Maleic acid (BioDeep_00000000278)

 

Secondary id: BioDeep_00000265245

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(2Z)-but-2-enedioic acid

化学式: C4H4O4 (116.011)
中文名称: 马来酸, 顺丁烯二酸
谱图信息: 最多检出来源 Homo sapiens(plant) 21.16%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Maleic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/maleic_acid (retrieved 2025-01-28) (BioDeep RN: BioDeep_00000000278). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=CC(=O)O)C(=O)O
InChI: InChI=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1-

描述信息

Maleic acid is a colorless crystalline solid having a faint odor. It is combustible though it may take some effort to ignite. It is soluble in water. It is used to make other chemicals and for dyeing and finishing naturally occurring fibers.
Maleic acid is a butenedioic acid in which the double bond has cis- (Z)-configuration. It has a role as a plant metabolite, an algal metabolite and a mouse metabolite. It is a conjugate acid of a maleate(1-) and a maleate.
Maleic acid is a natural product found in Populus tremula, Ardisia crenata, and other organisms with data available.
Maleic Acid is an organic salt or ester of maleic acid that could be conjugated to free base compounds/drugs to improve the physiochemical properties including stability, solubility and dissolution rate. (NCI)
Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions.
See also: Surfomer (monomer of); Ferropolimaler (monomer of).
Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. [HMDB]. Maleic acid is found in many foods, some of which are cocoa bean, lovage, roselle, and corn.
Maleic acid is a dicarboxylic acid, a molecule with two carboxyl groups. It consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 oC) is also much lower than that of fumaric acid (287 oC). Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. Maleic acid is used in making polyesters for fibre-reinforced laminated moldings and paint vehicles. More specifically it is used in the manufacture of phthalic-type alkyd and polyester resins, surface coatings, copolymers, plasticizers, lubricant additives and agricultural chemicals. It is also found in adhesives and sealants and as a preservative for oils and fats. In the natural world, maleic acid has been identified in ginseng, pineapple, cacao plants, sour cherries and corn. A large number of microbes are able to convert maleic acid to D-malate using the enzyme maleate hydratase (PMID: 1444397).
A butenedioic acid in which the double bond has cis- (Z)-configuration.

Maleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-16-7 (retrieved 2024-06-29) (CAS RN: 110-16-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.
Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

同义名列表

111 个代谢物同义名

Maleic acid, Pharmaceutical Secondary Standard; Certified Reference Material; Maleic acid, United States Pharmacopeia (USP) Reference Standard; Maleic acid, European Pharmacopoeia (EP) Reference Standard; Maleic acid, Standard for quantitative NMR, TraceCERT(R); SODIUM AUROTHIOMALATE IMPURITY A [EP IMPURITY]; SODIUM AUROTHIOMALATE IMPURITY A (EP IMPURITY); Maleic acid, ReagentPlus(R), >=99.0\\% (HPLC); 4-02-00-02199 (Beilstein Handbook Reference); Maleic acid, Vetec(TM) reagent grade, 98\\%; Maleic acid, tested according to Ph.Eur.; Maleic acid, SAJ special grade, >=99.0\\%; 3B685B85-C1F3-4E32-9DBC-3854162A8DE1; MALIC ACID IMPURITY B (EP IMPURITY); 1,2-ETHYLENEDICARBOXYLIC ACID, (Z)-; MALIC ACID IMPURITY B [EP IMPURITY]; 1,2-Ethylenedicarboxylic acid, cis-; 1-(o-Tolyl)piperazinehydrochloride; CIS-ETHYLENE-1,2-DICARBOXYLIC ACID; 1,2-Ethylenedicarboxylic acid, (Z); (Z)-1,2-ETHYLENEDICARBOXYLIC ACID; cis-1,2-Ethylenedicarboxylic acid; maleic acid, monocopper (2+) salt; Maleic acid, for synthesis, 99\\%; Scotchbond Multipurpose Etchant; 2-Butenedioic acid (2Z)- (9CI); maleic acid, monoammonium salt; maleic acid, dipotassium salt; cis-1,2-Ethylenedicarboxylate; maleic acid, monosodium salt; (Z)-BUT-2-ENE-1,4-DIOIC ACID; maleic acid, neodymium salt; maleic acid, potassium salt; MALEIC ACID [USP IMPURITY]; MALEIC ACID [EP MONOGRAPH]; maleic acid, disodium salt; MALEIC ACID (EP MONOGRAPH); MALEIC ACID (USP IMPURITY); Kyselina maleinova [Czech]; maleic acid, ammonium salt; (2Z)-2-Butenedioic acid #; 2-butenedioic acid, (2Z)-; maleic acid, calcium salt; 2-Butenedioic acid, (Z)-; (2Z)-but-2-enedioic acid; maleic acid, sodium salt; (2Z)-Butene-2-dioic acid; 2-Butenedioic acid (2Z)-; (2Z)-2-Butenedioic acid; 2-Butenedioic acid (Z)-; cis-but-2-enedioic acid; maleic acid, iron salt; Butenedioic acid, (Z)-; (Z)-2-Butenedioic acid; cis-2-Butenedioic acid; Butenedioic acid,(Z)-; MALEIC ACID [USP-RS]; cis-butenedioic acid; (Z)-Butenedioic acid; MALEIC ACID (USP-RS); (2Z)-but-2-enedioate; bis-hydrogen maleate; (2Z)-Butene-2-dioate; MALEIC ACID [WHO-DD]; MALEIC ACID [MART.]; cis-but-2-enedioate; (2Z)-2-Butenedioate; MALEIC ACID (MART.); (Z)-2-Butenedioate; MALEIC ACID [INCI]; 2-Butenedioic acid; Kyselina maleinova; cis-2-Butenedioate; MALEIC ACID [HSDB]; Maleic acid, 99\\%; Maleic acid (8CI); Maleic acid [NF]; MALEIC ACID (II); MALEIC ACID [MI]; Cis-butenedioate; MALEIC ACID [II]; hydrogen maleate; (z)-butenedioate; UNII-91XW058U2C; CIS-MALEIC ACID; 2-Butenedioate; WLN: QV1U1VQ-C; Tox21_113105_1; sodium maleate; Maleinic acid; Malenic acid; Tox21_303045; Tox21_113105; Tox21_202193; Toxilic acid; maleic-acid; Maleic Acid; Malezid CM; 91XW058U2C; AI3-01002; Toxilate; maleate; Maleic; H2male; 1, (Z); 1tok; 1ahy; MAE; 2Z-butenedioic acid; Maleic acid; Maleic acid; Maleic acid



数据库引用编号

35 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

73 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ALB, CAT, HMGB1, JAK2, SLC9A1
Peripheral membrane protein 2 HMGB1, JAK2
Endosome membrane 1 FLT3
Endoplasmic reticulum membrane 1 HMGCR
Nucleus 3 ALB, HMGB1, JAK2
cytosol 6 ALB, CAT, GLS, GPT, JAK2, LIPE
dendrite 1 LRP2
centrosome 1 ALB
nucleoplasm 4 CD2, HMGB1, JAK2, SLC9A1
Cell membrane 8 CD2, CLDN2, GPRC5A, HMGB1, LIPE, NPHS1, SLC9A1, TNF
lamellipodium 1 SLC9A1
Cell projection, axon 1 LRP2
Multi-pass membrane protein 4 CLDN2, GPRC5A, HMGCR, SLC9A1
Synapse 1 GLS
cell surface 4 CD2, HMGB1, SLC9A1, TNF
glutamatergic synapse 1 JAK2
Golgi apparatus 4 ALB, ATRN, CD2, LRP2
Golgi membrane 1 INS
lysosomal membrane 1 LRP2
neuronal cell body 1 TNF
postsynapse 1 JAK2
Cytoplasm, cytosol 2 GLS, LIPE
Lysosome 1 LRP2
endosome 1 HMGB1
plasma membrane 11 ATRN, CD2, CLDN2, FLT3, GPRC5A, HMGB1, JAK2, LRP2, NPHS1, SLC9A1, TNF
Membrane 7 CAT, FLT3, HMGCR, JAK2, LIPE, LRP2, SLC9A1
apical plasma membrane 2 LRP2, SLC9A1
axon 1 LRP2
basolateral plasma membrane 1 SLC9A1
caveola 2 JAK2, LIPE
extracellular exosome 10 ALB, ATRN, CAT, GPRC5A, GPT, LCN2, LRP2, LYZ, NPHS1, SLC9A1
endoplasmic reticulum 5 ALB, FLT3, HMGB1, HMGCR, LRP2
extracellular space 7 ALB, ATRN, HMGB1, INS, LCN2, LYZ, TNF
perinuclear region of cytoplasm 1 SLC9A1
Cell junction, tight junction 1 CLDN2
bicellular tight junction 1 CLDN2
intercalated disc 1 SLC9A1
mitochondrion 3 CAT, GLS, SLC9A1
protein-containing complex 3 ALB, CAT, CD2
intracellular membrane-bounded organelle 2 CAT, GPRC5A
Single-pass type I membrane protein 5 ATRN, CD2, FLT3, LRP2, NPHS1
Secreted 4 ALB, HMGB1, INS, LCN2
extracellular region 8 ALB, CAT, CD2, HMGB1, INS, LCN2, LYZ, TNF
cytoplasmic side of plasma membrane 2 CD2, JAK2
Single-pass membrane protein 1 LRP2
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 2 CAT, GLS
Extracellular side 1 HMGB1
Cytoplasmic vesicle lumen 1 LCN2
anchoring junction 1 ALB
external side of plasma membrane 3 CD2, LRP2, TNF
T-tubule 1 SLC9A1
slit diaphragm 1 NPHS1
nucleolus 1 GPRC5A
cell-cell junction 3 CD2, CLDN2, NPHS1
clathrin-coated pit 1 LRP2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 GPRC5A
Apical cell membrane 1 LRP2
Membrane raft 3 JAK2, SLC9A1, TNF
focal adhesion 4 CAT, JAK2, NPHS1, SLC9A1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
receptor complex 3 FLT3, GPRC5A, LRP2
ciliary basal body 1 ALB
cell projection 1 NPHS1
phagocytic cup 1 TNF
Chromosome 1 HMGB1
cytoskeleton 1 JAK2
centriole 1 ALB
[Isoform 1]: Mitochondrion 1 GLS
brush border membrane 1 LRP2
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 1 SLC9A1
[Isoform 3]: Secreted 1 ATRN
Endomembrane system 1 JAK2
endosome lumen 3 INS, JAK2, LRP2
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Cytoplasmic vesicle membrane 1 GPRC5A
Cell projection, dendrite 1 LRP2
euchromatin 1 JAK2
Peroxisome membrane 1 HMGCR
ficolin-1-rich granule lumen 2 CAT, HMGB1
secretory granule lumen 3 CAT, HMGB1, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 ALB, FLT3, INS
transcription repressor complex 1 HMGB1
platelet alpha granule lumen 1 ALB
specific granule lumen 2 LCN2, LYZ
tertiary granule lumen 1 LYZ
transport vesicle 1 INS
tight junction 1 CLDN2
azurophil granule lumen 1 LYZ
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 LRP2
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
[Isoform 1]: Cell membrane 1 ATRN
condensed chromosome 1 HMGB1
[Isoform 3]: Mitochondrion 1 GLS
Membrane, coated pit 1 LRP2
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
cation-transporting ATPase complex 1 SLC9A1
ciliary transition fiber 1 ALB
Cytoplasmic granule lumen 1 LCN2
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Mika Hosokawa, Moeka Inaba, Masafumi Tanaka, Ken-Ichi Ogawara. Uptake Pathway of Styrene Maleic Acid Copolymer-Coated Lipid Emulsions Under Acidic Tumor Microenvironment. Journal of pharmaceutical sciences. 2024 Apr; 113(4):1047-1053. doi: 10.1016/j.xphs.2023.10.018. [PMID: 37844758]
  • Chatmani Buachi, Charothar Thammachai, Brian J Tighe, Paul D Topham, Robert Molloy, Patchara Punyamoonwongsa. Encapsulation of propolis extracts in aqueous formulations by using nanovesicles of lipid and poly(styrene-alt-maleic acid). Artificial cells, nanomedicine, and biotechnology. 2023 Dec; 51(1):192-204. doi: 10.1080/21691401.2023.2198570. [PMID: 37052886]
  • Matthew W Scheyer, Conner Campbell, Patrick L William, Mustakim Hussain, Afsana Begum, Sebastian Escobar Fonseca, Isaac K Asare, Peyton Dabney, Carole Dabney-Smith, Gary A Lorigan, Indra D Sahu. Electron paramagnetic resonance spectroscopic characterization of the human KCNE3 protein in lipodisq nanoparticles for structural dynamics of membrane proteins. Biophysical chemistry. 2023 10; 301(?):107080. doi: 10.1016/j.bpc.2023.107080. [PMID: 37531799]
  • Brian K Long, Cameron E Workman, Pushan Bag, Bridgie Cawthon, Fidaa H Ali, Nathan G Brady, Barry D Bruce. Alternatives to Styrene- and Diisobutylene-based Copolymers for Membrane Protein Solubilization via Nanodisc Formation. Angewandte Chemie (International ed. in English). 2023 Sep; ?(?):e202306572. doi: 10.1002/anie.202306572. [PMID: 37682083]
  • Rong Zhou, Shijian Zhang, Hanh T Nguyen, Haitao Ding, Althea Gaffney, John C Kappes, Amos B Smith, Joseph G Sodroski. Conformations of Human Immunodeficiency Virus Envelope Glycoproteins in Detergents and Styrene-Maleic Acid Lipid Particles. Journal of virology. 2023 06; 97(6):e0032723. doi: 10.1128/jvi.00327-23. [PMID: 37255444]
  • Luis M Real Hernandez, Ilya Levental. Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. Biophysical journal. 2023 06; 122(11):2256-2266. doi: 10.1016/j.bpj.2023.01.013. [PMID: 36641625]
  • Kunyu Wang, Shijian Zhang, Eden P Go, Haitao Ding, Wei Li Wang, Hanh T Nguyen, John C Kappes, Heather Desaire, Joseph Sodroski, Youdong Mao. Asymmetric conformations of cleaved HIV-1 envelope glycoprotein trimers in styrene-maleic acid lipid nanoparticles. Communications biology. 2023 05; 6(1):535. doi: 10.1038/s42003-023-04916-w. [PMID: 37202420]
  • David J K Swainsbury, Frederick R Hawkings, Elizabeth C Martin, Sabina Musiał, Jack H Salisbury, Philip J Jackson, David A Farmer, Matthew P Johnson, C Alistair Siebert, Andrew Hitchcock, C Neil Hunter. Cryo-EM structure of the four-subunit Rhodobacter sphaeroides cytochrome bc1 complex in styrene maleic acid nanodiscs. Proceedings of the National Academy of Sciences of the United States of America. 2023 03; 120(12):e2217922120. doi: 10.1073/pnas.2217922120. [PMID: 36913593]
  • Julia Lenz, Andreas Haahr Larsen, Sandro Keller, Alessandra Luchini. Effect of Cholesterol on the Structure and Composition of Glyco-DIBMA Lipid Particles. Langmuir : the ACS journal of surfaces and colloids. 2023 Feb; ?(?):. doi: 10.1021/acs.langmuir.2c03019. [PMID: 36854196]
  • Henry Sawczyc, Sabine Heit, Anthony Watts. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes. European biophysics journal : EBJ. 2023 Feb; ?(?):. doi: 10.1007/s00249-023-01632-5. [PMID: 36786921]
  • Ralph Maier, Rodrigo Cuevas Arenas, Fajun Zhang, Ana García-Sáez, Frank Schreiber. Structural Insights into Polymer-Bounded Lipid Nanodiscs. Langmuir : the ACS journal of surfaces and colloids. 2023 Feb; 39(6):2450-2459. doi: 10.1021/acs.langmuir.2c03412. [PMID: 36724350]
  • Sudhir Sinha, Shashikant Kumar, Komal Singh, Fareha Umam, Vinita Agrawal, Amita Aggarwal, Barbara Imperiali. Immunochemical characterisation of styrene maleic acid lipid particles prepared from Mycobacterium tuberculosis plasma membrane. PloS one. 2023; 18(1):e0280074. doi: 10.1371/journal.pone.0280074. [PMID: 36608027]
  • Stephen C L Hall, Cecilia Tognoloni, Richard A Campbell, Joanna Richens, Paul O'Shea, Ann E Terry, Gareth J Price, Tim R Dafforn, Karen J Edler, Thomas Arnold. The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. Journal of colloid and interface science. 2022 Nov; 625(?):220-236. doi: 10.1016/j.jcis.2022.03.102. [PMID: 35716617]
  • Emma A Gordon, Yazmyne B Richardson, Muhammad Z Shah, Kevin M Burridge, Dominik Konkolewicz, Gary A Lorigan. Formation of styrene maleic acid lipid nanoparticles (SMALPs) using SMA thin film on a substrate. Analytical biochemistry. 2022 06; 647(?):114692. doi: 10.1016/j.ab.2022.114692. [PMID: 35461801]
  • George M Neville, Karen J Edler, Gareth J Price. Fluorescent styrene maleic acid copolymers to facilitate membrane protein studies in lipid nanodiscs. Nanoscale. 2022 Apr; 14(15):5689-5693. doi: 10.1039/d1nr07230g. [PMID: 35315461]
  • Keiichi Kojima, Yuki Sudo. Expression of microbial rhodopsins in Escherichia coli and their extraction and purification using styrene-maleic acid copolymers. STAR protocols. 2022 03; 3(1):101046. doi: 10.1016/j.xpro.2021.101046. [PMID: 34984357]
  • Kerrie A Morrison, Laura Wood, Karen J Edler, James Doutch, Gareth J Price, Francoise Koumanov, Paul Whitley. Membrane extraction with styrene-maleic acid copolymer results in insulin receptor autophosphorylation in the absence of ligand. Scientific reports. 2022 03; 12(1):3532. doi: 10.1038/s41598-022-07606-5. [PMID: 35241773]
  • Jehyeong Yeon, Ae Ran Park, Hang Thi Thu Nguyen, Hanna Gwak, Jiwon Kim, Mee Kyung Sang, Jin-Cheol Kim. Inhibition of Oomycetes by the Mixture of Maleic Acid and Copper Sulfate. Plant disease. 2022 Mar; 106(3):960-965. doi: 10.1094/pdis-07-21-1559-re. [PMID: 34705489]
  • Cheol Jeong, Ryan Franklin, Karen J Edler, Kenno Vanommeslaeghe, Susan Krueger, Joseph E Curtis. Styrene-Maleic Acid Copolymer Nanodiscs to Determine the Shape of Membrane Proteins. The journal of physical chemistry. B. 2022 02; 126(5):1034-1044. doi: 10.1021/acs.jpcb.1c05050. [PMID: 35089036]
  • Lina Zhu, Hongxin Zhao, Yizhuo Wang, Chuandi Yu, Juanjuan Liu, Ling Li, Zehua Li, Jin Zhang, Han Dai, Junfeng Wang, Lei Zhu. Solubilization, purification, and ligand binding characterization of G protein-coupled receptor SMO in native membrane bilayer using styrene maleic acid copolymer. PeerJ. 2022; 10(?):e13381. doi: 10.7717/peerj.13381. [PMID: 35529497]
  • Istvan Szundi, Stephanie G Pitch, Eefei Chen, David L Farrens, David S Kliger. Styrene-maleic acid copolymer effects on the function of the GPCR rhodopsin in lipid nanoparticles. Biophysical journal. 2021 10; 120(20):4337-4348. doi: 10.1016/j.bpj.2021.09.012. [PMID: 34509506]
  • Ekta Bhattacharya, Suparna Mandal Biswas, Panchanan Pramanik. Maleic and L-tartaric acids as new anti-sprouting agents for potatoes during storage in comparison to other efficient sprout suppressants. Scientific reports. 2021 10; 11(1):20029. doi: 10.1038/s41598-021-99187-y. [PMID: 34625595]
  • Marcelo Caparotta, Marcelo Puiatti, Diego Masone. Artificial stabilization of the fusion pore by intra-organelle styrene-maleic acid copolymers. Soft matter. 2021 Sep; 17(36):8314-8321. doi: 10.1039/d1sm00978h. [PMID: 34550159]
  • Stephanie G Pitch, Weekie Yao, Istvan Szundi, Jonathan Fay, Eefei Chen, Anthony Shumate, David S Kliger, David L Farrens. Functional integrity of membrane protein rhodopsin solubilized by styrene-maleic acid copolymer. Biophysical journal. 2021 08; 120(16):3508-3515. doi: 10.1016/j.bpj.2021.05.008. [PMID: 34022241]
  • Marvin V Dilworth, Heather E Findlay, Paula J Booth. Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. Biochimica et biophysica acta. Biomembranes. 2021 07; 1863(7):183602. doi: 10.1016/j.bbamem.2021.183602. [PMID: 33744253]
  • Rong Guo, Jacob Sumner, Shuo Qian. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a "Stealth" Membrane-Mimetic for Membrane Protein Research. ACS applied bio materials. 2021 06; 4(6):4760-4768. doi: 10.1021/acsabm.0c01626. [PMID: 35007026]
  • Natalia Voskoboynikova, Eleonora Germana Margheritis, Felix Kodde, Malte Rademacher, Maurice Schowe, Annette Budke-Gieseking, Olympia-Ekaterini Psathaki, Heinz-Jürgen Steinhoff, Katia Cosentino. Evaluation of DIBMA nanoparticles of variable size and anionic lipid content as tools for the structural and functional study of membrane proteins. Biochimica et biophysica acta. Biomembranes. 2021 06; 1863(6):183588. doi: 10.1016/j.bbamem.2021.183588. [PMID: 33662362]
  • Milena Krajewska, Piotr Koprowski. Solubilization, purification, and functional reconstitution of human ROMK potassium channel in copolymer styrene-maleic acid (SMA) nanodiscs. Biochimica et biophysica acta. Biomembranes. 2021 04; 1863(4):183555. doi: 10.1016/j.bbamem.2021.183555. [PMID: 33444624]
  • Natalia Voskoboynikova, Philipp Orekhov, Marine Bozdaganyan, Felix Kodde, Malte Rademacher, Maurice Schowe, Annette Budke-Gieseking, Britta Brickwedde, Olympia-Ekaterini Psathaki, Armen Y Mulkidjanian, Katia Cosentino, Konstantin V Shaitan, Heinz-Jürgen Steinhoff. Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II. International journal of molecular sciences. 2021 Mar; 22(5):. doi: 10.3390/ijms22052548. [PMID: 33806280]
  • Martin Jakubec, Espen Bariås, Samuel Furse, Morten L Govasli, Vinnit George, Diana Turcu, Igor A Iashchishyn, Ludmilla A Morozova-Roche, Øyvind Halskau. Cholesterol-containing lipid nanodiscs promote an α-synuclein binding mode that accelerates oligomerization. The FEBS journal. 2021 03; 288(6):1887-1905. doi: 10.1111/febs.15551. [PMID: 32892498]
  • G A Nagana Gowda, Natalie N Hong, Daniel Raftery. Evaluation of Fumaric Acid and Maleic Acid as Internal Standards for NMR Analysis of Protein Precipitated Plasma, Serum, and Whole Blood. Analytical chemistry. 2021 02; 93(6):3233-3240. doi: 10.1021/acs.analchem.0c04766. [PMID: 33538164]
  • Marta Barniol-Xicota, Steven H L Verhelst. Lipidomic and in-gel analysis of maleic acid co-polymer nanodiscs reveals differences in composition of solubilized membranes. Communications biology. 2021 02; 4(1):218. doi: 10.1038/s42003-021-01711-3. [PMID: 33594255]
  • Yuichi Uwai, Tomohiro Nabekura. Effect of Experimental Fanconi Syndrome on Tubular Reabsorption of Lithium in Rats. Pharmacology. 2021; 106(7-8):446-450. doi: 10.1159/000515934. [PMID: 33979799]
  • Patrick A de Jonge, Dieuwke J C Smit Sibinga, Oliver A Boright, Ana Rita Costa, Franklin L Nobrega, Stan J J Brouns, Bas E Dutilh. Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions. Journal of virology. 2020 11; 94(23):. doi: 10.1128/jvi.01559-20. [PMID: 32938760]
  • Tetsuya Ueta, Keiichi Kojima, Tomoya Hino, Mikihiro Shibata, Shingo Nagano, Yuki Sudo. Applicability of Styrene-Maleic Acid Copolymer for Two Microbial Rhodopsins, RxR and HsSRI. Biophysical journal. 2020 11; 119(9):1760-1770. doi: 10.1016/j.bpj.2020.09.026. [PMID: 33086044]
  • Encarnacion Medina-Carmona, Lorena Varela, Alex C Hendry, Gary S Thompson, Lisa J White, Jessica E Boles, Jennifer R Hiscock, Jose L Ortega-Roldan. A quantitative assay to study the lipid selectivity of membrane-associated systems using solution NMR. Chemical communications (Cambridge, England). 2020 Oct; 56(78):11665-11668. doi: 10.1039/d0cc03612a. [PMID: 33000772]
  • Delly Ramadon, Andi Dian Permana, Aaron J Courtenay, Maelíosa T C McCrudden, Ismaiel A Tekko, Emma McAlister, Qonita Kurnia Anjani, Emilia Utomo, Helen O McCarthy, Ryan F Donnelly. Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of Vancomycin Hydrochloride. Molecular pharmaceutics. 2020 09; 17(9):3353-3368. doi: 10.1021/acs.molpharmaceut.0c00431. [PMID: 32706591]
  • Regina Adão, Pedro F Cruz, Daniela C Vaz, Fátima Fonseca, Jannik Nedergaard Pedersen, Frederico Ferreira-da-Silva, Rui M M Brito, Carlos H I Ramos, Daniel Otzen, Sandro Keller, Margarida Bastos. DIBMA nanodiscs keep α-synuclein folded. Biochimica et biophysica acta. Biomembranes. 2020 09; 1862(9):183314. doi: 10.1016/j.bbamem.2020.183314. [PMID: 32304757]
  • Grant A Pellowe, Heather E Findlay, Karen Lee, Tim M Gemeinhardt, Laura R Blackholly, Eamonn Reading, Paula J Booth. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry. 2020 08; 59(30):2764-2775. doi: 10.1021/acs.biochem.0c00423. [PMID: 32627541]
  • Bartholomäus Danielczak, Sandro Keller. Lipid exchange among polymer-encapsulated nanodiscs by time-resolved Förster resonance energy transfer. Methods (San Diego, Calif.). 2020 08; 180(?):27-34. doi: 10.1016/j.ymeth.2020.04.010. [PMID: 32371238]
  • Aiman A Gulamhussein, Romez Uddin, Brian J Tighe, David R Poyner, Alice J Rothnie. A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification. Biochimica et biophysica acta. Biomembranes. 2020 07; 1862(7):183281. doi: 10.1016/j.bbamem.2020.183281. [PMID: 32209303]
  • Mariana C Fiori, Wan Zheng, Elizabeth Kamilar, Geuel Simiyu, Guillermo A Altenberg, Hongjun Liang. Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers. Scientific reports. 2020 06; 10(1):9940. doi: 10.1038/s41598-020-66852-7. [PMID: 32555261]
  • Javad Garousi, Anzhelika Vorobyeva, Mohamed Altai. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules (Basel, Switzerland). 2020 Jun; 25(11):. doi: 10.3390/molecules25112673. [PMID: 32526905]
  • Rachael L Grime, Joelle Goulding, Romez Uddin, Leigh A Stoddart, Stephen J Hill, David R Poyner, Stephen J Briddon, Mark Wheatley. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles. Nanoscale. 2020 Jun; 12(21):11518-11525. doi: 10.1039/d0nr01060j. [PMID: 32428052]
  • Aaron J Horsey, Deborah A Briggs, Nicholas D Holliday, Stephen J Briddon, Ian D Kerr. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. Biochimica et biophysica acta. Biomembranes. 2020 06; 1862(6):183218. doi: 10.1016/j.bbamem.2020.183218. [PMID: 32057756]
  • David Beriashvili, Norman R Spencer, Thorsten Dieckmann, Michael Overduin, Michael Palmer. Characterization of multimeric daptomycin bound to lipid nanodiscs formed by calcium-tolerant styrene-maleic acid copolymer. Biochimica et biophysica acta. Biomembranes. 2020 06; 1862(6):183234. doi: 10.1016/j.bbamem.2020.183234. [PMID: 32145282]
  • Sarah J Routledge, Mohammed Jamshad, Haydn A Little, Yu-Pin Lin, John Simms, Alpesh Thakker, Corinne M Spickett, Roslyn M Bill, Tim R Dafforn, David R Poyner, Mark Wheatley. Ligand-induced conformational changes in a SMALP-encapsulated GPCR. Biochimica et biophysica acta. Biomembranes. 2020 06; 1862(6):183235. doi: 10.1016/j.bbamem.2020.183235. [PMID: 32126232]
  • Mehdi Azouz, Mathilde Gonin, Sebastian Fiedler, Jonathan Faherty, Marion Decossas, Christophe Cullin, Sandrine Villette, Michel Lafleur, Isabel D Alves, Sophie Lecomte, Alexandre Ciaccafava. Microfluidic diffusional sizing probes lipid nanodiscs formation. Biochimica et biophysica acta. Biomembranes. 2020 06; 1862(6):183215. doi: 10.1016/j.bbamem.2020.183215. [PMID: 32061645]
  • Sophie J Hesketh, David P Klebl, Anna J Higgins, Maren Thomsen, Isabelle B Pickles, Frank Sobott, Asipu Sivaprasadarao, Vincent L G Postis, Stephen P Muench. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Biochimica et biophysica acta. Biomembranes. 2020 05; 1862(5):183192. doi: 10.1016/j.bbamem.2020.183192. [PMID: 31945320]
  • Alexandr Colbasevici, Natalia Voskoboynikova, Philipp S Orekhov, Marine E Bozdaganyan, Maria G Karlova, Olga S Sokolova, Johann P Klare, Armen Y Mulkidjanian, Konstantin V Shaitan, Heinz-Jürgen Steinhoff. Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations. Biochimica et biophysica acta. Biomembranes. 2020 05; 1862(5):183207. doi: 10.1016/j.bbamem.2020.183207. [PMID: 31987867]
  • Nikolaos G Bliziotis, Udo F H Engelke, Ruud L E G Aspers, Jasper Engel, Jaap Deinum, Henri J L M Timmers, Ron A Wevers, Leo A J Kluijtmans. A comparison of high-throughput plasma NMR protocols for comparative untargeted metabolomics. Metabolomics : Official journal of the Metabolomic Society. 2020 05; 16(5):64. doi: 10.1007/s11306-020-01686-y. [PMID: 32358672]
  • Masafumi Tanaka, Hisayasu Miyake, Satoko Oka, Shintaro Maeda, Kenji Iwasaki, Takahiro Mukai. Effects of charged lipids on the physicochemical and biological properties of lipid-styrene maleic acid copolymer discoidal particles. Biochimica et biophysica acta. Biomembranes. 2020 05; 1862(5):183209. doi: 10.1016/j.bbamem.2020.183209. [PMID: 32004520]
  • Han-Ju Chien, Yu-Ting Xue, Hsin-Chang Chen, Kuen-Yuh Wu, Chien-Chen Lai. Proteomic analysis of rat kidney under maleic acid treatment by SWATH-MS technology. Rapid communications in mass spectrometry : RCM. 2020 Apr; 34 Suppl 1(?):e8633. doi: 10.1002/rcm.8633. [PMID: 31677360]
  • Chan Zou, Qian Yang, Shuang Yang, Xingfei Zhang, Xiaoyan Yang, Zhijun Huang, Qi Pei, Jie Huang, Guoping Yang. Bioequivalence studies of inhaled indacaterol maleate in healthy Chinese volunteers under gastrointestinal non-blocking or blocking with concomitant charcoal administration. Pulmonary pharmacology & therapeutics. 2020 04; 61(?):101902. doi: 10.1016/j.pupt.2020.101902. [PMID: 32045673]
  • Juan Francisco Bada Juarez, Juan C Muñoz-García, Rosana Inácio Dos Reis, Alistair Henry, David McMillan, Marco Kriek, Martyn Wood, Catherine Vandenplas, Zara Sands, Luis Castro, Richard Taylor, Anthony Watts. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. Biochimica et biophysica acta. Biomembranes. 2020 03; 1862(3):183152. doi: 10.1016/j.bbamem.2019.183152. [PMID: 31843475]
  • Gulsah Gundogdu, Onur Senol, Fatma Demirkaya Miloglu, Yavuzer Koza, Fuat Gundogdu, Ahmet Hacımüftüoğlu, A M Abd El-Aty. Serum metabolite profiling of ST-segment elevation myocardial infarction using liquid chromatography quadrupole time-of-flight mass spectrometry. Biomedical chromatography : BMC. 2020 Feb; 34(2):e4738. doi: 10.1002/bmc.4738. [PMID: 31677392]
  • Alexandra Desrames, Sandrine Genetet, Maëlenn Païline Delcourt, Dominique Goossens, Isabelle Mouro-Chanteloup. Detergent-free isolation of native red blood cell membrane complexes. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183126. doi: 10.1016/j.bbamem.2019.183126. [PMID: 31738902]
  • Adrian H Kopf, Jonas M Dörr, Martijn C Koorengevel, Federico Antoniciello, Helene Jahn, J Antoinette Killian. Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183125. doi: 10.1016/j.bbamem.2019.183125. [PMID: 31738899]
  • Michael Overduin, Mansoore Esmaili. Structures and Interactions of Transmembrane Targets in Native Nanodiscs. SLAS discovery : advancing life sciences R & D. 2019 12; 24(10):943-952. doi: 10.1177/2472555219857691. [PMID: 31242812]
  • Andrew J Smith, Kathleen E Wright, Stephen P Muench, Sophie Schumann, Adrian Whitehouse, Karen E Porter, John Colyer. Styrene maleic acid recovers proteins from mammalian cells and tissues while avoiding significant cell death. Scientific reports. 2019 11; 9(1):16408. doi: 10.1038/s41598-019-51896-1. [PMID: 31767876]
  • Taylor B Groom, Jason R Gabl, Timothée L Pourpoint. Portable Power Generation for Remote Areas Using Hydrogen Generated via Maleic Acid-Promoted Hydrolysis of Ammonia Borane. Molecules (Basel, Switzerland). 2019 Nov; 24(22):. doi: 10.3390/molecules24224045. [PMID: 31717273]
  • Wageiha Mosslehy, Natalia Voskoboynikova, Alexandr Colbasevici, Adrian Ricke, Daniel Klose, Johann P Klare, Armen Y Mulkidjanian, Heinz-Jürgen Steinhoff. Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene-Maleic Acid Lipid Particles. Photochemistry and photobiology. 2019 09; 95(5):1195-1204. doi: 10.1111/php.13096. [PMID: 30849183]
  • Ana Cristina Roginski, Cristiane Cecatto, Simone Magagnin Wajner, Fernanda Dal'Maso Camera, Roger Frigério Castilho, Moacir Wajner, Alexandre Umpierrez Amaral. Experimental evidence that maleic acid markedly compromises glutamate oxidation through inhibition of glutamate dehydrogenase and α-ketoglutarate dehydrogenase activities in kidney of developing rats. Molecular and cellular biochemistry. 2019 Aug; 458(1-2):99-112. doi: 10.1007/s11010-019-03534-7. [PMID: 31032535]
  • Bartholomäus Danielczak, Annette Meister, Sandro Keller. Influence of Mg2+ and Ca2+ on nanodisc formation by diisobutylene/maleic acid (DIBMA) copolymer. Chemistry and physics of lipids. 2019 07; 221(?):30-38. doi: 10.1016/j.chemphyslip.2019.03.004. [PMID: 30876867]
  • Chang Sun, Robert B Gennis. Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Chemistry and physics of lipids. 2019 07; 221(?):114-119. doi: 10.1016/j.chemphyslip.2019.03.007. [PMID: 30940443]
  • Renuka S Managuli, Julie T Wang, Farid N Faruqu, Varun Kushwah, Sushil Y Raut, Ajjappla B Shreya, Khuloud T Al-Jamal, Sanyog Jain, Srinivas Mutalik. Asenapine maleate-loaded nanostructured lipid carriers: optimization and in vitro, ex vivo and in vivo evaluations. Nanomedicine (London, England). 2019 Apr; 14(7):889-910. doi: 10.2217/nnm-2018-0289. [PMID: 30874464]
  • Philipp S Orekhov, Marine E Bozdaganyan, Natalia Voskoboynikova, Armen Y Mulkidjanian, Heinz-Jürgen Steinhoff, Konstantin V Shaitan. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. Langmuir : the ACS journal of surfaces and colloids. 2019 03; 35(10):3748-3758. doi: 10.1021/acs.langmuir.8b03978. [PMID: 30773011]
  • Bhuvaneshwaran Subramanian, Tarun Agarwal, Piyali Basak, Tapas Kumar Maiti, Sujoy K Guha. RISUG® based improved intrauterine contraceptive device (IIUCD) could impart protective effects against development of endometrial cancer. Medical hypotheses. 2019 Mar; 124(?):67-71. doi: 10.1016/j.mehy.2019.02.026. [PMID: 30798920]
  • Alvin C K Teo, Sarah C Lee, Naomi L Pollock, Zoe Stroud, Stephen Hall, Alpesh Thakker, Andrew R Pitt, Timothy R Dafforn, Corinne M Spickett, David I Roper. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Scientific reports. 2019 02; 9(1):1813. doi: 10.1038/s41598-018-37962-0. [PMID: 30755655]
  • Adrian H Kopf, Martijn C Koorengevel, Cornelis A van Walree, Timothy R Dafforn, J Antoinette Killian. A simple and convenient method for the hydrolysis of styrene-maleic anhydride copolymers to styrene-maleic acid copolymers. Chemistry and physics of lipids. 2019 01; 218(?):85-90. doi: 10.1016/j.chemphyslip.2018.11.011. [PMID: 30513281]
  • Pavla Angelisová, Ondřej Ballek, Jan Sýkora, Oldřich Benada, Tomáš Čajka, Jana Pokorná, Dominik Pinkas, Václav Hořejší. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Biochimica et biophysica acta. Biomembranes. 2019 01; 1861(1):130-141. doi: 10.1016/j.bbamem.2018.08.006. [PMID: 30463696]
  • Jean-Etienne Bassard, Tomas Laursen. Molecular snapshots of dynamic membrane-bound metabolons. Methods in enzymology. 2019; 617(?):1-27. doi: 10.1016/bs.mie.2018.12.001. [PMID: 30784399]
  • Benjamin D Harding, Gunjan Dixit, Kevin M Burridge, Indra D Sahu, Carole Dabney-Smith, Richard E Edelmann, Dominik Konkolewicz, Gary A Lorigan. Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies. Chemistry and physics of lipids. 2019 01; 218(?):65-72. doi: 10.1016/j.chemphyslip.2018.12.002. [PMID: 30528635]
  • Nils Hellwig, Oliver Peetz, Zainab Ahdash, Igor Tascón, Paula J Booth, Vedrana Mikusevic, Marina Diskowski, Argyris Politis, Yvonne Hellmich, Inga Hänelt, Eamonn Reading, Nina Morgner. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chemical communications (Cambridge, England). 2018 Dec; 54(97):13702-13705. doi: 10.1039/c8cc06284f. [PMID: 30452022]
  • Marta Barniol-Xicota, Steven H L Verhelst. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. Journal of the American Chemical Society. 2018 11; 140(44):14557-14561. doi: 10.1021/jacs.8b08441. [PMID: 30347979]
  • Eman M Migdadi, Aaron J Courtenay, Ismaiel A Tekko, Maelíosa T C McCrudden, Mary-Carmel Kearney, Emma McAlister, Helen O McCarthy, Ryan F Donnelly. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. Journal of controlled release : official journal of the Controlled Release Society. 2018 09; 285(?):142-151. doi: 10.1016/j.jconrel.2018.07.009. [PMID: 29990526]
  • Hugo You-Hsien Lin, Chan-Jung Liang, Meng-Chieh Liu, Mei-Fang Huang, Jung-San Chang, Shih-Shin Liang. The use of chemical probes to detect the proteomics of renal tubular injury induced by maleic acid. Journal of chromatography. A. 2018 Aug; 1565(?):96-104. doi: 10.1016/j.chroma.2018.06.040. [PMID: 29983170]
  • Jasmina Radoicic, Sang Ho Park, Stanley J Opella. Macrodiscs Comprising SMALPs for Oriented Sample Solid-State NMR Spectroscopy of Membrane Proteins. Biophysical journal. 2018 07; 115(1):22-25. doi: 10.1016/j.bpj.2018.05.024. [PMID: 29914645]
  • Anne Grethen, David Glueck, Sandro Keller. Role of Coulombic Repulsion in Collisional Lipid Transfer Among SMA(2:1)-Bounded Nanodiscs. The Journal of membrane biology. 2018 06; 251(3):443-451. doi: 10.1007/s00232-018-0024-0. [PMID: 29508005]
  • Jiaxi Lu, Pengli Wang, Qiuying Wang, Yanan Wang, Miaomiao Jiang. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections. Molecules (Basel, Switzerland). 2018 May; 23(5):. doi: 10.3390/molecules23051177. [PMID: 29762466]
  • Alfredo Briones-Herrera, Sabino Hazael Avila-Rojas, Omar Emiliano Aparicio-Trejo, Magdalena Cristóbal, Juan Carlos León-Contreras, Rogelio Hernández-Pando, Enrique Pinzón, José Pedraza-Chaverri, Laura Gabriela Sánchez-Lozada, Edilia Tapia. Sulforaphane prevents maleic acid-induced nephropathy by modulating renal hemodynamics, mitochondrial bioenergetics and oxidative stress. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 May; 115(?):185-197. doi: 10.1016/j.fct.2018.03.016. [PMID: 29548851]
  • Yuhuan Yan, Chunhui Zhang, Qixuan Lin, Xiaohui Wang, Banggui Cheng, Huiling Li, Junli Ren. Microwave-Assisted Oxalic Acid Pretreatment for the Enhancing of Enzyme Hydrolysis in the Production of Xylose and Arabinose from Bagasse. Molecules (Basel, Switzerland). 2018 Apr; 23(4):. doi: 10.3390/molecules23040862. [PMID: 29642578]
  • Naomi L Pollock, Sarah C Lee, Jaimin H Patel, Aiman A Gulamhussein, Alice J Rothnie. Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. Biochimica et biophysica acta. Biomembranes. 2018 Apr; 1860(4):809-817. doi: 10.1016/j.bbamem.2017.08.012. [PMID: 28865797]
  • Chancui Wu, Jie Liu, Xuehong Zhang. [Determination of organic acids in the root exudates of Cr-hyperaccumulator Leersia hexandra Swartz using high performance liquid chromatography]. Se pu = Chinese journal of chromatography. 2018 Feb; 36(2):167-172. doi: 10.3724/sp.j.1123.2017.09009. [PMID: 29582603]
  • Abraham Olusegun Oluwole, Johannes Klingler, Bartholomäus Danielczak, Jonathan Oyebamiji Babalola, Carolyn Vargas, Georg Pabst, Sandro Keller. Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Langmuir : the ACS journal of surfaces and colloids. 2017 12; 33(50):14378-14388. doi: 10.1021/acs.langmuir.7b03742. [PMID: 29160078]
  • Charlene Wu, Chi-Hung Chen, Hsin-Chang Chen, Hao-Jan Liang, Shu-Ting Chen, Wan-Yu Lin, Kuen-Yuh Wu, Su-Yin Chiang, Ching-Yu Lin. Nuclear magnetic resonance- and mass spectrometry-based metabolomics to study maleic acid toxicity from repeated dose exposure in rats. Journal of applied toxicology : JAT. 2017 Dec; 37(12):1493-1506. doi: 10.1002/jat.3500. [PMID: 28691739]
  • Mattana Tunchai, Akiko Hida, Shota Oku, Yutaka Nakashimada, Toshiyuki Nikata, Takahisa Tajima, Junichi Kato. Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein. Journal of bioscience and bioengineering. 2017 Dec; 124(6):647-652. doi: 10.1016/j.jbiosc.2017.07.002. [PMID: 28743655]
  • Anton A A Smith, Henriette E Autzen, Tomas Laursen, Vincent Wu, Max Yen, Aaron Hall, Scott D Hansen, Yifan Cheng, Ting Xu. Controlling Styrene Maleic Acid Lipid Particles through RAFT. Biomacromolecules. 2017 Nov; 18(11):3706-3713. doi: 10.1021/acs.biomac.7b01136. [PMID: 28934548]
  • Jonas M Dörr, Marleen H van Coevorden-Hameete, Casper C Hoogenraad, J Antoinette Killian. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy. Biochimica et biophysica acta. Biomembranes. 2017 Nov; 1859(11):2155-2160. doi: 10.1016/j.bbamem.2017.08.010. [PMID: 28847501]
  • David J K Swainsbury, Stefan Scheidelaar, Nicholas Foster, Rienk van Grondelle, J Antoinette Killian, Michael R Jones. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes. Biochimica et biophysica acta. Biomembranes. 2017 Oct; 1859(10):2133-2143. doi: 10.1016/j.bbamem.2017.07.011. [PMID: 28751090]
  • Jubayer Al Mahmud, Mirza Hasanuzzaman, Kamrun Nahar, Anisur Rahman, Md Shahadat Hossain, Masayuki Fujita. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicology and environmental safety. 2017 Oct; 144(?):216-226. doi: 10.1016/j.ecoenv.2017.06.010. [PMID: 28624590]
  • Pooja Manchandani, Jian Zhou, Jessica T Babic, Kimberly R Ledesma, Luan D Truong, Vincent H Tam. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity. Antimicrobial agents and chemotherapy. 2017 04; 61(4):. doi: 10.1128/aac.02391-16. [PMID: 28096166]
  • Rongfu Zhang, Indra D Sahu, Avnika P Bali, Carole Dabney-Smith, Gary A Lorigan. Characterization of the structure of lipodisq nanoparticles in the presence of KCNE1 by dynamic light scattering and transmission electron microscopy. Chemistry and physics of lipids. 2017 03; 203(?):19-23. doi: 10.1016/j.chemphyslip.2016.12.003. [PMID: 27956132]
  • Abraham Olusegun Oluwole, Bartholomäus Danielczak, Annette Meister, Jonathan Oyebamiji Babalola, Carolyn Vargas, Sandro Keller. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angewandte Chemie (International ed. in English). 2017 02; 56(7):1919-1924. doi: 10.1002/anie.201610778. [PMID: 28079955]
  • Charlene Wu, Hsin-Chang Chen, Shu-Ting Chen, Su-Yin Chiang, Kuen-Yuh Wu. Elevation in and persistence of multiple urinary biomarkers indicative of oxidative DNA stress and inflammation: Toxicological implications of maleic acid consumption using a rat model. PloS one. 2017; 12(10):e0183675. doi: 10.1371/journal.pone.0183675. [PMID: 29073142]
  • Weijun Tian, Jing Zhao, Yuhang Zhou, Kaili Qiao, Xin Jin, Qing Liu. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons. Ecotoxicology and environmental safety. 2017 Jan; 135(?):158-164. doi: 10.1016/j.ecoenv.2016.09.021. [PMID: 27736675]
  • Juan J Dominguez Pardo, Jonas M Dörr, Aditya Iyer, Ruud C Cox, Stefan Scheidelaar, Martijn C Koorengevel, Vinod Subramaniam, J Antoinette Killian. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. European biophysics journal : EBJ. 2017 Jan; 46(1):91-101. doi: 10.1007/s00249-016-1181-7. [PMID: 27815573]
  • Orleans Martey, Mhairi Nimick, Sebastien Taurin, Vignesh Sundararajan, Khaled Greish, Rhonda J Rosengren. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer. International journal of nanomedicine. 2017; 12(?):7225-7237. doi: 10.2147/ijn.s148908. [PMID: 29042771]
  • Charlene Wu, Hsin-Chang Chen, Yu-Syuan Luo, Su-Yin Chiang, Kuen-Yuh Wu. Pharmacokinetics and bioavailability of oral single-dose maleic acid in biofluids of Sprague-Dawley rats. Drug metabolism and pharmacokinetics. 2016 Dec; 31(6):451-457. doi: 10.1016/j.dmpk.2016.09.005. [PMID: 28340950]