AI3-00579 (BioDeep_00000859501)

Main id: BioDeep_00000018209

 

PANOMIX_OTCML-2023


代谢物信息卡片


InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7

化学式: C10H10O2 (162.0681)
中文名称: 肉桂酸甲酯, 2-丙酸,3-苯基-,甲酯
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC(=O)C=CC1=CC=CC=C1
InChI: InChI=1S/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7+

描述信息

Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

同义名列表

45 个代谢物同义名

InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7; 2-propenoic acid, 3-phenyl-, methyl ester, (2E)-; 2-PROPENOIC ACID, 3-PHENYL-, METHYL ESTER, (E)-; (E)-3-phenylprop-2-enoic acid methyl ester; 2-Propenoic acid, 3-phenyl-, methyl ester; 3-phenylprop-2-enoic acid methyl ester; (E)-3-Phenylacrylic acid methyl ester; Cinnamic acid,methyl ester (trans); 3-phenylacrylic acid methyl ester; Cinnamic acid, methyl ester, (E)-; Methyl (E)-3-phenylprop-2-enoate; Methyl 3-phenyl-2-propenoate; methyl 3-phenylprop-2-enoate; Methyl (2E)-3-phenylacrylate; CINNAMIC ACID, METHYL ESTER; Cinnamic acid methyl ester; Methyl cinnamate (natural); Methyl 3-phenylpropenoate; ghl.PD_Mitscher_leg0.369; Methyl 3-phenylacrylate; methyl trans-cinnamate; Methyl (E)-cinnamate; Methyl cinnamylate; Methyl cinnamate; EINECS 203-093-8; Methylcinnamate; W269808_ALDRICH; W269816_ALDRICH; 173282_ALDRICH; FEMA No. 2698; WLN: 1OV1U1R; ZINC00896129; 96410_FLUKA; AIDS-039559; AIDS039559; 1754-62-7; ST5411952; AI3-00579; 103-26-4; NSC 9411; NSC9411; C06358; Methyl cinnamate; Methyl cinnamate; 2-Propenoic acid, 3-phenyl-, methyl ester



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

41 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADIG, AIMP2, CAMKK2, CASP3, MAPK8, MTOR, PIK3CA, PPARG, PRKAA2, PRKX, SREBF1, TNK1, TYR
Peripheral membrane protein 4 ACHE, CYP27A1, MTOR, TNK1
Endoplasmic reticulum membrane 4 GRIA1, HMOX1, MTOR, SREBF1
Mitochondrion membrane 1 CYP27A1
Nucleus 13 ACHE, ADIG, AIMP2, CAMKK2, CASP3, CEBPA, HMOX1, MAPK8, MTOR, PPARG, PRKAA2, PRKX, SREBF1
cytosol 11 AIMP2, CAMKK2, CASP3, GRIA1, HMOX1, MAPK8, MTOR, PIK3CA, PPARG, PRKAA2, SREBF1
dendrite 3 GRIA1, MTOR, PRKAA2
phagocytic vesicle 1 MTOR
nucleoplasm 10 CAMKK2, CASP3, CEBPA, HMOX1, MAPK8, MTOR, PPARG, PRKAA2, PRKX, SREBF1
RNA polymerase II transcription regulator complex 2 CEBPA, PPARG
Cell membrane 3 ACHE, GRIA1, GRIA3
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 1 PIK3CA
Early endosome membrane 1 GRIA1
Multi-pass membrane protein 3 GRIA1, GRIA3, SREBF1
Golgi apparatus membrane 2 MTOR, SREBF1
Synapse 3 ACHE, GRIA1, MAPK8
cell surface 2 ACHE, GRIA1
dendritic shaft 1 GRIA1
glutamatergic synapse 2 CASP3, GRIA1
Golgi apparatus 2 ACHE, PRKAA2
Golgi membrane 2 MTOR, SREBF1
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP27A1
neuromuscular junction 2 ACHE, GRIA1
neuronal cell body 3 CASP3, GRIA1, PRKAA2
Cytoplasm, cytosol 1 AIMP2
Lysosome 2 MTOR, TYR
Presynapse 1 GRIA1
plasma membrane 5 ACHE, GRIA1, GRIA3, PIK3CA, TNK1
synaptic vesicle membrane 1 GRIA1
Membrane 8 ACHE, ADIG, AIMP2, GRIA1, HMOX1, MTOR, PRKAA2, TNK1
axon 2 MAPK8, PRKAA2
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 HMOX1, SREBF1
extracellular space 3 ACHE, CXCL8, HMOX1
perinuclear region of cytoplasm 5 ACHE, HMOX1, PIK3CA, PPARG, TYR
intercalated disc 1 PIK3CA
mitochondrion 1 CYP27A1
protein-containing complex 1 SREBF1
intracellular membrane-bounded organelle 3 CEBPA, PPARG, TYR
Microsome membrane 1 MTOR
postsynaptic density 2 CASP3, GRIA1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TYR
Secreted 3 ACHE, ADIG, CXCL8
extracellular region 3 ACHE, ADIG, CXCL8
Mitochondrion outer membrane 1 MTOR
Single-pass membrane protein 1 ADIG
mitochondrial outer membrane 2 HMOX1, MTOR
excitatory synapse 1 GRIA1
neuronal cell body membrane 1 GRIA1
mitochondrial matrix 1 CYP27A1
Extracellular side 1 ACHE
transcription regulator complex 1 CEBPA
external side of plasma membrane 1 GRIA1
dendritic spine 2 GRIA1, GRIA3
nucleolus 1 CEBPA
Melanosome membrane 1 TYR
neuron spine 1 GRIA1
cell-cell junction 1 GRIA1
Golgi-associated vesicle 1 TYR
recycling endosome 1 GRIA1
postsynaptic membrane 2 GRIA1, GRIA3
presynaptic active zone membrane 1 GRIA1
Mitochondrion inner membrane 1 CYP27A1
basement membrane 1 ACHE
Cell projection, dendritic spine 1 GRIA1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
nuclear speck 1 PRKAA2
Postsynaptic cell membrane 2 GRIA1, GRIA3
receptor complex 1 PPARG
Cell projection, neuron projection 1 CAMKK2
neuron projection 1 CAMKK2
chromatin 3 CEBPA, PPARG, SREBF1
postsynaptic density, intracellular component 1 GRIA1
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 2 MTOR, SREBF1
Recycling endosome membrane 1 GRIA1
Endomembrane system 1 MTOR
Lipid droplet 1 ADIG
Cytoplasmic vesicle membrane 1 SREBF1
AMPA glutamate receptor complex 2 GRIA1, GRIA3
Cell projection, dendrite 1 GRIA1
Melanosome 1 TYR
cytoplasmic stress granule 1 PRKAA2
side of membrane 1 ACHE
synaptic membrane 1 GRIA1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 2 GRIA1, GRIA3
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GRIA1
postsynaptic density membrane 2 GRIA1, GRIA3
Single-pass type IV membrane protein 1 HMOX1
ER to Golgi transport vesicle membrane 2 GRIA1, SREBF1
parallel fiber to Purkinje cell synapse 1 GRIA3
synaptic cleft 1 ACHE
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
dendritic spine membrane 1 GRIA1
proximal dendrite 1 GRIA1
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
[Isoform H]: Cell membrane 1 ACHE
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
axonal spine 1 GRIA1
perisynaptic space 1 GRIA1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform 4]: Nucleus, nucleolus 1 CEBPA


文献列表

  • Lilin E, Wenjie Li, Yuanjia Hu, Lijuan Deng, Jianping Yao, Xingwang Zhou. Methyl cinnamate protects against dextran sulfate sodium-induced colitis in mice by inhibiting the MAPK signaling pathway. Acta biochimica et biophysica Sinica. 2023 Aug; ?(?):. doi: 10.3724/abbs.2023124. [PMID: 37654075]
  • Paco Noriega, Lissette Calderón, Andrea Ojeda, Erika Paredes. Chemical Composition, Antimicrobial and Antioxidant Bioautography Activity of Essential Oil from Leaves of Amazon Plant Clinopodium brownei (Sw.). Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041741. [PMID: 36838728]
  • Li Zhang, Hu-Qiang Jiang, Fan Wu, Ping Wen, Jing Qing, Xin-Mi Song, Hong-Liang Li. Eastern honeybee Apis cerana sense cold flowering plants by increasing the static binding affinity of odorant-binding protein to cold floral volatiles from loquats. International journal of biological macromolecules. 2023 Jan; 232(?):123227. doi: 10.1016/j.ijbiomac.2023.123227. [PMID: 36646342]
  • Nagwa A Shoeib, Lamiaa A Al-Madboly, Amany E Ragab. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. Pharmaceutical biology. 2022 Dec; 60(1):1969-1980. doi: 10.1080/13880209.2022.2127791. [PMID: 36226757]
  • Gabriela Rabeschini, Pedro Joaquim Bergamo, Carlos E P Nunes. Meaningful Words in Crowd Noise: Searching for Volatiles Relevant to Carpenter Bees among the Diverse Scent Blends of Bee Flowers. Journal of chemical ecology. 2021 May; 47(4-5):444-454. doi: 10.1007/s10886-021-01257-y. [PMID: 33683547]
  • Chi Zhang, Xinlu Chen, Barbara Crandall-Stotler, Ping Qian, Tobias G Köllner, Hong Guo, Feng Chen. Biosynthesis of methyl (E)-cinnamate in the liverwort Conocephalum salebrosum and evolution of cinnamic acid methyltransferase. Phytochemistry. 2019 Aug; 164(?):50-59. doi: 10.1016/j.phytochem.2019.04.013. [PMID: 31078779]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • João Vito B Freitas, Elenilson G Alves Filho, Lorena Mara A Silva, Guilherme J Zocolo, Edy S de Brito, Nilce V Gramosa. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum. Talanta. 2018 Apr; 180(?):329-336. doi: 10.1016/j.talanta.2017.12.053. [PMID: 29332819]
  • Natália Moreira Nunes, Ana Flávia Coelho Pacheco, Álvaro Javier Patiño Agudelo, Luis Henrique Mendes da Silva, Maximiliano Soares Pinto, Maria do Carmo Hespanhol, Ana Clarissa Dos Santos Pires. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: A thermodynamic approach. Food chemistry. 2017 Dec; 237(?):525-531. doi: 10.1016/j.foodchem.2017.05.131. [PMID: 28764029]
  • Gislene M Fujiwara, Vinícius Annies, Camila F de Oliveira, Ricardo A Lara, Maria M Gabriel, Fernando C M Betim, Jéssica M Nadal, Paulo V Farago, Josiane F G Dias, Obdulio G Miguel, Marilis D Miguel, Francisco A Marques, Sandra M W Zanin. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicology and environmental safety. 2017 May; 139(?):238-244. doi: 10.1016/j.ecoenv.2017.01.046. [PMID: 28152405]
  • Santosh Shiwakoti, Osama Saleh, Shital Poudyal, Abdulssamad Barka, Yanping Qian, Valtcho D Zheljazkov. Yield, Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods. Chemistry & biodiversity. 2017 Apr; 14(4):. doi: 10.1002/cbdv.201600417. [PMID: 28028933]
  • Atul Anand, Ramesha H Jayaramaiah, Supriya D Beedkar, Priyanka A Singh, Rakesh S Joshi, Fayaj A Mulani, Bhushan B Dholakia, Sachin A Punekar, Wasudeo N Gade, Hirekodathakallu V Thulasiram, Ashok P Giri. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation. Biochimica et biophysica acta. 2016 11; 1864(11):1539-47. doi: 10.1016/j.bbapap.2016.08.004. [PMID: 27519164]
  • Surapan Jitviriyanon, Phanida Phanthong, Pattamapan Lomarat, Nuntavan Bunyapraphatsara, Sarthorn Porntrakulpipat, Nuanchan Paraksa. In vitro study of anti-coccidial activity of essential oils from indigenous plants against Eimeria tenella. Veterinary parasitology. 2016 Sep; 228(?):96-102. doi: 10.1016/j.vetpar.2016.08.020. [PMID: 27692340]
  • Bhanu Prakash, Priyanka Singh, Prashant Kumar Mishra, N K Dubey. Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International journal of food microbiology. 2012 Feb; 153(1-2):183-91. doi: 10.1016/j.ijfoodmicro.2011.11.007. [PMID: 22137251]
  • Mashitah M Yusoff, Halijah Ibrahim, Nurulhusna A Hamid. Chemical characterization and antimicrobial activity of rhizome essential oils of very closely allied Zingiberaceae species endemic to Borneo: Alpinia ligulata K. Schum. and Alpinia nieuwenhuizii Val. Chemistry & biodiversity. 2011 May; 8(5):916-23. doi: 10.1002/cbdv.201000270. [PMID: 21560240]
  • Vigilio Ballabeni, Massimiliano Tognolini, Carmine Giorgio, Simona Bertoni, Renato Bruni, Elisabetta Barocelli. Ocotea quixos Lam. essential oil: in vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia. 2010 Jun; 81(4):289-95. doi: 10.1016/j.fitote.2009.10.002. [PMID: 19825398]
  • Valtcho D Zheljazkov, Amber Callahan, Charles L Cantrell. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. Journal of agricultural and food chemistry. 2008 Jan; 56(1):241-5. doi: 10.1021/jf072447y. [PMID: 18072735]
  • Vigilio Ballabeni, Massimiliano Tognolini, Simona Bertoni, Renato Bruni, Alessandra Guerrini, Gabriela Moreno Rueda, Elisabetta Barocelli. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacological research. 2007 Jan; 55(1):23-30. doi: 10.1016/j.phrs.2006.09.009. [PMID: 17079160]
  • Kathrin Fink, Elke Richling, Frank Heckel, Peter Schreier. Determination of 2H/1H and 13C/12C isotope ratios of (E)-methyl cinnamate from different sources using isotope ratio mass spectrometry. Journal of agricultural and food chemistry. 2004 May; 52(10):3065-8. doi: 10.1021/jf040018j. [PMID: 15137854]
  • S Tawata, S Taira, N Kobamoto, J Zhu, M Ishihara, S Toyama. Synthesis and antifungal activity of cinnamic acid esters. Bioscience, biotechnology, and biochemistry. 1996 May; 60(5):909-10. doi: 10.1271/bbb.60.909. [PMID: 8704323]
  • L P Delbressin, H C van Balen, F Seutter-Berlage. Isolation and identification of mercapturic acid metabolites of phenyl substituted acrylate esters from urine of female rats. Archives of toxicology. 1982 Mar; 49(3-4):321-30. doi: 10.1007/bf00347880. [PMID: 7092571]