12(?):268. doi:
10.1186/1471-2164-12-268
. [PMID: 21615926] - Shirly O Curreem, Jade L Teng, Herman Tse, Kwok-Yung Yuen, Susanna K Lau, Patrick C Woo. General metabolism of Laribacter hongkongensis: a genome-wide analysis.
Cell & bioscience.
2011 Apr; 1(1):16. doi:
10.1186/2045-3701-1-16
. [PMID: 21711917] - Hong Cai, Stewart Sale, Robert G Britton, Karen Brown, William P Steward, Andreas J Gescher. Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3',4',5',5,7-pentamethoxyflavone and tricin (4',5,7-trihydroxy-3',5'-dimethoxyflavone).
Cancer chemotherapy and pharmacology.
2011 Feb; 67(2):255-63. doi:
10.1007/s00280-010-1313-1
. [PMID: 20364427] - Morten E Møldrup, Fernando Geu-Flores, Carl E Olsen, Barbara A Halkier. Modulation of sulfur metabolism enables efficient glucosinolate engineering.
BMC biotechnology.
2011 Jan; 11(?):12. doi:
10.1186/1472-6750-11-12
. [PMID: 21281472] - Hao Chen, Baichen Zhang, Leslie M Hicks, Liming Xiong. A nucleotide metabolite controls stress-responsive gene expression and plant development.
PloS one.
2011; 6(10):e26661. doi:
10.1371/journal.pone.0026661
. [PMID: 22028934] - Yanci O Mannery, Thomas R Ziegler, Youngja Park, Dean P Jones. Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acid-free diet.
The Journal of pharmacology and experimental therapeutics.
2010 Jun; 333(3):948-53. doi:
10.1124/jpet.110.166439
. [PMID: 20207720] - Qi-Long Qin, Xi-Ying Zhang, Xu-Min Wang, Gui-Ming Liu, Xiu-Lan Chen, Bin-Bin Xie, Hong-Yue Dang, Bai-Cheng Zhou, Jun Yu, Yu-Zhong Zhang. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation.
BMC genomics.
2010 Apr; 11(?):247. doi:
10.1186/1471-2164-11-247
. [PMID: 20398413] - Víctor M Rodríguez, Aurore Chételat, Paul Majcherczyk, Edward E Farmer. Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves.
Plant physiology.
2010 Mar; 152(3):1335-45. doi:
10.1104/pp.109.150474
. [PMID: 20053710] - Saki Takahashi, Yoichi Sakakibara, Emi Mishiro, Haruna Kouriki, Rika Nobe, Katsuhisa Kurogi, Shin Yasuda, Ming-Cheh Liu, Masahito Suiko. Molecular cloning, expression and characterization of a novel mouse SULT6 cytosolic sulfotransferase.
Journal of biochemistry.
2009 Sep; 146(3):399-405. doi:
10.1093/jb/mvp087
. [PMID: 19505954] - Maria Stella Ritorto, Jürgen Borlak. A simple and reliable protocol for mouse serum proteome profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry.
Proteome science.
2008 Sep; 6(?):25. doi:
10.1186/1477-5956-6-25
. [PMID: 18789141] - Frances M Dupont. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.
BMC plant biology.
2008 Apr; 8(?):39. doi:
10.1186/1471-2229-8-39
. [PMID: 18419817] - Gunnar Dick, Frøy Grøndahl, Kristian Prydz. Overexpression of the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells.
Glycobiology.
2008 Jan; 18(1):53-65. doi:
10.1093/glycob/cwm121
. [PMID: 17965432] - Stanislav Kopriva, Kai Fritzemeier, Gertrud Wiedemann, Ralf Reski. The putative moss 3'-phosphoadenosine-5'-phosphosulfate reductase is a novel form of adenosine-5'-phosphosulfate reductase without an iron-sulfur cluster.
The Journal of biological chemistry.
2007 Aug; 282(31):22930-8. doi:
10.1074/jbc.m702522200
. [PMID: 17519237] - Guy E Townsend, Lennart S Forsberg, David H Keating. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides.
Journal of bacteriology.
2006 Dec; 188(24):8560-72. doi:
10.1128/jb.01035-06
. [PMID: 17028279] - Sandra Goettsch, Rodica A Badea, Jonathan W Mueller, Christoph Wotzlaw, Beate Schoelermann, Lars Schulz, Matthias Rabiller, Peter Bayer, Cristina Hartmann-Fatu. Human TPST1 transmembrane domain triggers enzyme dimerisation and localisation to the Golgi compartment.
Journal of molecular biology.
2006 Aug; 361(3):436-49. doi:
10.1016/j.jmb.2006.06.023
. [PMID: 16859706] - Timo Hamers, Jorke H Kamstra, Edwin Sonneveld, Albertinka J Murk, Monique H A Kester, Patrik L Andersson, Juliette Legler, Abraham Brouwer. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants.
Toxicological sciences : an official journal of the Society of Toxicology.
2006 Jul; 92(1):157-73. doi:
10.1093/toxsci/kfj187
. [PMID: 16601080] - Tram Thu Vuong, Kristian Prydz, Heidi Tveit. Differences in the apical and basolateral pathways for glycosaminoglycan biosynthesis in Madin-Darby canine kidney cells.
Glycobiology.
2006 Apr; 16(4):326-32. doi:
10.1093/glycob/cwj075
. [PMID: 16394120] - Melinda N Martin, Mitchell C Tarczynski, Bo Shen, Thomas Leustek. The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants.
Photosynthesis research.
2005 Dec; 86(3):309-23. doi:
10.1007/s11120-005-9006-z
. [PMID: 16328785] - Gian Maria Pacifici. Sulfation of drugs and hormones in mid-gestation human fetus.
Early human development.
2005 Jul; 81(7):573-81. doi:
10.1016/j.earlhumdev.2004.10.021
. [PMID: 16009282] - Laura Huopaniemi, Meelis Kolmer, Jaana Niittymäki, Markku Pelto-Huikko, Risto Renkonen. Inflammation-induced transcriptional regulation of Golgi transporters required for the synthesis of sulfo sLex glycan epitopes.
Glycobiology.
2004 Dec; 14(12):1285-94. doi:
10.1093/glycob/cwh131
. [PMID: 15269183] - Ho-Jin Chang, Rong Shi, Peter Rehse, Sheng-Xiang Lin. Identifying androsterone (ADT) as a cognate substrate for human dehydroepiandrosterone sulfotransferase (DHEA-ST) important for steroid homeostasis: structure of the enzyme-ADT complex.
The Journal of biological chemistry.
2004 Jan; 279(4):2689-96. doi:
10.1074/jbc.m310446200
. [PMID: 14573603] - Monique H A Kester, Ellen Kaptein, Thirza J Roest, Caren H van Dijk, Dick Tibboel, Walter Meinl, Hansruedi Glatt, Michael W H Coughtrie, Theo J Visser. Characterization of rat iodothyronine sulfotransferases.
American journal of physiology. Endocrinology and metabolism.
2003 Sep; 285(3):E592-8. doi:
10.1152/ajpendo.00046.2003
. [PMID: 12773305] - Carla Snoeck, Christel Verreth, Ismael Hernández-Lucas, Esperanza Martínez-Romero, Jos Vanderleyden. Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816: the CysDN sulfate activation complex.
Applied and environmental microbiology.
2003 Apr; 69(4):2006-14. doi:
10.1128/aem.69.4.2006-2014.2003
. [PMID: 12676676] - H Arakawa, M Shiokawa, O Imamura, M Maeda. Novel bioluminescent assay of alkaline phosphatase using adenosine-3'-phosphate-5'-phosphosulfate as substrate and the luciferin-luciferase reaction and its application.
Analytical biochemistry.
2003 Mar; 314(2):206-11. doi:
10.1016/s0003-2697(02)00657-7
. [PMID: 12654306] - Katja Fjeldstad, Mona E Pedersen, Tram Thu Vuong, Svein Olav Kolset, Line Mari Nordstrand, Kristian Prydz. Sulfation in the Golgi lumen of Madin-Darby canine kidney cells is inhibited by brefeldin A and depends on a factor present in the cytoplasm and on Golgi membranes.
The Journal of biological chemistry.
2002 Sep; 277(39):36272-9. doi:
10.1074/jbc.m206365200
. [PMID: 12138122] - Stanislav Kopriva, Thomas Büchert, Günter Fritz, Marianne Suter, Rüdiger Benda, Volker Schünemann, Anna Koprivova, Peter Schürmann, Alfred X Trautwein, Peter M H Kroneck, Christian Brunold. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation.
The Journal of biological chemistry.
2002 Jun; 277(24):21786-91. doi:
10.1074/jbc.m202152200
. [PMID: 11940598] - Valerie A Wilson, John T Gallagher, Catherine L R Merry. Heparan sulfate 2-O-sulfotransferase (Hs2st) and mouse development.
Glycoconjugate journal.
2002 May; 19(4-5):347-54. doi:
10.1023/a:1025325222530
. [PMID: 12975615] - Yuwei Shen, Parveen Sharma, Francisco G da Silva, Pamela Ronald. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5'-phosphosulphate kinase that are required for AvrXa21 avirulence activity.
Molecular microbiology.
2002 Apr; 44(1):37-48. doi:
10.1046/j.1365-2958.2002.02862.x
. [PMID: 11967067] - James R Myette, Zachary Shriver, Jian Liu, Ganesh Venkataraman, Robert Rosenberg, Ram Sasisekharan. Expression in Escherichia coli, purification and kinetic characterization of human heparan sulfate 3-O-sulfotransferase-1.
Biochemical and biophysical research communications.
2002 Feb; 290(4):1206-13. doi:
10.1006/bbrc.2001.6268
. [PMID: 11811991] - R Höfgen, O Kreft, L Willmitzer, H Hesse. Manipulation of thiol contents in plants.
Amino acids.
2001; 20(3):291-9. doi:
10.1007/s007260170045
. [PMID: 11354605] - J P Rodríguez, G Rosselot. Effects of zinc on cell proliferation and proteoglycan characteristics of epiphyseal chondrocytes.
Journal of cellular biochemistry.
2001; 82(3):501-11. doi:
10.1002/jcb.1178
. [PMID: 11500926] - A D Marshall, P McPhie, W B Jakoby. Redox control of aryl sulfotransferase specificity.
Archives of biochemistry and biophysics.
2000 Oct; 382(1):95-104. doi:
10.1006/abbi.2000.2020
. [PMID: 11051102] - J W Boles, C D Klaassen. Effects of molybdate and pentachlorophenol on the sulfation of acetaminophen.
Toxicology.
2000 Apr; 146(1):23-35. doi:
10.1016/s0300-483x(00)00159-1
. [PMID: 10773360] - S Yamauchi, S Mita, T Matsubara, M Fukuta, H Habuchi, K Kimata, O Habuchi. Molecular cloning and expression of chondroitin 4-sulfotransferase.
The Journal of biological chemistry.
2000 Mar; 275(12):8975-81. doi:
10.1074/jbc.275.12.8975
. [PMID: 10722746] - Q K Huynh, K Shailubhai, H Boddupalli, H H Yu, K O Broschat, G S Jacob. Isolation and characterization from porcine serum of a soluble sulfotransferase responsible for 6-O-sulfation of the galactose residue in 2'-fucosyllactose: implications in the synthesis of the ligand for L-selectin.
Glycoconjugate journal.
1999 Jul; 16(7):357-63. doi:
10.1023/a:1007052228230
. [PMID: 10619708] - J W Boles, C D Klaassen. Effects of molybdate and pentachlorophenol on the sulfation of alpha-naphthol.
Toxicology letters.
1999 May; 106(1):1-8. doi:
10.1016/s0378-4274(99)00017-x
. [PMID: 10378445] - L Varin, H Chamberland, J G Lafontaine, M Richard. The enzyme involved in sulfation of the turgorin, gallic acid 4-O-(beta-D-glucopyranosyl-6'-sulfate) is pulvini-localized in Mimosa pudica.
The Plant journal : for cell and molecular biology.
1997 Oct; 12(4):831-7. doi:
10.1046/j.1365-313x.1997.12040831.x
. [PMID: 9375396] - E A Pasyk, J K Foskett. Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3'-phosphate 5'-phosphosulfate channels in endoplasmic reticulum and plasma membranes.
The Journal of biological chemistry.
1997 Mar; 272(12):7746-51. doi:
10.1074/jbc.272.12.7746
. [PMID: 9065435] - Y S Yang, A D Marshall, P McPhie, W X Guo, X Xie, X Chen, W B Jakoby. Two phenol sulfotransferase species from one cDNA: nature of the differences.
Protein expression and purification.
1996 Dec; 8(4):423-9. doi:
10.1006/prep.1996.0120
. [PMID: 8954889] - L Liu, C D Klaassen. Different mechanism of saturation of acetaminophen sulfate conjugation in mice and rats.
Toxicology and applied pharmacology.
1996 Jul; 139(1):128-34. doi:
10.1006/taap.1996.0151
. [PMID: 8685895] - F Marsolais, L Varin. Identification of amino acid residues critical for catalysis and cosubstrate binding in the flavonol 3-sulfotransferase.
The Journal of biological chemistry.
1995 Dec; 270(51):30458-63. doi:
10.1074/jbc.270.51.30458
. [PMID: 8530475] - H J Kim, P Rozman, C D Klaassen. Acetaminophen does not decrease hepatic 3'-phosphoadenosine 5'-phosphosulfate in mice.
The Journal of pharmacology and experimental therapeutics.
1995 Dec; 275(3):1506-11. doi:
NULL
. [PMID: 8531122] - K Kamio, K Honke, A Makita. Pyridoxal 5'-phosphate binds to a lysine residue in the adenosine 3'-phosphate 5'-phosphosulfate recognition site of glycolipid sulfotransferase from human renal cancer cells.
Glycoconjugate journal.
1995 Dec; 12(6):762-6. doi:
10.1007/bf00731236
. [PMID: 8748152] - H J Kim, J H Cho, C D Klaassen. Depletion of hepatic 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and sulfate in rats by xenobiotics that are sulfated.
The Journal of pharmacology and experimental therapeutics.
1995 Nov; 275(2):654-8. doi:
NULL
. [PMID: 7473151] - D W Ehrhardt, E M Atkinson, K F Faull, D I Freedberg, D P Sutherlin, R Armstrong, S R Long. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation.
Journal of bacteriology.
1995 Nov; 177(21):6237-45. doi:
10.1128/jb.177.21.6237-6245.1995
. [PMID: 7592390] - H J Kim, C Madhu, J H Cho, C D Klaassen. In vivo modification of 3'-phosphoadenosine 5'-phosphosulfate and sulfate by infusion of sodium sulfate, cysteine, and methionine.
Drug metabolism and disposition: the biological fate of chemicals.
1995 Aug; 23(8):840-5. doi:
. [PMID: 7493551]
- C Kasinathan, S William, S Vaidyanathan, J Leventhal. Effect of lipids on glycoprotein sulphotransferase activity in rat submandibular salivary glands.
Archives of oral biology.
1995 May; 40(5):433-8. doi:
10.1016/0003-9969(94)00176-c
. [PMID: 7639646] - J P Bourdineaud, J J Bono, R Ranjeva, J V Cullimore. Enzymatic radiolabelling to a high specific activity of legume lipo-oligosaccharidic nodulation factors from Rhizobium meliloti.
The Biochemical journal.
1995 Feb; 306 ( Pt 1)(?):259-64. doi:
10.1042/bj3060259
. [PMID: 7864819] - Z Gregus, H J Kim, C Madhu, Y Liu, P Rozman, C D Klaassen. Sulfation of acetaminophen and acetaminophen-induced alterations in sulfate and 3'-phosphoadenosine 5'-phosphosulfate homeostasis in rats with deficient dietary intake of sulfur.
Drug metabolism and disposition: the biological fate of chemicals.
1994 Sep; 22(5):725-30. doi:
. [PMID: 7835224]
- T Oguro, Z Gregus, C Madhu, L Liu, C D Klaassen. Molybdate depletes hepatic 3-phosphoadenosine 5-phosphosulfate and impairs the sulfation of acetaminophen in rats.
The Journal of pharmacology and experimental therapeutics.
1994 Sep; 270(3):1145-51. doi:
NULL
. [PMID: 7932164] - Z Gregus, T Oguro, C D Klaassen. Nutritionally and chemically induced impairment of sulfate activation and sulfation of xenobiotics in vivo.
Chemico-biological interactions.
1994 Jun; 92(1-3):169-77. doi:
10.1016/0009-2797(94)90062-0
. [PMID: 8033252] - T S Leyh. The physical biochemistry and molecular genetics of sulfate activation.
Critical reviews in biochemistry and molecular biology.
1993; 28(6):515-42. doi:
10.3109/10409239309085137
. [PMID: 8299360] - T Bakker-Grunwald, B Geilhorn. Sulfate metabolism in Entamoeba histolytica.
Molecular and biochemical parasitology.
1992 Jul; 53(1-2):71-8. doi:
10.1016/0166-6851(92)90008-8
. [PMID: 1501646] - H J Kim, P Rozman, C Madhu, C D Klaassen. Homeostasis of sulfate and 3'-phosphoadenosine 5'-phosphosulfate in rats after acetaminophen administration.
The Journal of pharmacology and experimental therapeutics.
1992 Jun; 261(3):1015-21. doi:
NULL
. [PMID: 1602369] - P Rozman, H J Kim, C Madhu, Z Gregus, C D Klaassen. Homeostasis of sulfate and 3'-phosphoadenosine 5'-phosphosulfate in rats with deficient dietary intake of sulfur.
Drug metabolism and disposition: the biological fate of chemicals.
1992 May; 20(3):374-8. doi:
NULL
. [PMID: 1355710] - T J Maziasz, J Liu, C Madhu, C D Klaassen. The differential effects of hepatotoxicants on the sulfation pathway in rats.
Toxicology and applied pharmacology.
1991 Sep; 110(3):365-73. doi:
10.1016/0041-008x(91)90039-h
. [PMID: 1949007] - K P Wong. A simple sensitive fluorimetric assay of APS-kinase activity.
Biochemical pharmacology.
1990 Jan; 39(1):173-9. doi:
10.1016/0006-2952(90)90662-5
. [PMID: 2153377] - M Cappiello, M Franchi, L Giuliani, G M Pacifici. Distribution of 2-naphthol sulphotransferase and its endogenous substrate adenosine 3'-phosphate 5'-phosphosulphate in human tissues.
European journal of clinical pharmacology.
1989; 37(3):317-20. doi:
10.1007/bf00679793
. [PMID: 2612547] - B L Slomiany, Y H Liau, G Zalesna, A Slomiany. Effect of ethanol on the in vitro sulfation of salivary mucin.
Alcoholism, clinical and experimental research.
1988 Dec; 12(6):774-9. doi:
10.1111/j.1530-0277.1988.tb01344.x
. [PMID: 3064638] - Z Gregus, C White, S Howell, C D Klaassen. Effect of glutathione depletion on sulfate activation and sulfate ester formation in rats.
Biochemical pharmacology.
1988 Nov; 37(22):4307-12. doi:
10.1016/0006-2952(88)90611-9
. [PMID: 3196355] - E A Brzeznicka, G A Hazelton, C D Klaassen. Comparison of adenosine 3'-phosphate 5'-phosphosulfate concentrations in tissues from different laboratory animals.
Drug metabolism and disposition: the biological fate of chemicals.
1987 Jan; 15(1):133-5. doi:
NULL
. [PMID: 2881750] - G J Mulder. Kinetics of sulfation in the rat in vivo and in the perfused rat liver.
Federation proceedings.
1986 Jul; 45(8):2229-34. doi:
NULL
. [PMID: 3087784] - J J Hjelle, E A Brzeznicka, C D Klaassen. Comparison of the effects of sodium sulfate and N-acetylcysteine on the hepatotoxicity of acetaminophen in mice.
The Journal of pharmacology and experimental therapeutics.
1986 Feb; 236(2):526-34. doi:
. [PMID: 3944770]
- N Liu, J U Baenziger. In vivo and in vitro tyrosine sulfation of a membrane glycoprotein.
The Journal of biological chemistry.
1986 Jan; 261(2):856-61. doi:
10.1016/s0021-9258(17)36174-4
. [PMID: 3079762] - K Sugahara, S Shibamoto, I Yamashina. Elevated chondroitin 6-sulfotransferase activity in fetal bovine serum.
FEBS letters.
1985 Apr; 183(1):43-6. doi:
10.1016/0014-5793(85)80950-9
. [PMID: 3856526] - J J Hjelle, G A Hazelton, C D Klaassen. Acetaminophen decreases adenosine 3'-phosphate 5'-phosphosulfate and uridine diphosphoglucuronic acid in rat liver.
Drug metabolism and disposition: the biological fate of chemicals.
1985 Jan; 13(1):35-41. doi:
. [PMID: 2858374]
- S Fukui, Y Numata, I Yamashina. Comparison of protein sulfation in control and virus-transformed baby hamster kidney cells.
Journal of biochemistry.
1984 Dec; 96(6):1783-8. doi:
10.1093/oxfordjournals.jbchem.a135011
. [PMID: 6099354] - E J Glazenburg, I M Jekel-Halsema, E Scholtens, A J Baars, G J Mulder. Effects of variation in the dietary supply of cysteine and methionine on liver concentration of glutathione and "active sulfate" (PAPS) and serum levels of sulfate, cystine, methionine and taurine: relation to the metabolism of acetaminophen.
The Journal of nutrition.
1983 Jul; 113(7):1363-73. doi:
10.1093/jn/113.7.1363
. [PMID: 6864334] - G Tennekoon, M Zaruba, K Shimomura, Y Kishimoto. Sulfatide synthesis in mice with defective synthesis of 3'-phosphoadenosine 5'-phosphosulfate.
Neuroscience letters.
1983 Jun; 37(3):295-9. doi:
10.1016/0304-3940(83)90447-0
. [PMID: 6577314] - I Yamashina, H Yoshida, S Fukui, I Funakoshi. Biochemical studies on Lowe's syndrome.
Molecular and cellular biochemistry.
1983; 52(2):107-24. doi:
10.1007/bf00224920
. [PMID: 6135983] - K Sugahara, N B Schwartz. Defect in 3'-phosphoadenosine 5'-phosphosulfate synthesis in brachymorphic mice. II. Tissue distribution of the defect.
Archives of biochemistry and biophysics.
1982 Apr; 214(2):602-9. doi:
10.1016/0003-9861(82)90065-0
. [PMID: 6284030] - T P Maus, R K Pearson, R J Anderson, L C Woodson, C Reiter, R M Weinshilboum. Rat phenol sulfotransferase. Assay procedure, developmental changes, and glucocorticoid regulation.
Biochemical pharmacology.
1982 Mar; 31(5):849-56. doi:
10.1016/0006-2952(82)90473-7
. [PMID: 6952875] - S Fukui, H Yoshida, I Yamashina. Sulfohydrolytic degradation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and adenosine 5'-phosphosulfate (APS) by enzymes of a nucleotide pyrophosphatase nature.
Journal of biochemistry.
1981 Nov; 90(5):1537-40. doi:
10.1093/oxfordjournals.jbchem.a133621
. [PMID: 6121793] - R J Anderson, R M Weinshilboum, S F Phillips, D D Broughton. Human platelet phenol sulphotransferase: assay procedure, substrate and tissue correlations.
Clinica chimica acta; international journal of clinical chemistry.
1981 Mar; 110(2-3):157-67. doi:
10.1016/0009-8981(81)90345-4
. [PMID: 6939511] - P A Mourão, S Kato, P V Donnelly. Spondyloepiphyseal dysplasia, chondroitin sulfate type: a possible defect of PAPS--chondroitin sulfate sulfotransferase in humans.
Biochemical and biophysical research communications.
1981 Jan; 98(2):388-96. doi:
10.1016/0006-291x(81)90852-4
. [PMID: 6784721] - P Levy, J Picard, A Bruel. [Heparan sulfate biosynthesis in swine arterial wall: glycosylation and sulfation].
Paroi arterielle.
1981; 7(3):113-9. doi:
NULL
. [PMID: 6461835] - L J Chen. Bile salt sulfotransferase.
Methods in enzymology.
1981; 77(?):213-8. doi:
10.1016/s0076-6879(81)77028-9
. [PMID: 6948990] - O Kuchel, N T Buu, P Hamet, P Larochelle, J Genest. Conjugation of catecholamines, a variable to be accounted for in human hypertension.
Progress in biochemical pharmacology.
1980; 17(?):66-74. doi:
NULL
. [PMID: 6937881] - R J Anderson, R M Weinshilboum. Phenolsulphotransferase: enzyme activity and endogenous inhibitors in the human erythrocyte.
The Journal of laboratory and clinical medicine.
1979 Jul; 94(1):158-71. doi:
NULL
. [PMID: 469373] - L Lööf, B Wengle. Enzymatic sulphation of bile salts in man.
Scandinavian journal of gastroenterology.
1979; 14(5):513-9. doi:
10.3109/00365527909181383
. [PMID: 493853] - A Puigvert, D Ruano. [Etiopathogenesis of so-called congenital hydronephrosis].
Journal d'urologie et de nephrologie.
1979 Jan; 85(1-2):1-12. doi:
NULL
. [PMID: 439196] - G J Mulder, K Keulemans. Metabolism of inorganic sulphate in the isolated perfused rat liver. Effect of sulphate concentration on the rate of sulphation by phenol sulphotransferase.
The Biochemical journal.
1978 Dec; 176(3):959-65. doi:
10.1042/bj1760959
. [PMID: 747664] - L Lööf, B Wengle. Enzymatic sulphation of bile salts in human liver.
Biochimica et biophysica acta.
1978 Sep; 530(3):451-60. doi:
10.1016/0005-2760(78)90165-0
. [PMID: 698243] - W Wagner, H Follmann, A Schmidt. Multiple functions of thioredoxins.
Zeitschrift fur Naturforschung. Section C, Biosciences.
1978 Jul; 33(7-8):517-20. doi:
10.1515/znc-1978-7-811
. [PMID: 212888] - L J Chen, T J Imperato, R J Bolt. Enzymatic sulfation of bile salts. II. Studies on bile salt sulfotranferase from rat kidney.
Biochimica et biophysica acta.
1978 Feb; 522(2):443-51. doi:
10.1016/0005-2744(78)90077-3
. [PMID: 23845] - P L Vijayammal, P A Kurup. Pyridoxine and atherosclerosis: role of pyridoxine in the metabolism of lipids and glycosaminoglycans in rats fed normal and high fat, high cholesterol diets containing 16\% casein.
Australian journal of biological sciences.
1978 Feb; 31(1):7-20. doi:
10.1071/bi9780007
. [PMID: 678216] - A Schmidt. Adenosine-5'-phosphosulfate (APS) as sulfate donor for assimilatory sulfate reduction in Rhodospirillum rubrum.
Archives of microbiology.
1977 Apr; 112(3):263-70. doi:
10.1007/bf00413090
. [PMID: 16577] - L J Chen, R J Bolt, W H Admirand. Enzymatic sulfation of bile salts. Partial purification and characterization of an enzyme from rat liver that catalyzes the sulfation of bile salts.
Biochimica et biophysica acta.
1977 Jan; 480(1):219-27. doi:
10.1016/0005-2744(77)90335-7
. [PMID: 831833]