3-Hydroxybutyric acid (BioDeep_00000001234)
Secondary id: BioDeep_00000229681, BioDeep_00000265240, BioDeep_00000629015, BioDeep_00001868148, BioDeep_00001871760
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs Antibiotics Volatile Flavor Compounds
代谢物信息卡片
化学式: C4H8O3 (104.0473418)
中文名称: (R)-3-羟基丁酸, 3-羟基丁酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.17%
Last reviewed on 2024-08-14.
Cite this Page
3-Hydroxybutyric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/3-hydroxybutyric_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001234). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(O)(C)CC(=O)O
InChI: InChI=1S/C4H8O3/c1-3(5)2-4(6)7/h3,5H,2H2,1H3,(H,6,7)
描述信息
3-Hydroxybutyric acid (CAS: 300-85-6), also known as beta-hydroxybutanoic acid, is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis. This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of 3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid, and is a ketone body. Like the other ketone bodies (acetoacetate and acetone), levels of 3-hydroxybutyrate in blood and urine are raised in ketosis. In humans, 3-hydroxybutyrate is synthesized in the liver from acetyl-CoA and can be used as an energy source by the brain when blood glucose is low. Blood levels of 3-hydroxybutyric acid levels may be monitored in diabetic patients to look for diabetic ketoacidosis. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing mammals. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for the synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for the synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmitoylphosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). 3-Hydroxybutyric acid is found to be associated with fumarase deficiency and medium-chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. 3-Hydroxybutyric acid is a metabolite of Alcaligenes and can be produced from plastic metabolization or incorporated into polymers, depending on the species (PMID: 7646009, 18615882).
(R)-3-Hydroxybutyric acid is a butyric acid substituted with a hydroxyl group in the beta or 3 position. It is involved in the synthesis and degradation of ketone bodies. Like the other ketone bodies (acetoacetate and acetone), levels of beta-hydroxybutyrate are raised in the blood and urine in ketosis. Beta-hydroxybutyrate is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of D-3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. It can also be used for the synthesis of biodegradable plastics . [HMDB]
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID H022
(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].
3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].
3-Hydroxybutyric acid (β-Hydroxybutyric acid) is a metabolite that is elevated in type I diabetes. 3-Hydroxybutyric acid can modulate the properties of membrane lipids[1].
同义名列表
70 个代谢物同义名
(R)-(-)-beta-Hydroxybutyric acid; D(-)-β-hydroxy butyric acid; D-(-)-beta-Hydroxybutyric acid; D(-)-beta-hydroxy butyric acid; (R)-(-)-Β-hydroxybutyric acid; (R)-(-)-3-Hydroxybutyric acid; (R)-(-)-b-Hydroxybutyric acid; (R)-beta-Hydroxybutanoic acid; (R)-beta-Hydroxybutyric acid; D-(-)-3-Hydroxybutanoic acid; (-)-3-Hydroxy-n-butyric acid; (R)-(-)-beta-Hydroxybutyrate; beta-Hydroxy-n-butyric acid; DL-beta-Hydroxybutyric acid; D-(-)-β-Hydroxybutyric acid; delta-3-Hydroxybutyric acid; delta-(-)-3-Hydroxybutyrate; 3-delta-Hydroxybutyric acid; D-(-)-3-Hydroxybutyric acid; (3R)-3-Hydroxybutanoic acid; (R)-β-Hydroxybutanoic acid; delta-beta-Hydroxybutyrate; (R)-3-Hydroxybutanoic acid; D-beta-Hydroxybutyric acid; (3R)-3-Hydroxybutyric acid; (R)-β-Hydroxybutyric acid; (R)-(-)-b-Hydroxybutyrate; (R)-(-)-Β-hydroxybutyrate; beta-Hydroxybutanoic acid; (-)-3-Hydroxybutyric acid; (R)-3-Hydroxybutyric acid; 3R-hydroxy-butanoic acid; beta-Hydroxybutyric acid; 3-Hydroxy-n-butyric acid; β-Hydroxy-n-butyric acid; D-(-)-3-Hydroxybutyrate; D-b-Hydroxybutyric acid; 3-hydroxy-butanoic acid; δ-3-hydroxybutyric acid; delta-3-Hydroxybutyrate; 3R-Hydroxybutanoic acid; 3-δ-hydroxybutyric acid; 3-delta-Hydroxybutyrate; D-Β-hydroxybutyric acid; 3-D-Hydroxybutyric acid; D-3-Hydroxybutyric acid; δ-(-)-3-hydroxybutyrate; β-Hydroxybutanoic acid; (R)-3-Hydroxybutanoate; D-beta-Hydroxybutyrate; 3-Hydroxybutanoic acid; β-Hydroxybutyric acid; 3-hydroxybutyric acid; (R)-3-Hydroxybutyrate; (3R)-Hydroxybutyrate; 3R-Hydroxy-butanoate; D-b-Hydroxybutyrate; 3-D-Hydroxybutyrate; 3-δ-hydroxybutyrate; D-3-Hydroxybutyrate; δ-3-hydroxybutyrate; D-Β-hydroxybutyrate; δ-β-hydroxybutyrate; b-Hydroxybutyrate; FA 4:0;O; BHIB; 3-Hydroxybutyric acid; (R)-(-)-3-Hydroxybutanoic acid; (R)-3-Hydroxybutanoate; (R)-3-Hydroxybutyric acid
数据库引用编号
37 个数据库交叉引用编号
- ChEBI: CHEBI:20067
- ChEBI: CHEBI:17066
- KEGG: C01089
- PubChem: 92135
- PubChem: 441
- HMDB: HMDB0000011
- Metlin: METLIN35598
- Metlin: METLIN125
- ChEMBL: CHEMBL1162496
- ChEMBL: CHEMBL1162484
- Wikipedia: Beta-Hydroxybutyric_acid
- LipidMAPS: LMFA01050005
- MeSH: 3-Hydroxybutyric Acid
- MetaCyc: CPD-335
- foodb: FDB021869
- chemspider: 83181
- CAS: 625-72-9
- MoNA: KO001009
- MoNA: PR100550
- MoNA: KO001010
- MoNA: KO001008
- MoNA: KO001012
- MoNA: KO001011
- MoNA: PS022001
- PMhub: MS000000176
- ChEBI: CHEBI:10983
- LipidMAPS: LMFA01050243
- PDB-CCD: 3HR
- 3DMET: B00239
- NIKKAJI: J5.217E
- RefMet: 3-Hydroxybutyric acid
- medchemexpress: HY-W051723
- medchemexpress: HY-113378
- PubChem: 4324
- KNApSAcK: 10983
- LOTUS: LTS0235871
- wikidata: Q27075135
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
76 个相关的代谢反应过程信息。
Reactome(60)
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(2)
- Butanoate metabolism ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- NAD+ + (R)-3-Hydroxy-butanoic acid = NADH + Acetoacetic acid ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(14)
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
PharmGKB(0)
17 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 1080010 - Aloe africana: 10.1021/JF071110T
- 327061 - Annulohypoxylon truncatum: 10.1021/NP030185Y
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 52152 - Elymus repens: 10.1016/0031-9422(94)00795-U
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 87248 - Hydroclathrus clathratus: 10.1021/NP50041A016
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 4550 - Secale cereale: 10.1021/JF00070A011
- 45843 - Solanum betaceum: 10.1002/FFJ.2730100603
- 80338 - Spondias mombin: 10.1021/JF00008A025
- 67304 - Streptomyces griseorubiginosus:
- 5691 - Trypanosoma brucei:
- 103349 - Vitis rotundifolia: 10.1021/JF00112A014
- 29760 - Vitis vinifera: 10.1111/J.1365-2621.1997.TB03978.X
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ruixue Tian, Shuqin Tang, Jingyu Zhao, Yajie Hao, Limei Zhao, Xiutao Han, Xingru Wang, Lijun Zhang, Rongshan Li, Xiaoshuang Zhou. β-Hydroxybutyrate Protects Against Cisplatin-Induced Renal Damage via Regulating Ferroptosis.
Renal failure.
2024 Dec; 46(1):2354918. doi:
10.1080/0886022x.2024.2354918
. [PMID: 38757723] - Alexandra N Schoen, Alyssa M Weinrauch, Ian A Bouyoucos, Jason R Treberg, W Gary Anderson. Hormonal effects on glucose and ketone metabolism in a perfused liver of an elasmobranch, the North Pacific spiny dogfish, Squalus suckleyi.
General and comparative endocrinology.
2024 Jun; 352(?):114514. doi:
10.1016/j.ygcen.2024.114514
. [PMID: 38582175] - Mary P Moore, Grace Shryack, Isabella Alessi, Nicole Wieschhaus, Grace M Meers, Sarah A Johnson, Andrew A Wheeler, Jamal A Ibdah, Elizabeth J Parks, R Scott Rector. Relationship between serum β-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD.
American journal of physiology. Endocrinology and metabolism.
2024 Apr; 326(4):E493-E502. doi:
10.1152/ajpendo.00336.2023
. [PMID: 38381399] - Yueqiang Wang, Zhenyu Wang, Wenhui Liu, Shuoqi Xie, Xiaoli Ren, Lei Yan, Dong Liang, Tengyun Gao, Tong Fu, Zhen Zhang, Hetian Huang. Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses.
Genes.
2024 Mar; 15(4):. doi:
10.3390/genes15040412
. [PMID: 38674346] - Min Jeong Kim, Young Suk Kim, Seo Rin Kim, Dong Won Lee, Soo Bong Lee, Il Young Kim. Pre-treatment with β-hydroxybutyrate mitigates cisplatin-induced acute kidney injury.
Biochemical and biophysical research communications.
2024 Feb; 695(?):149482. doi:
10.1016/j.bbrc.2024.149482
. [PMID: 38211529] - Yeonjae Yoo, Dae Young Kwon, Minseo Jeon, Jaehoon Lee, Haeun Kwon, Dongho Lee, Jong Seong Khim, Yoon-E Choi, Jae-Jin Kim. Enhancing poly(3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance.
Bioresource technology.
2024 Feb; 394(?):130175. doi:
10.1016/j.biortech.2023.130175
. [PMID: 38086463] - Natalia Hernández-Herreros, Virginia Rivero-Buceta, Isabel Pardo, M Auxiliadora Prieto. Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16.
Water research.
2024 Feb; 249(?):120892. doi:
10.1016/j.watres.2023.120892
. [PMID: 38007895] - Sen-Lin Zhu, Feng-Fei Gu, Yi-Fan Tang, Xiao-Han Liu, Ming-Hui Jia, Teresa G Valencak, Jian-Xin Liu, Hui-Zeng Sun. Dynamic fecal microenvironment properties enable predictions and understanding of peripartum blood oxidative status and nonesterified fatty acids in dairy cows.
Journal of dairy science.
2024 Jan; 107(1):573-592. doi:
10.3168/jds.2022-23066
. [PMID: 37690725] - Yiqiao Gao, Yixin Zhang, Wei Liu, Nan Zhang, Qinghe Gao, Jingfang Shangguan, Na Li, Ying Zhao, Yanlong Jia. Danggui Buxue decoction alleviates cyclophosphamide-induced myelosuppression by regulating β-hydroxybutyric acid metabolism and suppressing oxidative stress.
Pharmaceutical biology.
2023 Dec; 61(1):710-721. doi:
10.1080/13880209.2023.2201606
. [PMID: 37096658] - Satti Venu Gopala Kumari, Kannan Pakshirajan, G Pugazhenthi. Facile fabrication and characterization of novel antimicrobial and antioxidant poly (3-hydroxybutyrate)/essential oil composites for potential use in active food packaging applications.
International journal of biological macromolecules.
2023 Dec; 252(?):126566. doi:
10.1016/j.ijbiomac.2023.126566
. [PMID: 37648135] - Chunru Yang, Cheng Xiao, Xiaojun Zhai, Jieying Liu, Miao Yu. SGLT2 inhibitor improves kidney function and morphology by regulating renal metabolism in mice with diabetic kidney disease.
Journal of diabetes and its complications.
2023 Nov; 38(2):108652. doi:
10.1016/j.jdiacomp.2023.108652
. [PMID: 38190779] - Ying Liu, Liang Ma, Ping Fu. [Ketone Body Metabolism and Renal Diseases].
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition.
2023 Nov; 54(6):1091-1096. doi:
10.12182/20231160202
. [PMID: 38162055] - Wenwen Gao, Yanxi Wang, Siyu Liu, Guojin Li, Qi Shao, Cai Zhang, Liguang Cao, Kai Liu, Wenrui Gao, Zifeng Yang, Yifei Dong, Xiliang Du, Lin Lei, Guowen Liu, Xinwei Li. IRE1α-JNK axis activation contributes to intracellular lipid accumulation in calf hepatocytes.
Journal of dairy science.
2023 Nov; ?(?):. doi:
10.3168/jds.2022-23189
. [PMID: 37939835] - J T Mey, B Vandagmansar, W S Dantas, K P Belmont, C L Axelrod, J P Kirwan. Ketogenic propensity is differentially related to lipid-induced hepatic and peripheral insulin resistance.
Acta physiologica (Oxford, England).
2023 Oct; ?(?):e14054. doi:
10.1111/apha.14054
. [PMID: 37840478] - Héctor F Escobar-Morreale, María Ángeles Martínez-García, María Insenser, Nicolau Cañellas, Xavier Correig, Manuel Luque-Ramírez. Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls.
Biology of sex differences.
2023 09; 14(1):62. doi:
10.1186/s13293-023-00547-2
. [PMID: 37736753] - Shendong Zhou, Mengru Chen, Meijuan Meng, Nana Ma, Wan Xie, Xiangzhen Shen, Zhixin Li, Guangjun Chang. Subclinical ketosis leads to lipid metabolism disorder by down-regulating the expression of Acetyl-CoA acetyltransferase 2 (ACAT2) in dairy cows.
Journal of dairy science.
2023 Sep; ?(?):. doi:
10.3168/jds.2023-23602
. [PMID: 37690731] - Mayuko Mishima, Shiro Takeda, Masaki Nagane, Takehito Suzuki, Masaya Ogata, Ayaka Shima, Naoyuki Aihara, Junichi Kamiie, Rimina Suzuki, Hinano Mizugaki, Yuko Okamatsu-Ogura, Takumi Satoh, Tadashi Yamashita. Prebiotic effect of poly-D-3-hydroxybutyrate prevents dyslipidemia in obese mice.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2023 09; 37(9):e23121. doi:
10.1096/fj.202301191r
. [PMID: 37548278] - Jinxia Wu, Jing Chen, Rong Huang, Hongwei Zhu, Lin Che, Yanyan Lin, Yajie Chang, Guiping Shen, Jianghua Feng. Metabolic characteristics and pathogenesis of precocious puberty in girls: the role of perfluorinated compounds.
BMC medicine.
2023 08; 21(1):323. doi:
10.1186/s12916-023-03032-0
. [PMID: 37626398] - Chenchen Zhao, Jinxia Li, Menglin Liu, Linfang Chen, Yiwei Zhu, Wenwen Gao, Xiliang Du, Yuxiang Song, Guowen Liu, Lin Lei, Xinwei Li. Inhibition of cluster antigen 36 protects against fatty acids-induced lipid accumulation, oxidative stress, and inflammation in bovine hepatocytes.
Journal of dairy science.
2023 Aug; ?(?):. doi:
10.3168/jds.2023-23282
. [PMID: 37641277] - Mingxin Huang, Yiqin Yu, Xuheng Tang, Rui Dong, Xiaojie Li, Fen Li, Yongxin Jin, Shenhai Gong, Xingmin Wang, Zhenhua Zeng, Lin Huang, Hong Yang. 3-Hydroxybutyrate ameliorates sepsis-associated acute lung injury by promoting autophagy through the activation of GPR109α in macrophages.
Biochemical pharmacology.
2023 07; 213(?):115632. doi:
10.1016/j.bcp.2023.115632
. [PMID: 37263300] - Mao Ning, Yihan Zhao, Dongmei Dai, Chang Yao, Huatao Liu, Lingzhao Fang, Bo Wang, Yi Zhang, Jie Cao. Gene co-expression network and differential expression analyses of subcutaneous white adipose tissue reveal novel insights into the pathological mechanisms underlying ketosis in dairy cows.
Journal of dairy science.
2023 May; ?(?):. doi:
10.3168/jds.2022-22941
. [PMID: 37268588] - Luciano A González, Julia G S Carvalho, Bruno C Kuinchtner, Anthony C Dona, Pietro S Baruselli, Michael J D'Occhio. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves.
Scientific reports.
2023 May; 13(1):8176. doi:
10.1038/s41598-023-35383-2
. [PMID: 37210395] - Alex Buga, Chris D Crabtree, Justen T Stoner, Drew D Decker, Bradley T Robinson, Madison L Kackley, Teryn N Sapper, Jeffrey D Buxton, Dominic P D'Agostino, Tyler S McClure, Anthony Berardi, Shawn Cline, Trevor Fleck, Jared Krout, Doran Newby, Andrew P Koutnik, Jeff S Volek, Philip J Prins. Metabolic and ruck performance effects of a novel, light-weight, energy-dense ketogenic bar.
Experimental physiology.
2023 05; 108(5):715-727. doi:
10.1113/ep091029
. [PMID: 36915239] - Yan Huang, Yezi Kong, Bingyu Shen, Bowen Li, Juan J Loor, Panpan Tan, Bo Wei, Linshan Mei, Zixin Zhang, Chenxu Zhao, Xiaoyan Zhu, Simeng Qi, Jianguo Wang. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia.
Journal of dairy science.
2023 Apr; ?(?):. doi:
10.3168/jds.2022-22812
. [PMID: 37028962] - Gustavo M Rindone, Marina E Dasso, Cecilia L Centola, Eliana H Pellizzari, María Del C Camberos, Judith Toneatto, María N Galardo, Silvina B Meroni, María F Riera. Sertoli cell adaptation to glucose deprivation: Potential role of AMPK in the regulation of lipid metabolism.
Journal of cellular biochemistry.
2023 Mar; ?(?):. doi:
10.1002/jcb.30399
. [PMID: 36946523] - Giovan N Cholico, Karina Orlowska, Russell R Fling, Warren J Sink, Nicholas A Zacharewski, Kelly A Fader, Rance Nault, Tim Zacharewski. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver.
Scientific reports.
2023 Mar; 13(1):4138. doi:
10.1038/s41598-023-31087-9
. [PMID: 36914879] - Noémie Vanacker, Henrique Barbosa Hooper, Richard Blouin, Pierre Lacasse. Effect of intravenous lipid infusion on biomarkers of insulin resistance and immune functions of dry and nonpregnant dairy cows.
Journal of dairy science.
2023 Mar; 106(3):2113-2123. doi:
10.3168/jds.2022-22309
. [PMID: 36586802] - Manal Abdulaziz Binobead, Azhar Hamad Aldakhilallah, Sahar Abdulaziz Alsedairy, Laila Naif Al-Harbi, Wahidah H Al-Qahtani, Ghedeir M Alshammari. Effect of Low-Carbohydrate Diet on Beta-Hydroxybutyrate Ketogenesis Metabolic Stimulation and Regulation of NLRP3 Ubiquitination in Obese Saudi Women.
Nutrients.
2023 Feb; 15(4):. doi:
10.3390/nu15040820
. [PMID: 36839178] - Ferrol I Rome, Gregory L Shobert, William C Voigt, David B Stagg, Patrycja Puchalska, Shawn C Burgess, Peter A Crawford, Curtis C Hughey. Loss of hepatic phosphoenolpyruvate carboxykinase 1 dysregulates metabolic responses to acute exercise but enhances adaptations to exercise training in mice.
American journal of physiology. Endocrinology and metabolism.
2023 01; 324(1):E9-E23. doi:
10.1152/ajpendo.00222.2022
. [PMID: 36351254] - Angeliki M Angelidi, Alexander Kokkinos, Despina Sanoudou, Margery A Connelly, Andreas Alexandrou, Geltrude Mingrone, Christos S Mantzoros. Early metabolomic, lipid and lipoprotein changes in response to medical and surgical therapeutic approaches to obesity.
Metabolism: clinical and experimental.
2023 01; 138(?):155346. doi:
10.1016/j.metabol.2022.155346
. [PMID: 36375643] - I J Lean, S J LeBlanc, D B Sheedy, T Duffield, J E P Santos, H M Golder. Associations of parity with health disorders and blood metabolite concentrations in Holstein cows in different production systems.
Journal of dairy science.
2023 Jan; 106(1):500-518. doi:
10.3168/jds.2021-21673
. [PMID: 36270869] - Xiaohan Cui, Xiao Yun, Meiling Sun, Renzhi Li, Xiajie Lyu, Yuanxiang Lao, Xihu Qin, Wenbin Yu. HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility.
Hepatology international.
2022 Dec; ?(?):. doi:
10.1007/s12072-022-10459-9
. [PMID: 36508088] - Shujin Wang, Dietbert Neumann, B Daan Westenbrink, Francesco Schianchi, Li-Yen Wong, Aomin Sun, Agnieszka Strzelecka, Jan F C Glatz, Joost J F P Luiken, Miranda Nabben. Ketone Body Exposure of Cardiomyocytes Impairs Insulin Sensitivity and Contractile Function through Vacuolar-Type H+-ATPase Disassembly-Rescue by Specific Amino Acid Supplementation.
International journal of molecular sciences.
2022 Oct; 23(21):. doi:
10.3390/ijms232112909
. [PMID: 36361698] - Elodie Vlaeminck, Evelien Uitterhaegen, Koen Quataert, Tom Delmulle, Karel De Winter, Wim K Soetaert. Industrial side streams as sustainable substrates for microbial production of poly(3-hydroxybutyrate) (PHB).
World journal of microbiology & biotechnology.
2022 Oct; 38(12):238. doi:
10.1007/s11274-022-03416-z
. [PMID: 36260135] - Anastasia Lisuzzo, Filippo Fiore, Kevin Harvatine, Elisa Mazzotta, Michele Berlanda, Nicoletta Spissu, Tamara Badon, Barbara Contiero, Livia Moscati, Enrico Fiore. Changes in plasma fatty acids profile in hyperketonemic ewes during early lactation: a preliminary study.
Scientific reports.
2022 10; 12(1):17017. doi:
10.1038/s41598-022-21088-5
. [PMID: 36220846] - Lu Chen, Yuxuan Yang, Siyu Sun, Yuan Xie, Cailong Pan, Maining Li, Chen Li, Yu Liu, Zhipeng Xu, Wentao Liu, Minjun Ji. Indolepropionic acid reduces obesity-induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell-derived IL-25.
The FEBS journal.
2022 10; 289(19):5985-6004. doi:
10.1111/febs.16470
. [PMID: 35509122] - Jéssica T Morales-Piñeyrúa, Juan P Damián, Georgget Banchero, Dominique Blache, Aline C Sant'Anna. Metabolic profile and productivity of dairy Holstein cows milked by a pasture-based automatic milking system during early lactation: Effects of cow temperament and parity.
Research in veterinary science.
2022 Oct; 147(?):50-59. doi:
10.1016/j.rvsc.2022.04.001
. [PMID: 35453071] - Meghan L Ruebel, Lilian Rigatto Martins, Peter Z Schall, J Richard Pursley, Keith E Latham. Effects of early lactation body condition loss in dairy cows on serum lipid profiles and on oocyte and cumulus cell transcriptomes.
Journal of dairy science.
2022 Oct; 105(10):8470-8484. doi:
10.3168/jds.2022-21919
. [PMID: 35940920] - Lili Hu, Xinyi Xia, Yue Zong, Yunjie Gu, Li Wei, Jun Yin. Calorie Restriction Enhanced Glycogen Metabolism to Compensate for Lipid Insufficiency.
Molecular nutrition & food research.
2022 10; 66(20):e2200182. doi:
10.1002/mnfr.202200182
. [PMID: 35972028] - Nannaphat Sukkasam, Aran Incharoensakdi, Tanakarn Monshupanee. Chemicals Affecting Cyanobacterial Poly(3-hydroxybutyrate) Accumulation: 2-Phenylethanol Treatment Combined with Nitrogen Deprivation Synergistically Enhanced Poly(3-hydroxybutyrate) Storage in Synechocystis sp. PCC6803 and Anabaena sp. TISTR8076.
Plant & cell physiology.
2022 Sep; 63(9):1253-1272. doi:
10.1093/pcp/pcac100
. [PMID: 35818829] - Krzysztof Bartus, Mehmet A Elbey, Sri Harsha Kanuri, Randall Lee, Radoslaw Litwinowicz, Joanna Natorska, Michal Zabczyk, Magdalena Bartus, Boguslaw Kapelak, Maciej T Malecki, Dhanunjaya Lakkireddy. Metabolic effects of the left atrial appendage exclusion (the heart hormone study).
Journal of cardiovascular electrophysiology.
2022 09; 33(9):2064-2071. doi:
10.1111/jce.15604
. [PMID: 35771566] - Haydn Rhys Ingram, Risto John Martin, James Benjamin Winterburn. Optimized cell growth and poly(3-hydroxybutyrate) synthesis from saponified spent coffee grounds oil.
Applied microbiology and biotechnology.
2022 Sep; 106(18):6033-6045. doi:
10.1007/s00253-022-12093-9
. [PMID: 36028634] - Petr Tůma, Blanka Sommerová, Dušan Koval, Michaela Šiklová, Michal Koc. Sensitive monitoring of 3-hydroxybutyrate as an indicator of human fasting by capillary electrophoresis in a PAMAMPS coated capillary.
Talanta.
2022 Sep; 247(?):123582. doi:
10.1016/j.talanta.2022.123582
. [PMID: 35636371] - Dezhen Wang, Elaine S Ho, M Grazia Cotticelli, Peining Xu, Jill S Napierala, Lauren A Hauser, Marek Napierala, Blanca E Himes, Robert B Wilson, David R Lynch, Clementina Mesaros. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia.
Journal of lipid research.
2022 09; 63(9):100255. doi:
10.1016/j.jlr.2022.100255
. [PMID: 35850241] - Shuang Wang, Qianming Jiang, Juan J Loor, Changhong Gao, Mingmao Yang, Yan Tian, Wenwen Fan, Bingbing Zhang, Ming Li, Chuang Xu, Wei Yang. Role of sortilin 1 (SORT1) on fatty acid-mediated cholesterol metabolism in primary calf hepatocytes.
Journal of dairy science.
2022 Sep; 105(9):7773-7786. doi:
10.3168/jds.2022-22108
. [PMID: 35940922] - Hao Yu, Minghe Fan, Xiying Chen, Xiuhuan Jiang, Juan J Loor, Ahmad Aboragah, Cai Zhang, Hongxu Bai, Zhiyuan Fang, Taiyu Shen, Zhe Wang, Yuxiang Song, Xinwei Li, Guowen Liu, Xiaobing Li, Xiliang Du. Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues.
Journal of dairy science.
2022 Aug; 105(8):6997-7010. doi:
10.3168/jds.2021-21287
. [PMID: 35688731] - Yutong Liu, Sakina H Bharmal, Wandia Kimita, Maxim S Petrov. Effect of acute ketosis on lipid profile in prediabetes: findings from a cross-over randomized controlled trial.
Cardiovascular diabetology.
2022 07; 21(1):138. doi:
10.1186/s12933-022-01571-z
. [PMID: 35871064] - Bartosz Osuch, Karolina Kołosowska, Natalia Chmielewska, Danuta Turzyńska, Alicja Sobolewska, Janusz Szyndler, Piotr Maciejak. Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity.
Neurochemical research.
2022 Jul; 47(7):2109-2122. doi:
10.1007/s11064-022-03605-0
. [PMID: 35522366] - Kaiming Yue, Xudong Pu, Juan J Loor, Qianming Jiang, Jihong Dong, Taiyu Shen, Guojin Li, Wenwen Gao, Lin Lei, Xiliang Du, Yuxiang Song, Guowen Liu, Xinwei Li. Impaired autophagy aggravates oxidative stress in mammary gland of dairy cows with clinical ketosis.
Journal of dairy science.
2022 Jul; 105(7):6030-6040. doi:
10.3168/jds.2021-21234
. [PMID: 35637003] - Yu Zang, Kayla M Hultquist, Kurt W Cotanch, Heather A Tucker, Richard J Grant, Ryou Suzuki, Heather M Dann. Effects of prepartum metabolizable protein supply and management strategy on lactational performance and blood biomarkers in dairy cows during early lactation.
Journal of dairy science.
2022 Jul; 105(7):5761-5775. doi:
10.3168/jds.2021-21218
. [PMID: 35599028] - R Riosa, M H Ghaffari, H M Hammon, D Süss, M Hoelker, M Drillich, C Parys, J Guyader, H Sauerwein, M Iwersen. Identification and characterization of dairy cows with different backfat thickness antepartum in relation to postpartum loss of backfat thickness: A cluster analytic approach.
Journal of dairy science.
2022 Jul; 105(7):6327-6338. doi:
10.3168/jds.2021-21434
. [PMID: 35525619] - Yongqin Yan, Jianuo Chen, Qian Liang, Hong Zheng, Yiru Ye, Wengang Nan, Xi Zhang, Hongchang Gao, Yuping Li. Metabolomics profile in acute respiratory distress syndrome by nuclear magnetic resonance spectroscopy in patients with community-acquired pneumonia.
Respiratory research.
2022 Jun; 23(1):172. doi:
10.1186/s12931-022-02075-w
. [PMID: 35761396] - Piotr Artur Machowiec, Marcela Maksymowicz, Halina Piecewicz-Szczęsna. Magnetic resonance spectroscopy as a promising modality for assessing ketogenic diet impact on the level of cerebral metabolites in the treatment of certain neurological disorders.
Annals of agricultural and environmental medicine : AAEM.
2022 Jun; 29(2):201-206. doi:
10.26444/aaem/145069
. [PMID: 35767751] - Xiurui Ma, Zhen Dong, Jingyi Liu, Leilei Ma, Xiaolei Sun, Rifeng Gao, Lihong Pan, Jinyan Zhang, Dilan A, Jian An, Kai Hu, Aijun Sun, Junbo Ge. β-Hydroxybutyrate Exacerbates Hypoxic Injury by Inhibiting HIF-1α-Dependent Glycolysis in Cardiomyocytes-Adding Fuel to the Fire?.
Cardiovascular drugs and therapy.
2022 06; 36(3):383-397. doi:
10.1007/s10557-021-07267-y
. [PMID: 34652582] - A L Kerwin, W S Burhans, S Mann, D V Nydam, S K Wall, K M Schoenberg, K L Perfield, T R Overton. Transition cow nutrition and management strategies of dairy herds in the northeastern United States: Part II-Associations of metabolic- and inflammation-related analytes with health, milk yield, and reproduction.
Journal of dairy science.
2022 Jun; 105(6):5349-5369. doi:
10.3168/jds.2021-20863
. [PMID: 35469642] - Hesham Shamshoum, Kyle D Medak, Greg L McKie, Margaret K Hahn, David C Wright. Fasting or the short-term consumption of a ketogenic diet protects against antipsychotic-induced hyperglycaemia in mice.
The Journal of physiology.
2022 06; 600(11):2713-2728. doi:
10.1113/jp282922
. [PMID: 35507699] - Stephanie Holm, Anna S Husted, Louise J Skov, Thomas H Morville, Christoffer A Hagemann, Tina Jorsal, Morten Dall, Alexander Jakobsen, Anders B Klein, Jonas T Treebak, Filip K Knop, Thue W Schwartz, Christoffer Clemmensen, Birgitte Holst. Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2.
Endocrinology.
2022 06; 163(6):. doi:
10.1210/endocr/bqac038
. [PMID: 35352108] - Huimin Zhang, Ahmed A Elolimy, Haji Akbar, Lam Phuoc Thanh, Zhangping Yang, Juan J Loor. Association of residual feed intake with peripartal ruminal microbiome and milk fatty acid composition during early lactation in Holstein dairy cows.
Journal of dairy science.
2022 Jun; 105(6):4971-4986. doi:
10.3168/jds.2021-21454
. [PMID: 35379466] - Damian Feldman-Kiss, Dailin Li, Richard Cleve, Graham Sinclair, Joshua A Dubland, Li Wang. Interference of ketone bodies on laboratory creatinine measurement in children with DKA: a call for change in testing practices.
Pediatric nephrology (Berlin, Germany).
2022 06; 37(6):1347-1353. doi:
10.1007/s00467-021-05324-0
. [PMID: 34757480] - Giuseppina Costabile, Giuseppe Della Pepa, Dominic Salamone, Delia Luongo, Daniele Naviglio, Valentina Brancato, Carlo Cavaliere, Marco Salvatore, Paola Cipriano, Marilena Vitale, Alessandra Corrado, Angela Albarosa Rivellese, Giovanni Annuzzi, Lutgarda Bozzetto. Reduction of De Novo Lipogenesis Mediates Beneficial Effects of Isoenergetic Diets on Fatty Liver: Mechanistic Insights from the MEDEA Randomized Clinical Trial.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102178
. [PMID: 35631319] - Sharonda M Meade, Nicola Di Girolamo, Carolyn Cray, Nicolette Aquilino, Peter M DiGeronimo, João Brandão. Point-of-care ketone meters may be used to estimate serum β-hydroxybutyrate concentrations in healthy African penguins (Spheniscus demersus).
American journal of veterinary research.
2022 May; 83(6):. doi:
10.2460/ajvr.21.11.0192
. [PMID: 35544416] - Ryo Kawakami, Hiroaki Sunaga, Tatsuya Iso, Ryosuke Kaneko, Norimichi Koitabashi, Masaru Obokata, Tomonari Harada, Hiroki Matsui, Tomoyuki Yokoyama, Masahiko Kurabayashi. Ketone body and FGF21 coordinately regulate fasting-induced oxidative stress response in the heart.
Scientific reports.
2022 05; 12(1):7338. doi:
10.1038/s41598-022-10993-4
. [PMID: 35513524] - Zhiyuan Fang, Xinwei Li, Shu Wang, Qianming Jiang, Juan J Loor, Xiuhuan Jiang, Lingxue Ju, Hao Yu, Taiyu Shen, Men Chen, Yuxiang Song, Zhe Wang, Xiliang Du, Guowen Liu. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis.
Journal of dairy science.
2022 May; 105(5):4520-4533. doi:
10.3168/jds.2021-20892
. [PMID: 35248377] - Z Rodriguez, E Shepley, M I Endres, G Cramer, L S Caixeta. Assessment of milk yield and composition, early reproductive performance, and herd removal in multiparous dairy cattle based on the week of diagnosis of hyperketonemia in early lactation.
Journal of dairy science.
2022 May; 105(5):4410-4420. doi:
10.3168/jds.2021-20836
. [PMID: 35221059] - F Vossebeld, A T M van Knegsel, E Saccenti. Phenotyping metabolic status of dairy cows using clustering of time profiles of energy balance peripartum.
Journal of dairy science.
2022 May; 105(5):4565-4580. doi:
10.3168/jds.2021-21518
. [PMID: 35346472] - Koryn S Hare, Gregory B Penner, Michael A Steele, Katharine M Wood. Oversupplying metabolizable protein during late gestation to beef cattle does not influence ante- or postpartum glucose-insulin kinetics but does affect prepartum insulin resistance indices and colostrum insulin content.
Journal of animal science.
2022 May; 100(5):. doi:
10.1093/jas/skac101
. [PMID: 35353892] - Senthil Selvaraj, Kenneth B Margulies, Supritha Dugyala, Erin Schubert, Ann Tierney, Zoltan Arany, Daniel A Pryma, Svati H Shah, J Eduardo Rame, Daniel P Kelly, Paco E Bravo. Comparison of Exogenous Ketone Administration Versus Dietary Carbohydrate Restriction on Myocardial Glucose Suppression: A Crossover Clinical Trial.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
2022 05; 63(5):770-776. doi:
10.2967/jnumed.121.262734
. [PMID: 34675108] - Barbara Stefańska, Frank Katzer, Barbara Golińska, Patrycja Sobolewska, Sebastian Smulski, Andrzej Frankiewicz, Włodzimierz Nowak. Different methods of eubiotic feed additive provision affect the health, performance, fermentation, and metabolic status of dairy calves during the preweaning period.
BMC veterinary research.
2022 Apr; 18(1):138. doi:
10.1186/s12917-022-03239-y
. [PMID: 35413974] - Eva Baranovicova, Petra Hnilicova, Dagmar Kalenska, Peter Kaplan, Maria Kovalska, Zuzana Tatarkova, Anna Tomascova, Jan Lehotsky. Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia.
Biomolecules.
2022 04; 12(4):. doi:
10.3390/biom12040554
. [PMID: 35454143] - Yuxiang Song, Kexin Wang, Juan J Loor, Qianming Jiang, Yuchen Yang, Shang Jiang, Siyuan Liu, Jiyuan He, Xiancheng Feng, Xiliang Du, Lin Lei, Wenwen Gao, Guowen Liu, Xinwei Li. β-Hydroxybutyrate inhibits apoptosis in bovine neutrophils through activating ERK1/2 and AKT signaling pathways.
Journal of dairy science.
2022 Apr; 105(4):3477-3489. doi:
10.3168/jds.2021-21259
. [PMID: 35151471] - Pooja Devi Lohano, Mohsina Ibrahim, Syed Jamal Raza, Murtaza Gowa, Sadam Hussain Baloch. Comparing Finger-stick Βeta-hydroxybutyrate with Dipstick Urine Tests in the Detection of Ketone Bodies in the Diagnosis of Children with Diabetic Ketoacidosis.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2022 Apr; 32(4):483-486. doi:
10.29271/jcpsp.2022.04.483
. [PMID: 35330522] - Siyuan Liu, Xiaobing Li, Xiaohan Zhou, Juan J Loor, Qianming Jiang, Xiancheng Feng, Yuchen Yang, Lin Lei, Xiliang Du, Xinwei Li, Wang Zhe, Yuxiang Song, Guowen Liu. β-Hydroxybutyrate impairs the release of bovine neutrophil extracellular traps through inhibiting phosphoinositide 3-kinase-mediated nicotinamide adenine dinucleotide phosphate oxidase reactive oxygen species production.
Journal of dairy science.
2022 Apr; 105(4):3405-3415. doi:
10.3168/jds.2021-21174
. [PMID: 35123783] - Li Zhang, Juanjuan Shi, Dan Du, Ningning Niu, Shiyu Liu, Xiaotong Yang, Ping Lu, Xuqing Shen, Na Shi, Linbo Yao, Ruling Zhang, Guoyong Hu, Guotao Lu, Qingtian Zhu, Tao Zeng, Tingting Liu, Qing Xia, Wei Huang, Jing Xue. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis.
EBioMedicine.
2022 Apr; 78(?):103959. doi:
10.1016/j.ebiom.2022.103959
. [PMID: 35339899] - Zhou Xu, Mingyue Zhang, Xinran Li, Yong Wang, Ronghui Du. Exercise Ameliorates Atherosclerosis via Up-Regulating Serum β-Hydroxybutyrate Levels.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073788
. [PMID: 35409148] - Alexander Kettner, Matthias Noll, Carola Griehl. Leptolyngbya sp. NIVA-CYA 255, a Promising Candidate for Poly(3-hydroxybutyrate) Production under Mixotrophic Deficiency Conditions.
Biomolecules.
2022 03; 12(4):. doi:
10.3390/biom12040504
. [PMID: 35454093] - Fan-Yu Hsu, Jia-Ying Liou, Feng-Yao Tang, Nga-Lai Sou, Jian-Hau Peng, En-Pei Isabel Chiang. Ketogenic Diet Consumption Inhibited Mitochondrial One-Carbon Metabolism.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073650
. [PMID: 35409009] - Liya A, Zihua Li, Jinyan Lü, Liusong Yu, Wei Situ, Lingyun Xue, Hui Wang, Guoqiang Chen. [Applications and perspectives of ketone body D-β-hydroxybutyrate in the medical fields].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2022 Mar; 38(3):976-989. doi:
10.13345/j.cjb.210343
. [PMID: 35355468] - Yuxiang Song, Shang Jiang, Congyi Li, Juan J Loor, Qianming Jiang, Yuchen Yang, Xiancheng Feng, Siyuan Liu, Jiyuan He, Kexin Wang, Yunfei Li, Cai Zhang, Xiliang Du, Zhe Wang, Xinwei Li, Guowen Liu. Free fatty acids promote degranulation of azurophil granules in neutrophils by inducing production of NADPH oxidase-derived reactive oxygen species in cows with subclinical ketosis.
Journal of dairy science.
2022 Mar; 105(3):2473-2486. doi:
10.3168/jds.2021-21089
. [PMID: 34998570] - S J Hendriks, C V C Phyn, S-A Turner, K R Mueller, B Kuhn-Sherlock, D J Donaghy, J M Huzzey, J R Roche. Associations between peripartum lying and activity behaviour and blood non-esterified fatty acids and β-hydroxybutyrate in grazing dairy cows.
Animal : an international journal of animal bioscience.
2022 Mar; 16(3):100470. doi:
10.1016/j.animal.2022.100470
. [PMID: 35183009] - Jiyuan Li, Yining Wang, Robert Mukiibi, Brian Karisa, Graham S Plastow, Changxi Li. Integrative analyses of genomic and metabolomic data reveal genetic mechanisms associated with carcass merit traits in beef cattle.
Scientific reports.
2022 03; 12(1):3389. doi:
10.1038/s41598-022-06567-z
. [PMID: 35232965] - Anastasia Lisuzzo, Luca Laghi, Vanessa Faillace, Chenglin Zhu, Barbara Contiero, Massimo Morgante, Elisa Mazzotta, Matteo Gianesella, Enrico Fiore. Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy (1H-NMR).
Scientific reports.
2022 02; 12(1):2525. doi:
10.1038/s41598-022-06507-x
. [PMID: 35169190] - Yuri Onizawa, Taiga Katoh, Ryotaro Miura, Kunitoshi Konda, Tatsuo Noguchi, Hisataka Iwata, Takehito Kuwayama, Seizo Hamano, Koumei Shirasuna. Acetoacetate is a trigger of NLRP3 inflammasome activation in bovine peripheral blood mononuclear cells.
Veterinary immunology and immunopathology.
2022 Feb; 244(?):110370. doi:
10.1016/j.vetimm.2021.110370
. [PMID: 34952251] - Jian-Hong Wang, Lei Guo, Su Wang, Neng-Wei Yu, Fu-Qiang Guo. The potential pharmacological mechanisms of β-hydroxybutyrate for improving cognitive functions.
Current opinion in pharmacology.
2022 02; 62(?):15-22. doi:
10.1016/j.coph.2021.10.005
. [PMID: 34891124] - Jeanne A Ishimwe, Melanie B Baker, Michael R Garrett, Jennifer M Sasser. Periconceptional 1,3-butanediol supplementation suppresses the superimposed preeclampsia-like phenotype in the Dahl salt-sensitive rat.
American journal of physiology. Heart and circulatory physiology.
2022 02; 322(2):H285-H295. doi:
10.1152/ajpheart.00060.2021
. [PMID: 34919457] - Madeleine M Mank, Leah F Reed, Camille J Walton, Madison L T Barup, Jennifer L Ather, Matthew E Poynter. Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma.
American journal of physiology. Lung cellular and molecular physiology.
2022 02; 322(2):L243-L257. doi:
10.1152/ajplung.00309.2021
. [PMID: 34936508] - Eric S Kilpatrick, Alexandra E Butler, Linda Ostlundh, Stephen L Atkin, David B Sacks. Controversies Around the Measurement of Blood Ketones to Diagnose and Manage Diabetic Ketoacidosis.
Diabetes care.
2022 02; 45(2):267-272. doi:
10.2337/dc21-2279
. [PMID: 35050366] - T M Grala, B Kuhn-Sherlock, J R Roche, O M Jordan, C V C Phyn, C R Burke, S Meier. Changes in plasma electrolytes, minerals, and hepatic markers of health across the transition period in dairy cows divergent in genetic merit for fertility traits and postpartum anovulatory intervals.
Journal of dairy science.
2022 Feb; 105(2):1754-1767. doi:
10.3168/jds.2021-20783
. [PMID: 34799104] - Xieli Zhang, Yong Xia, Yang Liu, Samuel M Mugo, Qiang Zhang. Integrated Wearable Sensors for Sensing Physiological Pressure Signals and β-Hydroxybutyrate in Physiological Fluids.
Analytical chemistry.
2022 01; 94(2):993-1002. doi:
10.1021/acs.analchem.1c03884
. [PMID: 34958203] - Seungmin Ha, Seogjin Kang, Manhye Han, Jihwan Lee, Hakjae Chung, Sang-Ik Oh, Suhee Kim, Jinho Park. Predicting ketosis during the transition period in Holstein Friesian cows using hematological and serum biochemical parameters on the calving date.
Scientific reports.
2022 01; 12(1):853. doi:
10.1038/s41598-022-04893-w
. [PMID: 35039562] - Fangting Wu, Ying Zhou, Wenyu Pei, Yuhan Jiang, Xiaohui Yan, Hong Wu. Biosynthesis of Poly-(3-hydroxybutyrate) under the Control of an Anaerobically Induced Promoter by Recombinant Escherichia coli from Sucrose.
Molecules (Basel, Switzerland).
2022 Jan; 27(1):. doi:
10.3390/molecules27010294
. [PMID: 35011525] - Wanting Hou, Guobin Liu, Xuelian Ren, Xianming Liu, Lei He, He Huang. Quantitative Proteomics Analysis Expands the Roles of Lysine β-Hydroxybutyrylation Pathway in Response to Environmental β-Hydroxybutyrate.
Oxidative medicine and cellular longevity.
2022; 2022(?):4592170. doi:
10.1155/2022/4592170
. [PMID: 35251473] - Eun Ran Kim, So Ra Kim, Wonhee Cho, Sang-Guk Lee, Soo Hyun Kim, Jin Hee Kim, Eunhye Choi, Jeong-Ho Kim, Je-Wook Yu, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha, Myung-Shik Lee, Jin Won Cho, Justin Y Jeon, Yong-Ho Lee. Short Term Isocaloric Ketogenic Diet Modulates NLRP3 Inflammasome Via B-hydroxybutyrate and Fibroblast Growth Factor 21.
Frontiers in immunology.
2022; 13(?):843520. doi:
10.3389/fimmu.2022.843520
. [PMID: 35572519] - Xiao-Jun Wu, Qin-Qin Shu, Bin Wang, Lan Dong, Bin Hao. Acetoacetate Improves Memory in Alzheimer's Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation.
American journal of Alzheimer's disease and other dementias.
2022 Jan; 37(?):15333175221124949. doi:
10.1177/15333175221124949
. [PMID: 36113018] - Pingting Mao, Bo Mai, Xi Mai, Lei Zheng, Na Li, Yijing Liao, Ling He, Weibao He, Qimin Zhang. Antipyretic Mechanism Exploration of HuanglianShangqing Pill Based on Metabolomics and Network Pharmacology.
Combinatorial chemistry & high throughput screening.
2022; 25(12):2112-2125. doi:
10.2174/1386207325666220215144847
. [PMID: 35168507] - Valentina Spigoni, Gloria Cinquegrani, Nicolas Thomas Iannozzi, Giulia Frigeri, Giulia Maggiolo, Marta Maggi, Vanessa Parello, Alessandra Dei Cas. Activation of G protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders.
Frontiers in endocrinology.
2022; 13(?):972890. doi:
10.3389/fendo.2022.972890
. [PMID: 36339405] - Lin Lei, Wenwen Gao, Juan J Loor, Ahmad Aboragah, Zhiyuan Fang, Xiliang Du, Min Zhang, Yuxiang Song, Guowen Liu, Xinwei Li. Reducing hepatic endoplasmic reticulum stress ameliorates the impairment in insulin signaling induced by high levels of β-hydroxybutyrate in bovine hepatocytes.
Journal of dairy science.
2021 Dec; 104(12):12845-12858. doi:
10.3168/jds.2021-20611
. [PMID: 34538494] - Sanne van Gastelen, Jan Dijkstra, Sven J J Alferink, Gisabeth Binnendijk, Kelly Nichols, Tamme Zandstra, André Bannink. Abomasal infusion of corn starch and β-hydroxybutyrate in early-lactation Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis.
Journal of dairy science.
2021 Dec; 104(12):12520-12539. doi:
10.3168/jds.2021-20323
. [PMID: 34482977] - Ju Wu, Xiangju Wei, Pengye Guo, Aiyong He, Jiaxing Xu, Mingjie Jin, Yanjun Zhang, Hui Wu. Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli.
Bioresource technology.
2021 Dec; 341(?):125873. doi:
10.1016/j.biortech.2021.125873
. [PMID: 34523584] - Mads Svart, Lars Christian Gormsen, Rasmus Espersen, Nikolaj Rittig, Jakob Starup-Linde, Niels Møller, Lars Rejnmark. 3-Hydroxybutyrate administration elevates plasma parathyroid hormone in a pilot human randomized, controlled, cross over trial.
Bone.
2021 12; 153(?):116166. doi:
10.1016/j.bone.2021.116166
. [PMID: 34464780]