(E)-methyl ester 3-phenyl-2-propenoic acid (BioDeep_00000001094)
Main id: BioDeep_00000018209
human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C10H10O2 (162.0681)
中文名称: 肉桂酸甲酯, 2-丙酸,3-苯基-,甲酯
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: COC(=O)C=CC1=CC=CC=C1
InChI: InChI=1S/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7+
描述信息
Flavouring compound [Flavornet]
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].
同义名列表
19 个代谢物同义名
methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer; methyl cinnamate, propenoic-3-(14)C-labeled; (E)-methyl ester 3-phenyl-2-propenoic acid; (e)-Methyl ester 3-phenyl-2-propenoate; methyl (2E)-3-phenylprop-2-enoate; 3-Phenyl-2-propenoic acid methyl; methyl cinnamate, trans-isomer; 3-Phenyl-2-propenoate methyl; methyl cinnamate, cis-isomer; methyl cinnamate, ion(1-); methyl trans-cinnamate; Methyl (E)-cinnamate; Methyl cinnamic acid; Methyl cinnamate; Methyl cubebin; Methyl 3-phenylpropenoate; Methyl cinnamate; Methyl cinnamate; 2-Propenoic acid, 3-phenyl-, methyl ester
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:194138
- ChEBI: CHEBI:6857
- KEGG: C06358
- PubChem: 637520
- HMDB: HMDB0303905
- Metlin: METLIN66385
- ChEMBL: CHEMBL55060
- KNApSAcK: C00053486
- foodb: FDB029756
- chemspider: 21105944
- CAS: 1754-62-7
- CAS: 103-26-4
- PubChem: 8594
- 3DMET: B00951
- NIKKAJI: J2.848G
- medchemexpress: HY-W017212
- KNApSAcK: 6857
分类词条
相关代谢途径
Reactome(0)
代谢反应
26 个相关的代谢反应过程信息。
Reactome(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(25)
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
31 个相关的物种来源信息
- 125257 - Alpinia formosana: 10.1016/0031-9422(88)83115-7
- 125259 - Alpinia hainanensis: 10.1016/S0031-9422(98)80083-6
- 299931 - Alpinia mutica: 10.1055/S-2006-957857
- 199623 - Alpinia officinarum Hance: -
- 97723 - Alpinia zerumbet: 10.1016/0031-9422(81)83082-8
- 2675989 - Aragoa lucidula: 10.1055/S-0028-1097783
- 205369 - Artemisia judaica: 10.1016/0305-1978(85)90037-7
- 466060 - Artemisia salsoloides: 10.1002/FFJ.2730070603
- 29813 - Balanophora fungosa: 10.1248/CPB.57.1352
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 41839 - Conocephalum conicum:
- 87669 - Eucalyptus delegatensis: 10.1016/S0031-9422(00)84946-8
- 9606 - Homo sapiens: -
- 128639 - Lindera erythrocarpa: 10.1021/NP50059A016
- 106062 - Melaleuca viridiflora: 10.1071/CH9682585
- 121078 - Mespilodaphne quixos: 10.1016/0378-8741(81)90038-6
- 54860 - Narcissus tazetta: 10.3109/13880209409083015
- 38799 - Neolentinus lepideus: 10.1016/S0031-9422(00)86811-9
- 204144 - Ocimum gratissimum: 10.1007/BF01959201
- 125742 - Ozothamnus diosmifolius: 10.1016/S0031-9422(00)84791-3
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 260139 - Pimenta racemosa: 10.1080/10412905.1995.9698553
- 33090 - Plants: -
- 62097 - Plumeria rubra: 10.1002/FFJ.2730070108
- 409520 - Spiraea thunbergii: 10.1271/BBB.62.1546
- 13699 - Styrax: -
- 57577 - Trifolium pratense: 10.1021/JF00122A019
- 78479 - Trollius Chinensis: -
- 67938 - Zanthoxylum armatum:
- 354529 - Zanthoxylum piperitum: 10.1055/S-2001-11513
- 94328 - Zingiber Officinale Roscoe: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lilin E, Wenjie Li, Yuanjia Hu, Lijuan Deng, Jianping Yao, Xingwang Zhou. Methyl cinnamate protects against dextran sulfate sodium-induced colitis in mice by inhibiting the MAPK signaling pathway.
Acta biochimica et biophysica Sinica.
2023 Aug; ?(?):. doi:
10.3724/abbs.2023124
. [PMID: 37654075] - Paco Noriega, Lissette Calderón, Andrea Ojeda, Erika Paredes. Chemical Composition, Antimicrobial and Antioxidant Bioautography Activity of Essential Oil from Leaves of Amazon Plant Clinopodium brownei (Sw.).
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041741
. [PMID: 36838728] - Li Zhang, Hu-Qiang Jiang, Fan Wu, Ping Wen, Jing Qing, Xin-Mi Song, Hong-Liang Li. Eastern honeybee Apis cerana sense cold flowering plants by increasing the static binding affinity of odorant-binding protein to cold floral volatiles from loquats.
International journal of biological macromolecules.
2023 Jan; 232(?):123227. doi:
10.1016/j.ijbiomac.2023.123227
. [PMID: 36646342] - Nagwa A Shoeib, Lamiaa A Al-Madboly, Amany E Ragab. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt.
Pharmaceutical biology.
2022 Dec; 60(1):1969-1980. doi:
10.1080/13880209.2022.2127791
. [PMID: 36226757] - Gabriela Rabeschini, Pedro Joaquim Bergamo, Carlos E P Nunes. Meaningful Words in Crowd Noise: Searching for Volatiles Relevant to Carpenter Bees among the Diverse Scent Blends of Bee Flowers.
Journal of chemical ecology.
2021 May; 47(4-5):444-454. doi:
10.1007/s10886-021-01257-y
. [PMID: 33683547] - Chi Zhang, Xinlu Chen, Barbara Crandall-Stotler, Ping Qian, Tobias G Köllner, Hong Guo, Feng Chen. Biosynthesis of methyl (E)-cinnamate in the liverwort Conocephalum salebrosum and evolution of cinnamic acid methyltransferase.
Phytochemistry.
2019 Aug; 164(?):50-59. doi:
10.1016/j.phytochem.2019.04.013
. [PMID: 31078779] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - João Vito B Freitas, Elenilson G Alves Filho, Lorena Mara A Silva, Guilherme J Zocolo, Edy S de Brito, Nilce V Gramosa. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum.
Talanta.
2018 Apr; 180(?):329-336. doi:
10.1016/j.talanta.2017.12.053
. [PMID: 29332819] - Natália Moreira Nunes, Ana Flávia Coelho Pacheco, Álvaro Javier Patiño Agudelo, Luis Henrique Mendes da Silva, Maximiliano Soares Pinto, Maria do Carmo Hespanhol, Ana Clarissa Dos Santos Pires. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: A thermodynamic approach.
Food chemistry.
2017 Dec; 237(?):525-531. doi:
10.1016/j.foodchem.2017.05.131
. [PMID: 28764029] - Gislene M Fujiwara, Vinícius Annies, Camila F de Oliveira, Ricardo A Lara, Maria M Gabriel, Fernando C M Betim, Jéssica M Nadal, Paulo V Farago, Josiane F G Dias, Obdulio G Miguel, Marilis D Miguel, Francisco A Marques, Sandra M W Zanin. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti.
Ecotoxicology and environmental safety.
2017 May; 139(?):238-244. doi:
10.1016/j.ecoenv.2017.01.046
. [PMID: 28152405] - Santosh Shiwakoti, Osama Saleh, Shital Poudyal, Abdulssamad Barka, Yanping Qian, Valtcho D Zheljazkov. Yield, Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods.
Chemistry & biodiversity.
2017 Apr; 14(4):. doi:
10.1002/cbdv.201600417
. [PMID: 28028933] - Atul Anand, Ramesha H Jayaramaiah, Supriya D Beedkar, Priyanka A Singh, Rakesh S Joshi, Fayaj A Mulani, Bhushan B Dholakia, Sachin A Punekar, Wasudeo N Gade, Hirekodathakallu V Thulasiram, Ashok P Giri. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation.
Biochimica et biophysica acta.
2016 11; 1864(11):1539-47. doi:
10.1016/j.bbapap.2016.08.004
. [PMID: 27519164] - Surapan Jitviriyanon, Phanida Phanthong, Pattamapan Lomarat, Nuntavan Bunyapraphatsara, Sarthorn Porntrakulpipat, Nuanchan Paraksa. In vitro study of anti-coccidial activity of essential oils from indigenous plants against Eimeria tenella.
Veterinary parasitology.
2016 Sep; 228(?):96-102. doi:
10.1016/j.vetpar.2016.08.020
. [PMID: 27692340] - Bhanu Prakash, Priyanka Singh, Prashant Kumar Mishra, N K Dubey. Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits.
International journal of food microbiology.
2012 Feb; 153(1-2):183-91. doi:
10.1016/j.ijfoodmicro.2011.11.007
. [PMID: 22137251] - Mashitah M Yusoff, Halijah Ibrahim, Nurulhusna A Hamid. Chemical characterization and antimicrobial activity of rhizome essential oils of very closely allied Zingiberaceae species endemic to Borneo: Alpinia ligulata K. Schum. and Alpinia nieuwenhuizii Val.
Chemistry & biodiversity.
2011 May; 8(5):916-23. doi:
10.1002/cbdv.201000270
. [PMID: 21560240] - Vigilio Ballabeni, Massimiliano Tognolini, Carmine Giorgio, Simona Bertoni, Renato Bruni, Elisabetta Barocelli. Ocotea quixos Lam. essential oil: in vitro and in vivo investigation on its anti-inflammatory properties.
Fitoterapia.
2010 Jun; 81(4):289-95. doi:
10.1016/j.fitote.2009.10.002
. [PMID: 19825398] - Valtcho D Zheljazkov, Amber Callahan, Charles L Cantrell. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi.
Journal of agricultural and food chemistry.
2008 Jan; 56(1):241-5. doi:
10.1021/jf072447y
. [PMID: 18072735] - Vigilio Ballabeni, Massimiliano Tognolini, Simona Bertoni, Renato Bruni, Alessandra Guerrini, Gabriela Moreno Rueda, Elisabetta Barocelli. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador.
Pharmacological research.
2007 Jan; 55(1):23-30. doi:
10.1016/j.phrs.2006.09.009
. [PMID: 17079160] - Kathrin Fink, Elke Richling, Frank Heckel, Peter Schreier. Determination of 2H/1H and 13C/12C isotope ratios of (E)-methyl cinnamate from different sources using isotope ratio mass spectrometry.
Journal of agricultural and food chemistry.
2004 May; 52(10):3065-8. doi:
10.1021/jf040018j
. [PMID: 15137854] - S Tawata, S Taira, N Kobamoto, J Zhu, M Ishihara, S Toyama. Synthesis and antifungal activity of cinnamic acid esters.
Bioscience, biotechnology, and biochemistry.
1996 May; 60(5):909-10. doi:
10.1271/bbb.60.909
. [PMID: 8704323] - L P Delbressin, H C van Balen, F Seutter-Berlage. Isolation and identification of mercapturic acid metabolites of phenyl substituted acrylate esters from urine of female rats.
Archives of toxicology.
1982 Mar; 49(3-4):321-30. doi:
10.1007/bf00347880
. [PMID: 7092571]