Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.079)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Pollenin A

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). Isolated from pollen of Camellia sinensis (tea). Pollenin A is found in tea. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

Methyl hexadecanoic acid

Methyl palmitate, United States Pharmacopeia (USP) Reference Standard

C17H34O2 (270.2559)


Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

L-Valine

(2S)-2-amino-3-methylbutanoic acid

C5H11NO2 (117.079)


L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion. Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04) Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins. A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ... Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain Œ±-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ... L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr... L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Marmesin galactoside

(R)-2-(2-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one

C20H24O9 (408.142)


Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is found in herbs and spices. Marmesin galactoside is a constituent of Murraya koenigii (curry leaf tree). Constituent of Murraya koenigii (curry leaf tree). Marmesin galactoside is found in herbs and spices. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].

   

Genkwanin

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O5 (284.0685)


Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

Isopimpinellin

InChI=1/C13H10O5/c1-15-10-7-3-4-9(14)18-12(7)13(16-2)11-8(10)5-6-17-11/h3-6H,1-2H3

C13H10O5 (246.0528)


Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Artemisinic

1-NAPHTHALENEACETIC ACID, 1,2,3,4,4A,5,6,8A-OCTAHYDRO-4,7-DIMETHYL-.ALPHA.-METHYLENE-, (1R-(1.ALPHA.,4.BETA.,4A.BETA.,8A.BETA.))-

C15H22O2 (234.162)


(+)-artemisinic acid is a monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. It has a role as a metabolite. It is a monocarboxylic acid, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. It is functionally related to a (+)-artemisinic alcohol. It is a conjugate acid of a (+)-artemisinate. Artemisinic acid is a natural product found in Artemisia apiacea, Artemisia annua, and other organisms with data available. A monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1]. Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].

   

Dihydrocapsaicin

Dihydrocapsaicin, Nonanamide, 8-methyl-N-vanillyl- (7CI,8CI); 6,7-Dihydrocapsaicin; Capsaicin, dihydro-; Dihydrocapsaicin

C18H29NO3 (307.2147)


Dihydrocapsaicin is found in pepper (C. annuum). It is a potential nutriceutical. Dihydrocapsaicin is a capsaicinoid and analog and congener of capsaicin in chili peppers (Capsicum). Like capsaicin it is an irritant. Dihydrocapsaicin accounts for about 22\\\\\% of the total capsaicinoids mixture and has about the same pungency as capsaicin. Pure dihydrocapsaicin is a lipophilic colorless odorless crystalline to waxy compound. It is soluble in dimethyl sulfoxide and 100 \\\\\% ethanol. Dihydrocapsaicin is a capsaicinoid. Dihydrocapsaicin is a natural product found in Capsicum pubescens, Capsicum annuum, and Ganoderma lucidum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Potential nutriceutical Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Curdione

6-Cyclodecene-1,4-dione, 6,10-dimethyl-3-(1-methylethyl)-, (3S-(3R*,6E,10R*))-

C15H24O2 (236.1776)


Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0951)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

Quillaic

(4aR,5R,6aS,6bR,8aR,9S,10S,12aR,12bR,14bS)-9-formyl-5,10-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylic acid

C30H46O5 (486.3345)


Quillaic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 3 and 16, an oxo group at position 23 and a carboxy group at position 28 (the 3beta,16alpha stereoisomer). It has a role as an anti-inflammatory agent and a metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and an aldehyde. It is a conjugate acid of a quillate. It derives from a hydride of an oleanane. Quillaic acid is a natural product found in Silene firma, Gypsophila oldhamiana, and other organisms with data available. A pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 3 and 16, an oxo group at position 23 and a carboxy group at position 28 (the 3beta,16alpha stereoisomer). Quillaic acid (Quillaja sapogenin) is a natural product used in pain relief research. Quillaic acid (Quillaja sapogenin) is a natural product used in pain relief research.

   

Senecionine

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-5,6-dimethyl-, (3Z,5R,6R,14aR,14bR)-

C18H25NO5 (335.1733)


Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].

   

galbelgin

Furan, 2,4-bis(3,4-dimethoxyphenyl)tetrahydro-3,4-dimethyl-, (2alpha,3beta,4beta,5alpha)-

C22H28O5 (372.1937)


Galgravin is a member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. It has a role as a bone density conservation agent, a neuroprotective agent, a platelet aggregation inhibitor and a plant metabolite. It is an aryltetrahydrofuran, a dimethoxybenzene, a ring assembly and a lignan. Galgravin is a natural product found in Schisandra propinqua, Piper mullesua, and other organisms with data available. A member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. Veraguensin is a lignan. It has a role as a metabolite. Veraguensin is a natural product found in Ocotea foetens, Illicium floridanum, and other organisms with data available. A natural product found in Acorus gramineus. Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1] Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1]

   

3,4-Dihydro-2H-1-benzopyran-2-one

InChI=1/C9H8O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-4H,5-6H

C9H8O2 (148.0524)


3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].

   

Furanodienone

CYCLODECA(B)FURAN-4(7H)-ONE, 8,11-DIHYDRO-3,6,10-TRIMETHYL-, (5E,9E)-

C15H18O2 (230.1307)


Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isofuranodienone is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary) Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].

   

(S)-[8]-Gingerol

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[8]-Gingerol is found in ginger. (S)-[8]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[8]-Gingerol is found in herbs and spices and ginger. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

4'-Demethylepipodophyllotoxin

(5S,5aR,8aR,9R)-5-hydroxy-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one

C21H20O8 (400.1158)


4-demethylepipodophyllotoxin is an organic heterotetracyclic compound that is the 9- epimer of 4-demethylpodophyllotoxin. It has a role as an antineoplastic agent. It is a furonaphthodioxole, an organic heterotetracyclic compound and a member of phenols. An organic heterotetracyclic compound that is the 9- epimer of 4-demethylpodophyllotoxin. 4'-Demethylepipodophyllotoxin (4'-DMEP) is an intermediate compound that inhibits microtubule assembly. 4'-Demethylepipodophyllotoxin (4'-DMEP) is an intermediate compound that inhibits microtubule assembly.

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

1-Triacontanol

1-triacontanol, aluminum salt

C30H62O (438.48)


Triacontan-1-ol, also known as myricyl alcohol or triacontanyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, triacontan-1-ol is considered to be a fatty alcohol lipid molecule. Triacontan-1-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Triacontan-1-ol can be found in a number of food items such as coriander, common grape, tea, and cabbage, which makes triacontan-1-ol a potential biomarker for the consumption of these food products.

   

3-(3,4-Dihydroxyphenyl)lactic acid

3-(3,4-DIHYDROXYPHENYL)LACTIC ACID DL-.BETA.-(3,4-DIHYDROXYPHENYL)LACTIC ACID

C9H10O5 (198.0528)


3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).

   

Gossypetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7,8-tetrahydroxy-

C15H10O8 (318.0376)


Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.

   

Anagyrine

7,14-Methano-4H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocin-4-one, 7,7a,8,9,10,11,13,14-octahydro-, (7R-(7alpha,7aalpha,14alpha))-

C15H20N2O (244.1576)


Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

1,4-Dimethyl-7-ethylazulene

InChI=1/C14H16/c1-4-12-7-5-10(2)13-8-6-11(3)14(13)9-12/h5-9H,4H2,1-3H3

C14H16 (184.1252)


Chamazulene is a sesquiterpenoid. Chamazulene is a natural product found in Artemisia macrocephala, Otanthus maritimus, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Isol. as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia subspecies 1,4-Dimethyl-7-ethylazulene is found in roman camomile, german camomile, and anise. 1,4-Dimethyl-7-ethylazulene is found in anise. 1,4-Dimethyl-7-ethylazulene is isolated as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia species.

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.1201)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Ricinine

3-Pyridinecarbonitrile, 1,2-dihydro-4-methoxy-1-methyl-2-oxo-

C8H8N2O2 (164.0586)


Ricinine belongs to the family of Alkyl Aryl Ethers. These are organic compounds containing the alkyl aryl ether functional group with formula R-O-R , where R is an alkyl group and R is an aryl group. Ricinine is a pyridine alkaloid, a pyridone and a nitrile. Ricinine is a natural product found in Ricinus communis with data available.

   

Linamarin

2-Methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propanenitrile

C10H17NO6 (247.1056)


Linamarin is a beta-D-glucoside. It is functionally related to a 2-hydroxy-2-methylpropanenitrile. Linamarin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isol in 1830. Linamarin is found in many foods, some of which are gooseberry, chinese broccoli, cascade huckleberry, and leek. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Linamarin, a natural compound, possesses anticancer activity[1]. Linamarin, a natural compound, possesses anticancer activity[1].

   

Petunidin

1-Benzopyrylium, 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-, chloride

C16H13ClO7 (352.035)


Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.

   

Dimethyl trisulfide

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

C2H6S3 (125.9632)


Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Epinepetalactone

Cyclopenta(c)pyran-1(4aH)-one, 5,6,7,7a-tetrahydro-4,7-dimethyl-, (4aS-(4aalpha,7alpha,7aalpha))-

C10H14O2 (166.0994)


Cis-trans-nepetalactone is a cyclopentapyran that is (4aS,7aR)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran substituted at position 1 by an oxo group and at positions 4 and 7 by methyl groups, respectively (the 4aS,7S,7aR-diastereomer). An iridoid monoterpenoid isolated from several Nepeta plant species. It is an aphid sex pheromone and cat attractant, and exhibits antibacterial, antifungal, and analgesic properties. It has a role as a pheromone, a plant metabolite, an insect attractant, an analgesic, an insect repellent, an antibacterial agent and an antifungal agent. It is an iridoid monoterpenoid and a cyclopentapyran. Nepetalactone cis-trans-form is a natural product found in Nepeta cataria, Nepeta tuberosa, and Nepeta racemosa with data available. (5S,8S,9R)-Nepetalactone is found in herbs and spices. (5S,8S,9R)-Nepetalactone is a constituent of catnip from the catmint plant Nepeta cataria Constituent of catnip from the catmint plant Nepeta cataria. (5S,8S,9R)-Nepetalactone is found in tea and herbs and spices. 4aα,7α,7aα-Nepetalactone exhibits antibacterial activity, and inhibits Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Enterococcus faecalis.

   

Primuliten

InChI=1/C15H10O3/c16-11-7-4-8-13-15(11)12(17)9-14(18-13)10-5-2-1-3-6-10/h1-9,16H

C15H10O3 (238.063)


5-Hydroxyflavone is a member of flavones. 5-Hydroxyflavone is a natural product found in Conchocarpus heterophyllus, Primula denticulata, and Lophomyrtus bullata with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.268 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

(+)-Epicatechin

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Vomifoliol

2-Cyclohexen-1-one, 4-hydroxy-4-((1E,3R)-3-hydroxy-1-buten-1-yl)-3,5,5-trimethyl-, (4S)-rel-

C13H20O3 (224.1412)


A fenchane monoterpenoid that is 3,5,5-trimethylcyclohex-2-en-1-one substituted by a hydroxy and a (1E)-3-hydroxybut-1-en-1-yl group at position 4. (6S,9R)-vomifoliol is a (6S)-vomifoliol with a R configuration for the hydroxy group at position 9. It has a role as a phytotoxin and a metabolite. It is an enantiomer of a (6R,9S)-vomifoliol. Vomifoliol is a natural product found in Sida acuta, Macrococculus pomiferus, and other organisms with data available. A (6S)-vomifoliol with a R configuration for the hydroxy group at position 9.

   

3,4-Dimethoxybenzaldehyde

InChI=1/C9H10O3/c1-11-8-4-3-7(6-10)5-9(8)12-2/h3-6H,1-2H

C9H10O3 (166.063)


Veratraldehyde appears as needles or chunky light peach powder. Has an odor of vanilla beans. (NTP, 1992) Veratraldehyde is a dimethoxybenzene that is benzaldehyde substituted by methoxy groups at positions 3 and 4. It is found in peppermint, ginger, raspberry, and other fruits. It has a role as an antifungal agent. It is a member of benzaldehydes and a dimethoxybenzene. 3,4-Dimethoxybenzaldehyde is a natural product found in Polygala senega, Pluchea sagittalis, and other organisms with data available. 3,4-Dimethoxybenzaldehyde is found in fruits. 3,4-Dimethoxybenzaldehyde is isolated from peppermint, raspberry, ginger and Bourbon vanilla. 3,4-Dimethoxybenzaldehyde is used in vanilla flavour Isolated from peppermint, raspberry, ginger and Bourbon vanilla. It is used in vanilla flavours. 3,4-Dimethoxybenzaldehyde is found in peppermint, herbs and spices, and fruits. CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3940; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3930; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3941; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3961; ORIGINAL_PRECURSOR_SCAN_NO 3960 Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.

   

Podophyllotoxone

(5AR,8AR,9R)-9-(3,4,5-TRIMETHOXYPHENYL)-5A,6,8A,9-TETRAHYDROISOBENZOFURANO[5,6-F][1,3]BENZODIOXOLE-5,8-DIONE

C22H20O8 (412.1158)


Podophyllotoxone is a lactone and a lignan. Podophyllotoxone is a natural product found in Diphylleia grayi, Podophyllum peltatum, and other organisms with data available. Podophyllotoxone is isolated from the roots of Dysosma versipellis and has anti-cancer activities.Podophyllotoxone is able to inhibit the tubulin polymerization[1]. Podophyllotoxone is isolated from the roots of Dysosma versipellis and has anti-cancer activities.Podophyllotoxone is able to inhibit the tubulin polymerization[1].

   

Isopimaric acid

1-Phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-1,4a,7-trimethyl-, (1theta-(1alpha,4abeta,4balpha,7alpha,10aalpha))-

C20H30O2 (302.2246)


Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.1002)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

Curzerenone

4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, (5R,6R)-rel-

C15H18O2 (230.1307)


Constituent of Curcuma zedoaria (zedoary). Curzerenone is found in turmeric. 5-Epicurzerenone is from Curcuma zedoaria (zedoary Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].

   

Lycorenin

(5aR,7S,11bS,11cS)-9,10-dimethoxy-1-methyl-3,5,5a,7,11b,11c-hexahydro-2H-isochromeno[3,4-g]indol-7-ol

C18H23NO4 (317.1627)


Lycorenine is an alkaloid. Lycorenine is a natural product found in Lycoris radiata, Narcissus munozii-garmendiae, and Hymenocallis littoralis with data available.

   

Tropine

InChI=1/C8H15NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-8,10H,2-5H2,1H

C8H15NO (141.1154)


Pseudotropine is a natural product found in Atropa belladonna and Datura stramonium with data available. KEIO_ID T024 Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

trans-beta-Farnesene

TRANS-.BETA.-FARNESENE (CONSTITUENT OF CHAMOMILE) [DSC]

C15H24 (204.1878)


Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Fustin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-

C15H12O6 (288.0634)


Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].

   

9,10-Dihydroxystearic acid

Calcium (9 or 10)-hydroxy-(10 or 9)-oxidooctadecanoate

C18H36O4 (316.2613)


9,10-dihydroxystearic acid, also known as 9,10-dhsa or 9,10-dioh 18:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 9,10-dihydroxystearic acid is considered to be an octadecanoid lipid molecule. 9,10-dihydroxystearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-dihydroxystearic acid can be found in peanut, which makes 9,10-dihydroxystearic acid a potential biomarker for the consumption of this food product. 9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available.

   

bruceosideA

methyl (1R,2S,3R,6R,8S,9S,13S,14R,15R,16S,17S)-15,16-dihydroxy-9,13-dimethyl-3-(3-methylbut-2-enoyloxy)-4,10-dioxo-11-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-11-ene-17-carboxylate

C32H42O16 (682.2473)


Bruceoside A is a triterpenoid saponin. Bruceoside A is a natural product found in Brucea javanica with data available.

   

Cuminaldehyde

4-(1-Methylethyl)benzaldehyde

C10H12O (148.0888)


Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

Metolachlor

2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-methoxypropan-2-yl)acetamide

C15H22ClNO2 (283.1339)


CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9405; ORIGINAL_PRECURSOR_SCAN_NO 9403 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9416; ORIGINAL_PRECURSOR_SCAN_NO 9412 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9435; ORIGINAL_PRECURSOR_SCAN_NO 9432 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9411; ORIGINAL_PRECURSOR_SCAN_NO 9409 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9432; ORIGINAL_PRECURSOR_SCAN_NO 9430 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9555; ORIGINAL_PRECURSOR_SCAN_NO 9554 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1082 CONFIDENCE standard compound; EAWAG_UCHEM_ID 268 CONFIDENCE standard compound; INTERNAL_ID 4040 CONFIDENCE standard compound; INTERNAL_ID 8418 CONFIDENCE standard compound; INTERNAL_ID 3556 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

Tryptophol

3-(2-Hydroxyethyl)-1H-indole

C10H11NO (161.0841)


Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

Beta-Tyrosine

3-Amino-3-(4-hydroxyphenyl)propionic acid

C9H11NO3 (181.0739)


The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176

   

7a-Hydroxytestosterone

(7R,8R,9S,10R,13S,14R,17S)-7,17-dihydroxy-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

C19H28O3 (304.2038)


4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430) [HMDB] 4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430).

   

N-Acetylhistamine

N-(2-(1H-Imidazol-4-yl)ethyl)acetamide (acd/name 4.0)

C7H11N3O (153.0902)


N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.0902)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

6-Methyladenine

N-Methyl-N-(9H-purin-6-yl)amine

C6H7N5 (149.0701)


6-Methyladenine is a methylated adenine residue. The formation of internal 6-methyladenine (m6A) residues in eucaryotic messenger RNA (mRNA) is a postsynthetic modification in which S-adenosyl-L-methionine (SAM) serves as the methyl donor. 6-Methyladenine residues have also been localized to heterogeneous nuclear RNA (HnRNA), and for the most part these residues are conserved during mRNA processing. Although the biological significance of internal adenine methylation in eucaryotic mRNA remains unclear, a great deal of research has indicated that this modification may be required for mRNA transport to the cytoplasm, the selection of splice sites or other RNA processing reactions. The presence of m6A residues increases the in vitro translation efficiency of dihydrofolate reductase; an inhibition of m6A residues in dihydrofolate reductase transcripts significantly alters their rate of translation. m6A is found in many human fluids: oviductal fluid, blood plasma and urine. (PMID: 1551452, 8925412, 10481270, 16083005, 16684535, 3506820, 3728186) [HMDB] 6-Methyladenine is a methylated adenine residue. The formation of internal 6-methyladenine (m6A) residues in eucaryotic messenger RNA (mRNA) is a postsynthetic modification in which S-adenosyl-L-methionine (SAM) serves as the methyl donor. 6-Methyladenine residues have also been localized to heterogeneous nuclear RNA (HnRNA), and for the most part these residues are conserved during mRNA processing. Although the biological significance of internal adenine methylation in eucaryotic mRNA remains unclear, a great deal of research has indicated that this modification may be required for mRNA transport to the cytoplasm, the selection of splice sites or other RNA processing reactions. The presence of m6A residues increases the in vitro translation efficiency of dihydrofolate reductase; an inhibition of m6A residues in dihydrofolate reductase transcripts significantly alters their rate of translation. m6A is found in many human fluids: oviductal fluid, blood plasma and urine (PMID:1551452, 8925412, 10481270, 16083005, 16684535, 3506820, 3728186). D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D006133 - Growth Substances > D010937 - Plant Growth Regulators KEIO_ID M072

   

N8-Acetylspermidine

N-[4-[(3-Aminopropyl)amino]butyl]-acetamide

C9H21N3O (187.1685)


N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine but, instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation. (PMID: 12093478) [HMDB] N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine. Instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation (PMID: 12093478). KEIO_ID A112

   

N-Acetylputrescine

N-Acetylputrescine monohydrochloride

C6H14N2O (130.1106)


N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. N-Acetylputrescine can be found in Corynebacterium as well (PMID:25919117). N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A051

   

Prostaglandin B1

7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).

   

S-Lactoylglutathione

(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-{[(2R)-2-hydroxypropanoyl]sulfanyl}ethyl]carbamoyl}butanoic acid

C13H21N3O8S (379.1049)


S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). [HMDB]. S-Lactoylglutathione is found in many foods, some of which are blackcurrant, oat, pomegranate, and brussel sprouts. S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). Acquisition and generation of the data is financially supported in part by CREST/JST. D000970 - Antineoplastic Agents KEIO_ID L016; [MS3] KO009026 KEIO_ID L016; [MS2] KO009024 KEIO_ID L016

   

Thyrotropin releasing hormone

(2S)-N-[(2S)-1-[(2S)-2-carbamoylpyrrolidin-1-yl]-3-(3H-imidazol-4-yl)-1-oxopropan-2-yl]-5-oxopyrrolidine-2-carboxamide

C16H22N6O4 (362.1702)


Thyrotropin-releasing hormone (TRH), also called thyrotropin-releasing factor (TRF), thyroliberin or protirelin, is a tripeptide hormone that stimulates the release of thyroid-stimulating hormone and prolactin by the anterior pituitary. In humans, it also acts as a prolactin-releasing factor. It is also a neurotransmitter in the central nervous system. TRH is produced by the hypothalamus and travels across the median eminence to the pituitary via the hypophyseal portal system. In addition to the brain, TRH can also be detected in other areas of the body including the gastrointestinal system and pancreatic islets. Medical preparations of TRH are used in diagnostic tests of thyroid disorders and in acromegaly. [HMDB] This compound belongs to the family of N-acyl-alpha Amino Acids and Derivatives. These are compounds containing an alpha amino acid which bears an acyl group at his terminal nitrogen atom. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones KEIO_ID G117; [MS2] KO008963 KEIO_ID G117 Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Aminophenazone

4-(Dimethylamino)-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one

C13H17N3O (231.1372)


Aminophenazone is only found in individuals that have used or taken this drug. It is a pyrazolone with analgesic, anti-inflammatory, and antipyretic properties but has risk of agranulocytosis. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests. [PubChem]Aminophenazone is metabolized very slowly by normal newborn babies. In older infants, a higher amount of exhaled 13-CO2 is observed. N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BB - Pyrazolones C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic CONFIDENCE standard compound; EAWAG_UCHEM_ID 702 KEIO_ID A069; [MS3] KO008857 KEIO_ID A069; [MS2] KO008856 KEIO_ID A069

   

Sulfanilic acid

4-Sulfanilic acid, zinc (2:1) salt

C6H7NO3S (173.0147)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073

   

Hexaconazole

Pesticide6_Hexaconazole_C14H17Cl2N3O_2-(2,4-Dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-hexanol

C14H17Cl2N3O (313.0749)


CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9950; ORIGINAL_PRECURSOR_SCAN_NO 9948 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9938; ORIGINAL_PRECURSOR_SCAN_NO 9937 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9900; ORIGINAL_PRECURSOR_SCAN_NO 9899 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9947; ORIGINAL_PRECURSOR_SCAN_NO 9942 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911 CONFIDENCE standard compound; INTERNAL_ID 1269; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9988; ORIGINAL_PRECURSOR_SCAN_NO 9986

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

M-Coumaric acid

trans-3-(m-Hydroxyphenyl)-2-propenoic acid

C9H8O3 (164.0473)


m-Coumaric acid, also known as 3-coumarate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. m-Coumaric acid exists in all living organisms, ranging from bacteria to humans. m-Coumaric acid (CAS: 588-30-7) is a polyphenol metabolite from caffeic acid, formed by the gut microflora. Outside of the human body, m-Coumaric acid is found, on average, in the highest concentration within a few different foods, such as olives, corns, and beers. m-Coumaric acid has also been detected, but not quantified in several different foods, such as carrots, strawberries, grape wines, garden tomato, and bilberries. MCT-mediated absorption of phenolic compounds per se and their colonic metabolites would exert a significant impact on human health (PMID:16870009, 15479001, 15479001). m-Coumaric acid is transported by the monocarboxylic acid transporter (MCT). The amount of this compound in human biofluids is diet-dependant. m-Coumaric acid is detected after the consumption of whole grain. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. m-Coumaric acid is found in many foods, some of which are corn, garden tomato (variety), grape wine, and beer. Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Tridecanoic acid

(S)-2-Aminotridecanoic acid

C13H26O2 (214.1933)


Tridecanoic acid, also known as N-tridecanoate or C13:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Tridecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tridecanoic acid is a potentially toxic compound. Tridecanoic acid is a short-chain fatty acid. Tridecanoic acid is found in many foods, some of which are nutmeg, muskmelon, black elderberry, and coconut. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Sedoheptulose 7-phosphate

[(2R,3R,4R,5S)-2,3,4,5,7-pentahydroxy-6-oxoheptyl] dihydrogen phosphate

C7H15O10P (290.0403)


KEIO_ID S083

   

Deoxyribose 5-phosphate

{[(2R,3S,5R)-3,5-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C5H11O7P (214.0242)


Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. [HMDB] Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D026

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

Oxyphenbutazone

3,5-Dioxo-1-phenyl-2-(p-hydroxyphenyl)-4-N-butylpyrazolidene

C19H20N2O3 (324.1474)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

triallate

N,N-bis(propan-2-yl)[(2,3,3-trichloroprop-2-en-1-yl)sulfanyl]formamide

C10H16Cl3NOS (303.0018)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3725 CONFIDENCE standard compound; INTERNAL_ID 2627 CONFIDENCE standard compound; INTERNAL_ID 8488 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Acetosyringone

4 inverted exclamation mark -Hydroxy-3 inverted exclamation mark ,5 inverted exclamation mark -dimethoxyacetophenone

C10H12O4 (196.0736)


Acetosyringone is a member of the class of acetophenones that is 1-phenylethanone substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as a non-steroidal anti-inflammatory drug, an anti-asthmatic drug, a non-narcotic analgesic, a peripheral nervous system drug and a plant metabolite. It is a member of acetophenones, a dimethoxybenzene and a member of phenols. Acetosyringone is a natural product found in Justicia adhatoda, Polyporus umbellatus, and other organisms with data available. Acetosyringone is a metabolite found in or produced by Saccharomyces cerevisiae. A member of the class of acetophenones that is 1-phenylethanone substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Acetosyringone is a phenolic compound from wounded plant cells, enables virA gene which encodes a membrane-bound kinase to phosphorylate itself and activate the virG gene product, which stimulates the transcription of other vir genes and itself[1]. Acetosyringone enhances efficient Dunaliella transformation of Agrobacterium strains[2]. Acetosyringone is a phenolic compound from wounded plant cells, enables virA gene which encodes a membrane-bound kinase to phosphorylate itself and activate the virG gene product, which stimulates the transcription of other vir genes and itself[1]. Acetosyringone enhances efficient Dunaliella transformation of Agrobacterium strains[2].

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Phenolphthalein

3,3-bis(4-hydroxyphenyl)-1,3-dihydro-2-benzofuran-1-one

C20H14O4 (318.0892)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins

   

Carteolol

5-[3-(tert-butylamino)-2-hydroxypropoxy]-1,2,3,4-tetrahydroquinolin-2-one

C16H24N2O3 (292.1787)


Carteolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. [PubChem]The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Fluometuron

1,1-dimethyl-3-[3-(trifluoromethyl)phenyl]urea

C10H11F3N2O (232.0823)


Fluometuron is a member of the class of 3-(3,4-substituted-phenyl)-1,1-dimethylureas that is urea in which one of the nitrogens is substituted by a 3-(trifluoromethyl)phenyl group while the other is substituted by two methyl groups. It is a herbicide used for the control of broadleaf weeds and annual grasses in cotton. It has a role as an agrochemical, an environmental contaminant, a herbicide, a xenobiotic and a photosystem-II inhibitor. It is a 3-(3,4-substituted-phenyl)-1,1-dimethylurea and a member of (trifluoromethyl)benzenes. Fluometuron is a soil applied herbicide used to control annual grasses and broad-leaved weeds. In the United States it was approved for use on cotton and sugarcane crops in 1974, but since 1986 is only approved for use on cotton. Its mode of action is selective and inhibits photosynthesis. CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8414; ORIGINAL_PRECURSOR_SCAN_NO 8413 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8483; ORIGINAL_PRECURSOR_SCAN_NO 8479 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8454; ORIGINAL_PRECURSOR_SCAN_NO 8453 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8416; ORIGINAL_PRECURSOR_SCAN_NO 8415 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8468; ORIGINAL_PRECURSOR_SCAN_NO 8466 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4168; ORIGINAL_PRECURSOR_SCAN_NO 4167 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4190; ORIGINAL_PRECURSOR_SCAN_NO 4189 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4172; ORIGINAL_PRECURSOR_SCAN_NO 4171 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8464; ORIGINAL_PRECURSOR_SCAN_NO 8462 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4199; ORIGINAL_PRECURSOR_SCAN_NO 4198 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4184; ORIGINAL_PRECURSOR_SCAN_NO 4183 CONFIDENCE standard compound; INTERNAL_ID 921; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4155; ORIGINAL_PRECURSOR_SCAN_NO 4154 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3709 Fluometuron. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2164-17-2 (retrieved 2024-12-16) (CAS RN: 2164-17-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Testosterone cypionate

17-(3-cyclopentyl-1-propionyl)-17beta-hydroxyandrost-4-en-3-one

C27H40O3 (412.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Sparteine

7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S-(7.ALPHA.,7A.BETA.,14.ALPHA.,14A.BETA.))-

C15H26N2 (234.2096)


Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.

   

Ekalux

Diethoxy-quinoxalin-2-yloxy-sulphanylidene-$l^{5}-phosphane

C12H15N2O3PS (298.0541)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

P-Toluenesulfonamide

4-Toluenesulfonamide, mercury (+2) salt (2:1)

C7H9NO2S (171.0354)


CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4179; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4160; ORIGINAL_PRECURSOR_SCAN_NO 4155 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4177; ORIGINAL_PRECURSOR_SCAN_NO 4175 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4145; ORIGINAL_PRECURSOR_SCAN_NO 4142 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4171; ORIGINAL_PRECURSOR_SCAN_NO 4169 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4164; ORIGINAL_PRECURSOR_SCAN_NO 4159 C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3618 CONFIDENCE standard compound; INTERNAL_ID 4185 CONFIDENCE standard compound; INTERNAL_ID 2869 CONFIDENCE standard compound; INTERNAL_ID 8805 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

AICAR

{[(2R,3S,4R,5R)-5-(5-amino-4-carbamoyl-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H15N4O8P (338.0627)


Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyrodone

4-(2-ethylhexyl)-4-azatricyclo[5.2.1.0²,⁶]dec-8-ene-3,5-dione

C17H25NO2 (275.1885)


   

Tripelennamine

N-benzyl-N-[2-(dimethylamino)ethyl]pyridin-2-amine

C16H21N3 (255.1735)


Tripelennamine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist with low sedative action but frequent gastrointestinal irritation. It is used to treat asthma; HAY fever; urticaria; and rhinitis; and also in veterinary applications. Tripelennamine is administered by various routes, including topically. [PubChem]Tripelennamine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Tolclofos-methyl

Tolclofos-methyl

C9H11Cl2O3PS (299.9544)


CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9291; ORIGINAL_PRECURSOR_SCAN_NO 9287 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9271; ORIGINAL_PRECURSOR_SCAN_NO 9267 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9333 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9322; ORIGINAL_PRECURSOR_SCAN_NO 9318 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9241; ORIGINAL_PRECURSOR_SCAN_NO 9237

   

Benzatropine

(1R,3R,5S)-3-(diphenylmethoxy)-8-methyl-8-azabicyclo[3.2.1]octane

C21H25NO (307.1936)


Benzotropine is a centrally-acting, antimuscarinic agent used as an adjunct in the treatment of Parkinsons disease. It may also be used to treat extrapyramidal reactions, such as dystonia and Parkinsonism, caused by antipsychotics (e.g. phenothiazines). Symptoms of Parkinsons disease and extrapyramidal reactions arise from decreases in dopaminergic activity which creates an imbalance between dopaminergic and cholinergic activity. Anticholinergic therapy is thought to aid in restoring this balance leading to relief of symptoms. In addition to its anticholinergic effects, benztropine also inhibits the reuptake of dopamine at nerve terminals via the dopamine transporter. Benzotropine also produces antagonistic effects at the histamine H1 receptor. N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Fonofos

Dyphonate

C10H15OPS2 (246.0302)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3112

   

Metaxalone

5-(3,5-dimethylphenoxymethyl)-1,3-oxazolidin-2-one

C12H15NO3 (221.1052)


Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. Its exact mechanism of action is not known, but it may be due to general central nervous system depression. It is considered to be a moderately strong muscle relaxant, with relatively low incidence of side effects. Skelaxin comes in an 800 mg scored tablet. It previously came in both 400 mg and 800 mg tablets. The 400 mg tablet has been discontinued. Possible side effects include nausea, vomiting, drowsiness and CNS side effects such as dizziness, headache, and irritability. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3127

   

Penciclovir

2-amino-9-[4-hydroxy-3-(hydroxymethyl)butyl]-6,9-dihydro-3H-purin-6-one

C10H15N5O3 (253.1175)


Penciclovir is only found in individuals that have used or taken this drug. It is a guanine analogue antiviral drug used for the treatment of various herpesvirus infections. It is a nucleoside analogue which exhibits low toxicity and good selectivity. [Wikipedia]Penciclovir has in vitro activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). In cells infected with HSV-1 or HSV-2, viral thymidine kinase phosphorylates penciclovir to a monophosphate form. The monophosphate form of the drug is then converted to penciclovir triphosphate by cellular kinases. The intracellular triphosphate of penciclovir is retained in vitro inside HSV-infected cells for 10-20 hours, compared with 0.7-1 hour for acyclovir. in vitro studies show that penciclovir triphosphate selectively inhibits viral DNA polymerase by competing with deoxyguanosine triphosphate. Inhibition of DNA synthesis of virus-infected cells inhibits viral replication. In cells not infected with HSV, DNA synthesis is unaltered. Resistant mutants of HSV can occur from qualitative changes in viral thymidine kinase or DNA polymerase. The most commonly encountered acyclovir-resistant mutants that are deficient in viral thymidine kinase are also resistant to penciclovir. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3288 KEIO_ID P157; [MS2] KO009149 KEIO_ID P157 Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].

   

pramoxine

gamma-Morpholinopropyl 4-n-butoxyphenyl ether

C17H27NO3 (293.1991)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3273

   

Kaempferol 3-O-beta-robinoside 7-O-alpha-L-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O19 (740.2164)


Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside, also known as kaempherol-3-O-robinoside-7-O-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside can be found in common bean, which makes kaempferol 3-o-beta-robinoside 7-o-alpha-l-rhamnopyranoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Safrole

4-Allyl-1,2-(methylenedioxy)benzene, 8ci

C10H10O2 (162.0681)


Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour

   

Roseoflavin

8-Dimethylaminoriboflavin

C18H23N5O6 (405.1648)


A benzopteridine that is riboflavin in which the methyl group at position 8 is substituted by a dimethylamino group.

   

Cannabichromene

2-methyl-2-(4-methylpent-3-en-1-yl)-7-pentyl-2H-chromen-5-ol

C21H30O2 (314.2246)


   

Agroclavine

InChI=1\C16H18N2\c1-10-6-13-12-4-3-5-14-16(12)11(8-17-14)7-15(13)18(2)9-10\h3-6,8,13,15,17H,7,9H2,1-2H

C16H18N2 (238.147)


An ergot alkaloid that is ergoline which contains a double bond between positions 8 and 9, and which is substituted by methyl groups at positions 6 and 8.

   
   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

Adrenic acid

7,10,13,16-Docosatetraenoic acid (van) adrenic acid

C22H36O2 (332.2715)


Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]

   

Tiamulin

Tiamulin

C28H47NO4S (493.3226)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06127 CONFIDENCE standard compound; INTERNAL_ID 1055

   

Flunisolide

(1S,2S,4R,8S,9S,11S,12S,13R,19S)-19-fluoro-11-hydroxy-8-(2-hydroxyacetyl)-6,6,9,13-tetramethyl-5,7-dioxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-14,17-dien-16-one

C24H31FO6 (434.2105)


Flunisolide is only found in individuals that have used or taken this drug. It is a corticosteroid often prescribed as treatment for allergic rhinitis.Flunisolide is a glucocorticoid receptor agonist. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flunisolide binds to plasma transcortin, and it becomes active when it is not bound to transcortin. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; INTERNAL_ID 2812 D000893 - Anti-Inflammatory Agents

   

Octadecanamide

octadecanamide

C18H37NO (283.2875)


Octadecanamide is a fatty amide of stearic acid. It has a role as a metabolite. It is functionally related to an octadecanoic acid. Stearamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=124-26-5 (retrieved 2024-07-12) (CAS RN: 124-26-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Stearamide is a primary fatty acid amide. Stearamide displays cytotoxic and ichthytoxic activity[1].

   

Metaraminol

Merck sharp and dohme brand OF metaraminol bitartrate

C9H13NO2 (167.0946)


Metaraminol is only found in individuals that have used or taken this drug. It is an adrenergic agonist that acts predominantly at alpha adrenergic receptors and also stimulates the release of norepinephrine. It has been used primarily as a vasoconstrictor in the treatment of hypotension. [PubChem]Metaraminol acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic & diastolic). Its effect is thought to be associated with the inhibition of adenyl cyclase which leads to an inhibition of the production of cAMP. Another effect of Metaraminol is that it releases norepinephrine from its storage sites indirectly. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Sekisanin

8H-[1,3]Dioxolo[6,7][2]benzopyrano[3,4-c]indol-6a(3H)-ol,4,4a,5,6-tetrahydro-3-methoxy-5-methyl-, (3S,4aS,6aS,13bS)-

C18H21NO5 (331.142)


   

2,2-Bis[4-(2,3-epoxypropoxy)phenyl]propane

2-(4-{2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl}phenoxymethyl)oxirane

C21H24O4 (340.1675)


Potential food contaminant arising from its use in epoxy resin coatings for cans, concrete vats and tanks, etc. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 5810 D009676 - Noxae > D002273 - Carcinogens

   

Chalepin acetate

2-[6-(2-Methylbut-3-en-2-yl)-7-oxo-2H,3H,7H-furo[3,2-g]chromen-2-yl]propan-2-yl acetic acid

C21H24O5 (356.1624)


Chalepin acetate is found in herbs and spices. Chalepin acetate is a constituent of Ruta graveolens (rue)

   

Phenylacetylglycine

[(Phenylacetyl)amino]acetic acid

C10H11NO3 (193.0739)


Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Phenylacetylglycine or PAG is a glycine conjugate of phenylacetic acid. Phenylacetic acid may arise from exposure to styrene (plastic) or through the consumption of fruits and vegetables. Phenylacetic acid is used in some perfumes, possessing a honey-like odour in low concentrations, and is also used in penicillin G production. PAG is a putative biomarker of phospholipidosis. Urinary PAG is elevated in animals exhibiting abnormal phospholipid accumulation in many tissues and may thus be useful as a surrogate biomarker for phospholipidosis. (PMID: 15764292) The presence of phenylacetylglycine in urine has been confirmed for dogs, rats and mice. However, the presence of this compound in human urine is controversial. GC-MS studies have not found this compound (PMID: 7492634) while NMR studies claimed to have identified it (PMID: 21167146). It appears that phenylacetylglycine may sometimes be mistaken for phenylacetylglutamine via NMR. Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].

   

ORYZALIN

ORYZALIN

C12H18N4O6S (346.0947)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3099 CONFIDENCE standard compound; INTERNAL_ID 2333 CONFIDENCE standard compound; INTERNAL_ID 8465

   

Rhein

4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid

C15H8O6 (284.0321)


Rhein appears as yellow needles (from methanol) or yellow-brown powder. (NTP, 1992) Rhein is a dihydroxyanthraquinone. Rhein is an anthraquinone metabolite of rheinanthrone and senna glycoside is present in many medicinal plants including Rheum palmatum, Cassia tora, Polygonum multiflorum, and Aloe barbadensis. It is known to have hepatoprotective, nephroprotective, anti-cancer, anti-inflammatory, and several other protective effects. Rhein is a natural product found in Cassia renigera, Rheum compactum, and other organisms with data available. Present in Rheum palmatum (Chinese rhubarb). Rhein is found in dock, green vegetables, and garden rhubarb. Rhein is found in dock. Rhein is present in Rheum palmatum (Chinese rhubarb D004791 - Enzyme Inhibitors KEIO_ID R037

   

(±)-Methamidophos

Methyl phosphoramidothioate ((meo)(mes)p(O)(NH2))

C2H8NO2PS (141.0013)


(±)-Methamidophos is an agricultural systemic insecticide and acaricide. It is a metabolite of acephate DGK99-C C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

4-Chloro-3-methylphenol

1-Chloro-2-methyl-4-hydroxybenzene

C7H7ClO (142.0185)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468

   

2-Aminobenzimidazole

2-Aminobenzimidazole tartrate(2:1), (L)-(+)-isomer

C7H7N3 (133.064)


CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042

   

dCDP

[({[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H15N3O10P2 (387.0233)


dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. [HMDB]. dCDP is found in many foods, some of which are oil palm, sweet bay, garden onion (variety), and italian sweet red pepper. dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

3'-AMP

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. 3-AMP has been identified in the human placenta (PMID: 32033212). Adenylic acid. Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2-, 3-, or 5-position. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 11

   

D-Glucurono-6,3-lactone

(2R,3R,3aR,6R,6aR)-2,3,6-trihydroxy-3,3a,6,6a-tetrahydro-2H-furo[3,2-b]furan-5-one

C6H8O6 (176.0321)


D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis. D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB] D-Glucuronic acid lactone is an endogenous metabolite.

   

N-NITROSOMETHYLETHYLAMINE

N-Nitrosomethylethylamine (NMEA)

C3H8N2O (88.0637)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3449

   

N-Nitroso-pyrrolidine

tetrahydro-N-nitroso-Pyrrole

C4H8N2O (100.0637)


N-Nitroso-pyrrolidine belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. N-Nitroso-pyrrolidine has been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, pepper (c. annuum), red bell peppers, and yellow bell peppers. This could make N-nitroso-pyrrolidine a potential biomarker for the consumption of these foods. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3450 Found in fried bacon

   

2-Thiouracil

2-Thioxo-2,3-dihydro-1H-pyrimidin-4-one

C4H4N2OS (128.0044)


CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 819; ORIGINAL_PRECURSOR_SCAN_NO 817 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 814; ORIGINAL_PRECURSOR_SCAN_NO 812 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 803; ORIGINAL_PRECURSOR_SCAN_NO 801 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 815; ORIGINAL_PRECURSOR_SCAN_NO 813 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 831; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 761; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 815 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents 2-Thiouracil (Thiouracil) is an antithyroid compound. 2-Thiouracil can function as a highly specific melanoma seeker. 2-Thiouracil is a selective inhibitor of neuronal nitric oxide synthase (nNOS) with a Ki of 20 μM[1][2].

   

2-Methylimidazole

2-Methylimidazole, silver (1+) salt

C4H6N2 (82.0531)


CONFIDENCE standard compound; INTERNAL_ID 8017

   

4-Chloroaniline

4-Chloroaniline, trifluoroboron salt (1:1)

C6H6ClN (127.0189)


CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3539; ORIGINAL_PRECURSOR_SCAN_NO 3535 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3530; ORIGINAL_PRECURSOR_SCAN_NO 3527 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3546; ORIGINAL_PRECURSOR_SCAN_NO 3542 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3544; ORIGINAL_PRECURSOR_SCAN_NO 3541 CONFIDENCE standard compound; INTERNAL_ID 4138 CONFIDENCE standard compound; INTERNAL_ID 8258 CONFIDENCE standard compound; INTERNAL_ID 8115

   

Chlorpropham

(3-Chlorophenyl)carbamic acid, 1-methylethyl ester

C10H12ClNO2 (213.0557)


D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

4-Hydroxyquinoline

1,4-dihydroquinolin-4-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139

   

Nalpha-Methylhistidine

Nalpha-Methylhistidine

C7H11N3O2 (169.0851)


   

alpha-Hydroxyisobutyric acid

alpha-Hydroxy-alpha-methylpropanoic acid

C4H8O3 (104.0473)


Alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolised to t-butyl alcohol (TBA) and formaldehyde and oxidised to 2-methyl-1,2-propanediol and a-hydroxy isobuturic acid. Alpha-Hydroxyisobutyric acid has been used as an arial bactericide. [HMDB] alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolized to t-butyl alcohol (TBA) and formaldehyde and oxidized to 2-methyl-1,2-propanediol and alpha-hydroxyisobutyric acid. alpha-Hydroxyisobutyric acid has been used as an aerial bactericide. 2-Hydroxyisobutyric acid is an endogenous metabolite.

   

Palatinose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Acenaphthene

1,2-dihydroacenaphthylene

C12H10 (154.0782)


   

2,2',5,5'-Tetrachlorobiphenyl

1,4-dichloro-2-(2,5-dichlorophenyl)benzene

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

(2-Naphthalenyloxy)acetic acid

(2-Naphthyloxy)acetic acid, 8ci, bsi, iso

C12H10O3 (202.063)


Plant growth regulator. (2-Naphthalenyloxy)acetic acid is used for control of preharvest fruit drop especially on grapes, pineapples, strawberries and tomatoe CONFIDENCE standard compound; EAWAG_UCHEM_ID 3716

   

1,5-Diphenylcarbazide

1,5-Diphenylcarbohydrazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID D166; [MS2] KO009100 KEIO_ID D166

   

Buformin

(E)-2-butyl-1-(diaminomethylidene)guanidine

C6H15N5 (157.1327)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides KEIO_ID B010

   

Isonicotinamide

Pyridine-4-carboxylic acid amide

C6H6N2O (122.048)


KEIO_ID I051

   

Beta-Leucine

(±)-3-Amino-4-methylpentanoic acid, (±)-3-Amino-4-methylvaleric acid

C6H13NO2 (131.0946)


Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples:. Circulating levels of beta-leucine are elevated in the cobalamin-deficient state of pernicious anemia. Levels of leucine, on the other hand, are much lower. It is proposed that leucine 2,3-aminomutase, the cobalamin-dependent enzyme that catalyzes the interconversion of leucine and beta-leucine, is the affected enzyme in pernicious anemia and causes these results by preventing the synthesis of leucine from beta-leucine. The synthesis of leucine by human leukocytes and hair roots and by rat liver extracts has been shown to occur when either branched chain fatty acids or valine metabolites are the substances. The synthesis is dependent upon adenosylcobalamin and is inhibited by intrinsic factor (PMID:7430116). Using forms of beta-leucine and leucine that contain several deuterium atoms in place of several hydrogen atoms as internal standards, techniques have been developed which make it possible to detect and quantitate as little as 0.1 mumol/liter of beta-leucine or leucine in human serum and in incubations containing rat liver supernatant. beta-Leucine was not detectable, i.e. less than 0.1 mumol/liter, in any sera from 50 normal human subjects or in any sera from 50 cobalamin-deficient patients. Experiments in which beta-leucine, leucine, isostearic acid, or isocaproic acid were incubated with rat liver supernatant in the presence or absence of adenosylcobalamin or cobalamin-binding protein failed to demonstrate the formation of leucine or beta-leucine or their interconversion under any of the conditions studied. We conclude that beta-leucine is not present in human blood and that the existence of leucine 2,3-aminomutase in mammalian tissues remains to be established (PMID 3356699). Beta-leucine is found to be associated with cobalamin deficiency, which is an inborn error of metabolism. Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples: Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L057 3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

Xanthylic acid

{[(2R,3S,4R,5R)-5-(2,6-dioxo-2,3,6,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H13N4O9P (364.042)


Xanthylic acid, also known as xmp or (9-D-ribosylxanthine)-5-phosphate, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Xanthylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Xanthylic acid can be found in a number of food items such as common grape, black-eyed pea, java plum, and wild rice, which makes xanthylic acid a potential biomarker for the consumption of these food products. Xanthylic acid exists in all living species, ranging from bacteria to humans. In humans, xanthylic acid is involved in several metabolic pathways, some of which include azathioprine action pathway, glutamate metabolism, mercaptopurine action pathway, and purine metabolism. Xanthylic acid is also involved in several metabolic disorders, some of which include purine nucleoside phosphorylase deficiency, succinic semialdehyde dehydrogenase deficiency, xanthine dehydrogenase deficiency (xanthinuria), and molybdenum cofactor deficiency. Xanthosine monophosphate is an intermediate in purine metabolism. It is a ribonucleoside monophosphate. It is formed from IMP via the action of IMP dehydrogenase, and it forms GMP via the action of GMP synthaseand is) also, XMP can be released from XTP by enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase containing (d)XTPase activity . Xanthylic acid is an important metabolic intermediate in the Purine Metabolism, and is a product or substrate of the enzymes Inosine monophosphate dehydrogenase (EC 1.1.1.205), Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), Xanthine phosphoribosyltransferase (EC 2.4.2.22), 5-Ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), Nucleoside-triphosphate diphosphatase (EC 3.6.1.19), Phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG) Xanthylic acid can also be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism. This measurement is important for optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Peonidin-3-glucoside

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C22H23O11]+ (463.124)


Peonidin-3-glucoside has been proposed by Wu et al. [PMID: 12097661] to be a secondary metabolite of cyanidin-3-glucoside which may be methylated by liver enzymes during phase II metabolism. Peonidin 3-glucoside is isolated from grapes and many other plant spp. It is found in red wine, common wheat, and lowbush blueberry. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Gluconasturtiin

{[(e)-(3-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}propylidene)amino]oxy}sulphonic acid

C15H21NO9S2 (423.0658)


Isolated from Nasturtium officinale (water cress), Barbarea vulgaris (winter cress) and other crucifers. Gluconasturtiin is found in many foods, some of which are radish, broccoli, watercress, and brassicas. Gluconasturtiin is found in brassicas. Gluconasturtiin is isolated from Nasturtium officinale (water cress), Barbarea vulgaris (winter cress) and other crucifers. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

2-Naphthoic acid

2-Naphthoic acid, palladium (2+) salt

C11H8O2 (172.0524)


CONFIDENCE standard compound; INTERNAL_ID 48

   

1,5-Dicaffeoylquinic acid

(1R,3R,4S,5R)-1,3-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-4,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. 1,5-Dicaffeoylquinic acid is found in cardoon, globe artichoke, and fennel. 1,5-Dicaffeoylquinic acid is found in cardoon. Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. (Wikipedia C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics [Raw Data] CBA70_Cynarin_neg_30eV.txt [Raw Data] CBA70_Cynarin_neg_20eV.txt [Raw Data] CBA70_Cynarin_pos_30eV.txt [Raw Data] CBA70_Cynarin_neg_50eV.txt [Raw Data] CBA70_Cynarin_pos_20eV.txt [Raw Data] CBA70_Cynarin_neg_40eV.txt [Raw Data] CBA70_Cynarin_neg_10eV.txt [Raw Data] CBA70_Cynarin_pos_10eV.txt [Raw Data] CBA70_Cynarin_pos_40eV.txt [Raw Data] CBA70_Cynarin_pos_50eV.txt Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities.

   

Cheilanthifoline

(13S)-16-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-3(11),4(8),9,14,16,18-hexaen-17-ol

C19H19NO4 (325.1314)


Cheilanthifoline is a natural product found in Fumaria densiflora, Fumaria judaica, and other organisms with data available.

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1049)


   

N-Phenethylacetamide

N-(2-Phenylethyl)-acetamide

C10H13NO (163.0997)


   

Chalepensin

3-(alpha,alpha-dimethylallyl)psoralen

C16H14O3 (254.0943)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins

   

Geniposidic acid

7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Pinoquercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methyl-4H-chromen-4-one

C16H12O7 (316.0583)


   

Santin

2- (4-Methoxyphenyl) -5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 3, 6 and 4 and hydroxy groups at positions 5 and 7 respectively.

   

NIFURTIMOX

NIFURTIMOX

C10H13N3O5S (287.0576)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CC - Nitrofuran derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Diethylcarbamazine

N,N-Diethyl-4-methyl-1-piperazinecarboxamide

C10H21N3O (199.1685)


Diethylcarbamazine is only found in individuals that have used or taken this drug. It is an anthelmintic used primarily as the citrate in the treatment of filariasis, particularly infestations with Wucheria bancrofti or Loa loa. [PubChem]The mechanism of action of diethylcarbamazine is thought to involve sensitizing the microfilariae to phagocytosis. One study showed that diethylcarbamazines activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway. It confirmed the important role of the arachidonic acid metabolic pathway in diethylcarbamazines mechanism of action in vivo and showes that in addition to its effects on the 5-lipoxygenase pathway, it targets the cyclooxygenase pathway and COX-1. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors

   

penitrem A

NCGC00163403-03_C37H44ClNO6_(2R,3S,3aR,4aS,4bS,6aR,7S,7dR,8S,9aR,14bS,14cR,16aS)-12-Chloro-2-isopropenyl-14b,14c,17,17-tetramethyl-10-methylene-3,3a,6,6a,7,8,9,9a,10,11,14,14b,14c,15,16,16a-hexadecahydro-2H,4bH-7,8-(epoxymethano)cyclobuta[5,6]benzo[1,2-e]oxireno[4,4a]chromeno[5,6:6,7]indeno[1,2-b]indole-3,4b,7d(5H)-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

Senkirkin

Senkirkine

C19H27NO6 (365.1838)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 178 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 168 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 158 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 148 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 138 INTERNAL_ID 138; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 128 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 118 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 108 INTERNAL_ID 2283; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2283

   

14,15-DiHETrE

(±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid

C20H34O4 (338.2457)


14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).

   

Wighteone

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-3-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-

C20H18O5 (338.1154)


A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].

   

PG(16:0/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C40H77O10P (748.5254)


PG(16:0/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

Echimidine

7-Angelyl-9-echimidinylretronecine

C20H31NO7 (397.21)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2304 INTERNAL_ID 2304; CONFIDENCE Reference Standard (Level 1)

   

Ubiquinone 6

2-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C39H58O4 (590.4335)


Ubiquinone-6 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-6 has just 6 isoprene units. Normally in humans it has 10. Ubiquinone-6 is an intermediate in the synthesis of Ubiquionone 10. It is an endogenouse compound but it has also been isolated from foods containing bakers yeast. Ubiquionone 10 (CoQ10) is involved in cellular respiration. It is fat-soluble and is therefore mobile in cellular membranes; it plays a unique role in the electron transport chain (ETC). In the inner bacterial membrane, electrons from NADH and succinate pass through the ETC to the oxygen, which is then reduced to water. The transfer of electrons through ETC results in the pumping of H+ across the membrane creating a proton gradient across the membrane, which is used by ATP synthase (located on the membrane) to generate ATP. Isolated from bakers yeast (Saccharomyces cerevisiae)

   

Naphthalene-1,2-diol

1,2-Dihydroxynaphthalene monohydrate

C10H8O2 (160.0524)


This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.

   

3-deoxy-D-arabino-heptulosonate-7-phosphate

3-Deoxy-D-arabino-2-heptulosonic acid 7-(dihydrogen phosphoric acid)

C7H13O10P (288.0246)


2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate, also known as 2-dahp or 3-deoxy-arabino-heptulonic acid 7-phosphoric acid, is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate can be found in a number of food items such as prairie turnip, horned melon, bilberry, and biscuit, which makes 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate a potential biomarker for the consumption of these food products. 2-dehydro-3-deoxy-d-arabino-heptonate 7-phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2191)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

L-Aspartate-semialdehyde

L-Aspartic acid beta-semialdehyde

C4H7NO3 (117.0426)


L-Aspartate-semialdehyde (CAS: 15106-57-7) is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways. In the lysine biosynthesis I pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with pyruvate to produce L-2,3-dihydrodipicolinate and water. Dihydrodipicolinate synthase catalyzes this reaction. In the homoserine biosynthesis pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with NAD(P)H and H+ to form homoserine and NAD(P)+. L-Aspartate-semialdehyde is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways.

   
   

1-Hexadecanol

Normal primary hexadecyl alcohol

C16H34O (242.261)


Cetyl alcohol, also known as 1-hexadecanol and palmityl alcohol, is a solid organic compound and a member of the alcohol class of compounds. Its chemical formula is CH3(CH2)15OH. At room temperature, cetyl alcohol takes the form of a waxy white solid or flakes. It belongs to the group of fatty alcohols. With the demise of commercial whaling, cetyl alcohol is no longer primarily produced from whale oil, but instead either as an end-product of the petroleum industry, or produced from vegetable oils such as palm oil and coconut oil. Production of cetyl alcohol from palm oil gives rise to one of its alternative names, palmityl alcohol. Flavouring ingredient. Cetyl alcohol is found in many foods, some of which are rocket salad (sspecies), soft-necked garlic, bitter gourd, and kohlrabi. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

CYCLOHEXANOL

CYCLOHEXANOL

C6H12O (100.0888)


Cyclohexanol, also known as hexahydrophenol or hexalin, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Cyclohexanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclohexanol is a camphor, menthol, and phenol tasting compound found in garden tomato (variety), okra, and sweet basil, which makes cyclohexanol a potential biomarker for the consumption of these food products. Cyclohexanol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cyclohexanol is the organic compound with the formula (CH2)5CHOH. The molecule is related to cyclohexane ring by replacement of one hydrogen atom by a hydroxyl group. This compound exists as a deliquescent colorless solid with a camphor-like odor, which, when very pure, melts near room temperature. Billions of kilograms are produced annually, mainly as a precursor to nylon .

   

7,8-diaminopelargonate

7,8-Diaminopelargonic acid

C9H20N2O2 (188.1525)


7,8-diaminononanoate, also known as 7,8-dap or 7,8-diaminopelargonic acid, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Thus, 7,8-diaminononanoate is considered to be a fatty acid lipid molecule. 7,8-diaminononanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 7,8-diaminononanoate can be found in a number of food items such as devilfish, walnut, rapini, and swamp cabbage, which makes 7,8-diaminononanoate a potential biomarker for the consumption of these food products. 7,8-diaminononanoate exists in E.coli (prokaryote) and yeast (eukaryote).

   

2,5-pyridinediol

2,5-Dihydroxypyridine

C5H5NO2 (111.032)


A dihydroxypyridine that is pyridine substituted by hydroxy groups at positions 2 and 5.

   

dXTP

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H15N4O14P3 (507.9798)


   

Docebenone

2-(12-hydroxydodeca-5,10-diyn-1-yl)-3,5,6-trimethylcyclohexa-2,5-diene-1,4-dione

C21H26O3 (326.1882)


D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor Docebenone (AA 861) is a potent, selective and orally active 5-LO (5-lipoxygenase) inhibitor.

   

Triacetic acid

3,5-Dioxo-hexanoic acid

C6H8O4 (144.0423)


   

Lauroyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(dodecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C33H58N7O17P3S (949.2823)


Lauroyl-CoA is a substrate for Protein FAM34A. [HMDB]. Lauroyl-CoA is found in many foods, some of which are apricot, hazelnut, other soy product, and thistle. Lauroyl-CoA is a substrate for Protein FAM34A.

   

ZOPOLRESTAT

2-(4-oxo-3-{[5-(trifluoromethyl)-1,3-benzothiazol-2-yl]methyl}-3,4-dihydrophthalazin-1-yl)acetic acid

C19H12F3N3O3S (419.0551)


C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D007004 - Hypoglycemic Agents D004791 - Enzyme Inhibitors

   

Aminoacetone

1-amino-(8CI,9ci)-2-propanone

C3H7NO (73.0528)


Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA, but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces aminoacetone (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001). Aminoacetone is thought to be a substrate for SSAO (semicarbazide-sensitive amine oxidase), leading to the production of the toxic product methylglyoxal (Journal of Chromatography B. Volume 824, Issues 1-2 , 25 September 2005, Pages 116-122 ). Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA (5), but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces AA. (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001);

   

Isoflavanone

2,3-dihydro-3-Phenyl-4H-1-benzopyran-4-one

C15H12O2 (224.0837)


   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

2-Deoxy-L-arabinose

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

C5H10O4 (134.0579)


   

Propanoyl phosphate

Propanoyl phosphate

C3H7O5P (154.0031)


The phosphate ester of propanoic acid.

   

Phosphohydroxypyruvic acid

2-oxo-3-(Phosphonooxy)-propanoic acid

C3H5O7P (183.9773)


Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group. Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). [HMDB]

   

5-Aminoimidazole ribonucleotide

{[(2R,3S,4R,5R)-5-(5-amino-1H-imidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C8H14N3O7P (295.0569)


5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535). 5-Aminoimidazole ribonucleotide is a substrate for a number of proteins including: Scaffold attachment factor B2, Multifunctional protein ADE2, Pulmonary surfactant-associated protein B, Tumor necrosis factor receptor superfamily member 25, Pulmonary surfactant-associated protein C, Serine/threonine-protein kinase Chk1, Vinexin, Trifunctional purine biosynthetic protein adenosine-3, Antileukoproteinase 1 and Scaffold attachment factor B. 5-aminoimidazole ribonucleotide (AIR), is an intermediate of purine nucleotide biosynthesis. It is also the precursor to 4-amino-2-methyl-5-hydroxymethylpyrimidine (HMP), the first product of pyrimidine biosynthesis. This reaction is mediated by the enzyme HMP-P kinase (ThiD). HMP is a precursor of thiamine phosphate (TMP), and subsequently to thiamine pyrophosphate (TPP). TPP is an essential cofactor in all living systems that plays a central role in metabolism. (PMID: 15326535) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mg-protoporphyrin IX

Mg-protoporphyrin IX

C34H32MgN4O4 (584.2274)


   

adenosine 5-phosphoramidate

adenosine 5-phosphoramidate

C10H15N6O6P (346.0791)


The phosphoramadite analogue of AMP.

   

Androst-5-ene-3beta,17beta-diol

(1S,2R,5S,10R,11S,14S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Wikipedia). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune (HE2100). An intermediate in testosterone biosynthesis, found in the testis or the adrenal glands. 5-Androstenediol, derived from dehydroepiandrosterone by the reduction of the 17-keto group (17-hydroxysteroid dehydrogenases), is converted to testosterone by the oxidation of the 3-beta hydroxyl group to a 3-keto group (3-fydroxysteroid dehydrogenase). Androstenediol is a term used to refer to two different steroids with molecular weights of 290.44: 4-androstenediol (4-androstene-3beta,17beta-diol) and 5-androstenediol (5-androstene-3beta,17beta-diol). 4-Androstenediol is closer to testosterone structurally, and has androgenic effects. 5-Androstenediol is a direct metabolite of the most abundant steroid produced by the human adrenal cortex, dehydroepiandrosterone (DHEA). 5-Androstenediol is less androgenic than 4-androstenediol, and stimulates the immune system. When administered to rats in vivo, 5-androstenediol has approximately 1/70 the androgenicity of DHEA, 1/185 the androgenicity of androstenedione, and 1/475 the androgenicity of testosterone (Coffey, 1988). Because it induces production of white blood cells and platelets, 5-androstenediol is being developed as a radiation countermeasure as Neumune(HE2100). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

1,2,6-Trigalloyl-beta-D-glucopyranose

4,5-dihydroxy-2-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


Isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). 1,2,6-Trigalloyl-beta-D-glucopyranose is found in many foods, some of which are fruits, pomegranate, garden rhubarb, and red raspberry. 1,2,6-Trigalloyl-beta-D-glucopyranose is found in fruits. 1,2,6-Trigalloyl-beta-D-glucopyranose is isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry).

   

3-ureido-isobutyrate

3-((Aminocarbonyl)amino)-2-methylpropanoic acid

C5H10N2O3 (146.0691)


Ureidoisobutyric acid, also known as 3-ureidoisobutyrate or beta-uba, is a member of the class of compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidoisobutyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Ureidoisobutyric acid can be found in a number of food items such as pili nut, breakfast cereal, bitter gourd, and scarlet bean, which makes ureidoisobutyric acid a potential biomarker for the consumption of these food products. Ureidoisobutyric acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine. Ureidoisobutyric acid exists in all living organisms, ranging from bacteria to humans. In humans, ureidoisobutyric acid is involved in the pyrimidine metabolism. Ureidoisobutyric acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, ureidoisobutyric acid is found to be associated with beta-ureidopropionase deficiency.

   

7-Dehydrodesmosterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H42O (382.3235)


7-dehydrodesmosterol, also known as cholesta-5,7,24-trien-3beta-ol or 24-dehydroprovitamin d3, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrodesmosterol is considered to be a sterol lipid molecule. 7-dehydrodesmosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 7-dehydrodesmosterol can be found in a number of food items such as nectarine, orange bell pepper, cinnamon, and carrot, which makes 7-dehydrodesmosterol a potential biomarker for the consumption of these food products. In humans, 7-dehydrodesmosterol is involved in several metabolic pathways, some of which include atorvastatin action pathway, simvastatin action pathway, pamidronate action pathway, and steroid biosynthesis. 7-dehydrodesmosterol is also involved in several metabolic disorders, some of which include mevalonic aciduria, wolman disease, chondrodysplasia punctata II, X linked dominant (CDPX2), and hyper-igd syndrome. 7-Dehydrodesmosterol is a sterol intermediate in the biosynthesis of steroids. 7-Dehydrodesmosterol is a substrate of the enzyme 24-dehydrocholesterol reductase (EC:1.3.1.72), an important enzyme in the biosynthesis of Cholesterol. Cholesterol is synthesized from either Lathosterol, 7-Dehydrocholesterol, Desmosterol or Cholestenol by the enzyme 3beta-hydroxysterol delta7 reductase (EC 1.3.1.21, Dhcr7). The Smith-Lemli-Opitz syndrome (SLOS, OMIM 270400) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3beta-hydroxysterol delta7 reductase lead to a failure of cholesterol synthesis, with an accumulation of precursor sterols, such as 7-Dehydrodesmosterol. SLOS results in craniofacial, limb as well as major organ defects, including the brain. In individuals with this syndrome, mental retardation, as well as other CNS dysfunction, is almost 100\\% prevalent. (PMID: 15862627, 17197219).

   

(S)-3-Hydroxyhexadecanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-3-({2-[(2-{[(3S)-3-hydroxyhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C37H66N7O18P3S (1021.3398)


(S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716) [HMDB] (S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716).

   

7a-Hydroxy-cholestene-3-one

(1S,2R,9R,10S,11S,14R,15R)-9-hydroxy-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C27H44O2 (400.3341)


7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217) [HMDB] 7a-Hydroxy-cholestene-3-one is a metabolite in bile acid synthesis. It is derived from 7a-hydroxy-cholesterol and can be further metabolized to 7a,12a,-dihydroxy-cholest-4-en-3-one. Analysis of 7a-Hydroxycholestene-3-one (HCO) in serum may serve as a novel, simple, and sensitive method for the detection of bile acid malabsorption in patients with chronic diarrhea of unknown origin (PMID 9952217).

   

Indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


Indoxyl, also known as 1H-indol-3-ol, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. Indoxyl is isomeric with oxindol and is obtained as an oily liquid. Indoxyl exists in all living organisms, ranging from bacteria to humans. Indoxyl is obtained from indican, which is a glycoside. Obermayers reagent is a dilute solution FeCl3 in hydrochloric acid. The hydrolysis of indican yields β-D-glucose and indoxyl. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent such as atmospheric oxygen. In chemistry, indoxyl is a nitrogenous substance with the chemical formula: C8H7NO. Indoxyl can be found in urine and is titrated with Obermayers reagent. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, eg. atmospheric oxygen.

   

Uroporphyrinogen I

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. [HMDB]. Uroporphyrinogen I is found in many foods, some of which are great horned owl, nutmeg, lime, and cascade huckleberry. Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction.

   

Uroporphyrin I

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(21),2,4,6,8(23),9,11,13,15,17,19-undecaen-4-yl]propanoic acid

C40H38N4O16 (830.2283)


Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. Uroporphyrins have four acetic acid and four propionic acid side chains attached to their pyrrole rings. The enzyme uroporphyrinogen I synthase catalyzes the formation of hydroxymethylbilane from four molecules of porphobilinogen. Uroporphyrinogen III cosynthase then catalyzes the conversion of hydroxymethylbilane into uroporphyrinogen III. Otherwise, hydroxymethylbilane cyclizes nonenzymatically to form uroporphyrinogen I. Uroporphyrinogen I and III yield their respective uroporphyrins via autooxidation or their respective coproporphyrinogens via decarboxylation. Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both uroporphyrin I and uroporphyrin III are excreted in porphyria cutanea tarda. Uroporphyrin I and III are the most common isomers. Under certain conditions, uroporphyrin I can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, porphyria cutanea tarda, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Uroporphyrin is the porphyrin produced by oxidation of the methylene bridges in uroporphyrinogen. They have four acetic acid and four propionic acid side chains attached to the pyrrole rings. Uroporphyrinogen I and III are formed from polypyrryl methane in the presence of uroporphyrinogen III cosynthetase and uroporphyrin I synthetase, respectively. They can yield uroporphyrins by autooxidation or coproporphyrinogens by decarboxylation.Excessive amounts of uroporphyrin I are excreted in congenital erythropoietic porphyria, and both types I and III are excreted in porphyria cutanea tarda.Uroporphyrin I and III are the most common isomers. [HMDB]

   

N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole

(2S,5R)-2-(5,6-dimethyl-1H-1,3-benzodiazol-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C14H18N2O4 (278.1267)


N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements. [HMDB] N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements.

   

(3Z)-phytochromobilin

(3Z)-phytochromobilin

C33H36N4O6 (584.2635)


   

Delta-12-Prostaglandin J2

(5Z)-7-[(1S,5E)-5-[(3S)-3-hydroxyoctylidene]-4-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

Guanosine 3'-monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C10H14N5O8P (363.058)


Guanosine 3-monophosphate, also known as 3-GMP or 3-guanylic acid, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Guanosine 3-monophosphate has been identified in the human placenta (PMID: 32033212).

   

Imidazolone

4,5-dihydro-1H-imidazol-5-one

C3H4N2O (84.0324)


Imidazolone is one of the major advanced glycation end (AGE) products, that accumulate in neurons in different areas of human brain tissue localized especially in human pyramidal CA4 neurons in the hippocampus in an age-dependent manner.(PubMed ID 12406185 ) [HMDB] Imidazolone is one of the major advanced glycation end (AGE) products that accumulate in neurons in different areas of human brain tissue localized especially in human pyramidal CA4 neurons in the hippocampus in an age-dependent manner (PMID: 12406185).

   

Metanilic acid

3-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


   

Prostaglandin D1

7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoic acid

C20H34O5 (354.2406)


Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin D1 is a prostanoid that elicits contractile and relaxant on isolated human pial arteries with small potency. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 6091419, 16986207)

   

Ceftizoxime

(6R,7R)-7-[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C13H13N5O5S2 (383.0358)


A semisynthetic cephalosporin antibiotic which can be administered intravenously or by suppository. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative organisms. It has few side effects and is reported to be safe and effective in aged patients and in patients with hematologic disorders. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Hydroxybenzoquinone

2-Hydroxy-1,4-benzoquinone

C6H4O3 (124.016)


   

Megestrol

(8R,9S,10R,13S,14S,17R)-17-acetyl-17-hydroxy-6,10,13-trimethyl-2,8,9,11,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthren-3-one

C22H30O3 (342.2195)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000970 - Antineoplastic Agents

   

Nitroferricyanide

Nitroprusside; Pentacyanidonitrosylferrate(2-)

C5FeN6O-2 (215.9483)


D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Glutarimide

Glutarimide calcium salt

C5H7NO2 (113.0477)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Pipobroman

3-bromo-1-[4-(3-bromopropanoyl)piperazin-1-yl]propan-1-one

C10H16Br2N2O2 (353.9578)


Pipobroman is only found in individuals that have used or taken this drug. It is an antineoplastic agent that acts by alkylation. [PubChem]The mechanism of action is uncertain but pipobroman is thought to alkylate DNA leading to disruption of DNA synthesis and eventual cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

Metiamide

3-methyl-1-(2-{[(5-methyl-1H-imidazol-4-yl)methyl]sulfanyl}ethyl)thiourea

C9H16N4S2 (244.0816)


Metiamide belongs to the class of organic compounds known as imidazoles. These are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

Aldophosphamide

Aldophosphamide

C7H15Cl2N2O3P (276.0197)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

24,25-Dihydroxyvitamin D

(6R)-6-[(1R,3aS,4E,7aR)-4-{2-[(1Z,5R)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-octahydro-1H-inden-1-yl]-2-methylheptane-2,3-diol

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formation. Also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746). D018977 - Micronutrients > D014815 - Vitamins > D004100 - Dihydroxycholecalciferols D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D000077264 - Calcium-Regulating Hormones and Agents D050071 - Bone Density Conservation Agents

   

Metipranolol

Acetic acid 4-(2-hydroxy-3-isopropylamino-propoxy)-2,3,6-trimethyl-phenyl ester

C17H27NO4 (309.194)


Metipranolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist effective for both beta-1 and beta-2 receptors. It is used as an antiarrhythmic, antihypertensive, and antiglaucoma agent. [PubChem]Although it is known that metipranolol binds the beta1 and beta2 adrenergic receptors, the mechanism of metipranolols action is not known. It has no significant intrinsic sympathomimetic activity, and has only weak local anesthetic (membrane-stabilizing) and myocardial depressant activity. It appears that the ophthalmic beta-adrenergic blocking agents reduce aqueous humor production, as demonstrated by tonography and fluorophotometry. A slight increase in aqueous humor outflow may be an additional mechanism. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].

   

Sulconazole

1-(2-{[(4-chlorophenyl)methyl]sulfanyl}-2-(2,4-dichlorophenyl)ethyl)-1H-imidazole

C18H15Cl3N2S (396.0021)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Methylprednisolone acetate

6α-METHYLPREDNISOLONE ACETATE

C24H32O6 (416.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

(9S,10S)-9,10-dihydroxyoctadecanoate

threo-9,10-Dihydroxystearic acid

C18H36O4 (316.2613)


   

Ustiloxin A

2-Amino-5-({4-[(carboxymethyl)-C-hydroxycarbonimidoyl]-3-ethyl-6,9,11,15-tetrahydroxy-3-methyl-10-(methylamino)-7-(propan-2-yl)-2-oxa-5,8-diazabicyclo[10.3.1]hexadeca-1(16),5,8,12,14-pentaen-13-yl}sulphinyl)-4-hydroxypentanoic acid

C28H43N5O12S (673.2629)


Ustiloxin A is found in cereals and cereal products. Ustiloxin A is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Isolated from the false smut balls caused by Ustilaginoidea virens on rice. Ustiloxin A is found in cereals and cereal products.

   
   
   

Artecanin

Isochrysartemin B

C15H18O5 (278.1154)


   

PSF-A

Methyl (7Z)-9-(acetyloxy)-10-(2,3-dimethyloxirane-2-carbonyloxy)-4-methyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylic acid

C23H28O10 (464.1682)


PSF-A is found in root vegetables. PSF-A is a constituent of Polymnia sonchifolia (yacon) Constituent of Polymnia sonchifolia (yacon). PSF-A is found in root vegetables.

   

Heliamine

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

C11H15NO2 (193.1103)


An isoquinoline that is 1,2,3,4-tetrahydroisoquinoline substituted by methoxy groups at positions 6 and 7.

   

Multistatin

Multistatin

C20H22O6 (358.1416)


   

beta-Selinene

(+)-beta-selinene;(4aR,7R,8aS)-7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene;[4aR-(4aalpha,7alpha,8abeta)]-decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene

C15H24 (204.1878)


Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)

   

Xanthochymol

3-(3,4-dihydroxybenzoyl)-4-hydroxy-8,8-dimethyl-5-[5-methyl-2-(prop-1-en-2-yl)hex-5-en-1-yl]-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione

C38H50O6 (602.3607)


Xanthochymol is found in fruits. Xanthochymol is a constituent of the famine food Garcinia xanthochymus

   

1,3,5,8-Tetrahydroxyxanthone

1,3,5,8-Tetrahydroxy-9H-xanthen-9-one

C13H8O6 (260.0321)


   

Belladine

Belladine

C19H25NO3 (315.1834)


A phenethylamine alkaloid that is N-methyl-4-methoxyphenylethylamine carrying an additional N-(3,4-dimethoxybenzyl) substituent.

   

Gartanin

1,3,5,8-Tetrahydroxy-2,4-bis(3-methyl-2-butenyl)-9H-xanthen-9-one, 9CI

C23H24O6 (396.1573)


Gartanin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. It has a role as an antineoplastic agent and a plant metabolite. It is a member of xanthones and a polyphenol. Gartanin is a natural product found in Morus insignis, Pentadesma butyracea, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. Constituent of the fruits of Garcinia mangostana (mangosteen). Gartanin is found in fruits and purple mangosteen. Gartanin is found in fruits. Gartanin is a constituent of the fruits of Garcinia mangostana (mangosteen) Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2]. Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2].

   

Gentisin

1,7-dihydroxy-3-methoxy-9H-xanthen-9-one

C14H10O5 (258.0528)


Gentisin is found in alcoholic beverages. Gentisin is a pigment from root of Gentiana lutea (yellow gentian

   

Hypolaetin

2-(3,4-dihydroxyphenyl)-5,7,8-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.

   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

Sciadopitysin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-

C33H24O10 (580.1369)


Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available. A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2]. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].

   

[6]-Gingerdione

1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione

C17H24O4 (292.1675)


[6]-Gingerdione is found in ginger. [6]-Gingerdione is a constituent of Zingiber officinale (ginger). Constituent of Zingiber officinale (ginger). [6]-Gingerdione is found in herbs and spices and ginger.

   

Diphyllin

9-(1,3-Benzodioxol-5-yl)-4-hydroxy-6,7-dimethoxynaphtho[2,3-c]furan-1(3H)-one; NSC 309691

C21H16O7 (380.0896)


Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].

   

ASPERGILLIC ACID

ASPERGILLIC ACID

C12H20N2O2 (224.1525)


   

Graveoline

2-(2H-1,3-benzodioxol-5-yl)-1-methyl-1,4-dihydroquinolin-4-one

C17H13NO3 (279.0895)


Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

Kokusaginine

Furo(2,3-b)quinoline, 4,6,7-trimethoxy-

C14H13NO4 (259.0845)


   

Caulophylline

(-)-N-methylcytisine

C12H16N2O (204.1263)


N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2].

   

3,4-Methylenedioxybenzaldehyde

3,4-Dihydroxybenzaldehyde methylene ketal

C8H6O3 (150.0317)


3,4-Methylenedioxybenzaldehyde is found in highbush blueberry. 3,4-Methylenedioxybenzaldehyde is a flavouring agent used in cherry and vanilla flavour Flavouring agent used in cherry and vanilla flavours. 3,4-Methylenedioxybenzaldehyde is found in pepper (spice), highbush blueberry, and vanilla.

   
   

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

C10H15NO (165.1154)


   

2,6-Dinitrotoluene

1-Methyl-2,6-dinitrobenzene

C7H6N2O4 (182.0328)


   

m-Fluoroaniline

m-Fluoroaniline

C6H6FN (111.0484)


   

Estramustine

(1S,10R,11S,14S,15S)-14-hydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2,4,6-trien-5-yl N,N-bis(2-chloroethyl)carbamate

C23H31Cl2NO3 (439.1681)


Estramustine is only found in individuals that have used or taken this drug. It is a nitrogen mustard linked to estradiol, usually as phosphate; used to treat prostatic neoplasms; also has radiation protective properties. [PubChem]Estramustine is a derivative of estradiol with a nitrogen mustard moiety. This gives it alkylating properties. In vivo, the nitrogen mustard component is active and can alklyate DNA and other cellular components (such as tubulin components) of rapidly dividing cells. This causes DNA strandbreaks or misscoding events. This leads to apoptosis and cell death. Also, due to the drugs estrogen component, it can bind more selectively to active estrogen receptors. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D009676 - Noxae > D000477 - Alkylating Agents Same as: D04066

   

1,2-dihydrovomilenine

2-β-(R)-1,2-Dihydrovomilenine

C21H24N2O3 (352.1787)


An indole alkaloid obtained by selective hydrogenation of the 1,2-position of vomilenine.

   

Gibberellin A14

Gibberellin A14

C20H28O5 (348.1937)


   

Levopimaric acid

.DELTA.6,8(14)-Abietadienoic acid

C20H30O2 (302.2246)


Origin: Plant; SubCategory_DNP: Diterpenoids, Pimarine diterpenoids

   

2-Aminoacridone

2-amino-9,10-dihydroacridin-9-one

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

stigmatellin

Stigmatellin A

C30H42O7 (514.293)


A member of the class of chromones that is isolated from Stigmatella aurantiaca Sg a15. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   
   
   

Tazarotene

ethyl 6-[2-(4,4-dimethyl-3,4-dihydro-2H-1-benzothiopyran-6-yl)ethynyl]pyridine-3-carboxylate

C21H21NO2S (351.1293)


Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Quercetin 7-glucoside

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 7-glucoside, also known as quercimeritrin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 7-glucoside can be found in a number of food items such as roman camomile, okra, dandelion, and cottonseed, which makes quercetin 7-glucoside a potential biomarker for the consumption of these food products. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Eryped

4-O-[(2S,3R,4S,6R)-4-(dimethylamino)-2-[[(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-14-ethyl-7,12,13-trihydroxy-4-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,7,9,11,13-hexamethyl-2,10-dioxo-oxacyclotetradec-6-yl]oxy]-6-methyloxan-3-yl] 1-O-ethyl butanedioate

C43H75NO16 (861.5086)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.

   

aspoxicillin

aspoxicillin

C21H27N5O7S (493.1631)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D07469

   

Tetrahydrodeoxycorticosterone

2-hydroxy-1-[(1S,2S,5R,7S,10R,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]ethan-1-one

C21H34O3 (334.2508)


The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349) [HMDB] The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids 3α,21-Dihydroxy-5α-pregnan-20-one (THDOC), an endogenous neurosteroid, is a positive modulator of GABAA receptors. 3α,21-Dihydroxy-5α-pregnan-20-one potentiates neuronal response to low concentrations of GABA at α4β1δ GABAA receptors in vitro.

   

DCEBIO

5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H8Cl2N2O (230.0014)


   

Promegestone

Promegestone

C22H30O2 (326.2246)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives Same as: D08431

   

Nafoxidine

1-{2-[4-(6-methoxy-2-phenyl-3,4-dihydronaphthalen-1-yl)phenoxy]ethyl}pyrrolidine

C29H31NO2 (425.2355)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Dicofol

4-Chloro-alpha-(4-chlorophenyl)-alpha-(trichloromethyl)benzenemethanol

C14H9Cl5O (367.9096)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2-Chlorobiphenyl

1-Chloro-2-phenylbenzene

C12H9Cl (188.0393)


   

Ethyl-4,4-dichlorobenzilate

Ethyl 2-hydroxy-2,2-bis(4-chlorophenyl)acetate

C16H14Cl2O3 (324.032)


   

Dibromochloromethane

Dibromo-chloro-methane

CHBr2Cl (205.8133)


Dibromochloromethane belongs to the family of Organochlorides. These are organic compounds containing a chlorine atom

   

1,1,1,2-Tetrachloroethane

1,1,1,2-TETRACHLOROETHANE

C2H2Cl4 (165.8911)


   

Adopron

Estra-1,3,5(10)-trien-17-one

C18H22O (254.1671)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Cis-stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


Cis-stilbene oxide is part of the Bile secretion pathway. It is a substrate for: Epoxide hydrolase 1.

   

Nonadecanoic acid

nonadecanoic acid

C19H38O2 (298.2872)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

all-trans-5,6-Epoxyretinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-{2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}nona-2,4,6,8-tetraenoic acid

C20H28O3 (316.2038)


all-trans-5,6-Epoxyretinoic acid, also known as 5,6-epoxy-atRA, is classified as a member of the retinoids. Retinoids are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof. all-trans-5,6-Epoxyretinoic acid is considered to be a practically insoluble (in water) and a weak acidic compound. all-trans-5,6-Epoxyretinoic acid is an isoprenoid lipid molecule. all-trans-5,6-Epoxyretinoic acid can be found primarily in human kidney and liver tissues; and in blood and urine. Within a cell, all-trans-5,6-epoxyretinoic acid is primarily located in the cytoplasm, in the extracellular space, or near the membrane. A human metabolite taken as a putative food compound of mammalian origin [HMDB] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   
   

Dinophysistoxin 1

3-{8-[(3E)-4-[6-(3-{3,11-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl}-1-hydroxybutyl)-8-hydroxy-7-methylidene-hexahydro-3H-spiro[oxolane-2,2-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-hydroxy-2-methylpropanoic acid

C45H70O13 (818.4816)


Dinophysistoxin 1 is found in mollusks. Dinophysistoxin 1 is a metabolite of Dinophysis fortii. Dinophysistoxin 1 is found in scallops and mussels. Component toxin in diarrhetic shellfish poisonin D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

carthamidin

4,5,7,8-TETRAHYDROXYFLAVANONE

C15H12O6 (288.0634)


   

Ignavine

[(1R,3R,4R,5R,9S,11S,13R,16S,17R,18R)-4,13,18-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecan-3-yl] benzoate

C27H31NO5 (449.2202)


   

2-Methylhistamine

2-(2-methyl-1H-imidazol-5-yl)ethan-1-amine

C6H11N3 (125.0953)


   

4-Methylhistamine

2-(5-methyl-1H-imidazol-4-yl)ethan-1-amine

C6H11N3 (125.0953)


   

Cytarabine

4-amino-1-[(2R,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.

   

(+)-Nicotine

(±)-3-(1-Methyl-2-pyrrolidinyl)pyridine

C10H14N2 (162.1157)


Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

DL-Homocysteine

2-Amino-4-mercaptobutyric acid

C4H9NO2S (135.0354)


DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.

   

Graveoline

Graveoline

C17H13NO3 (279.0895)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

3-amino-3-(4-hydroxyphenyl)propanoic acid

(R)-3-Amino-3-(4-hydroxy-phenyl)-propionic acid

C9H11NO3 (181.0739)


A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.

   

metaraminol

metaraminol

C9H13NO2 (167.0946)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M167

   

Isodiprene

(1S,6R)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1252)


   

Thermopsine

(-)-Thermopsine

C15H20N2O (244.1576)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.155 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

ST 19:2;O3

(3S,7R,8R,9S,10R,13S,14S)-3,7-dihydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

C19H28O3 (304.2038)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 17beta-hydroxy steroid that is testosterone bearing an additional hydroxy substituent at the 6beta-position. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

1-Triacontanol

1-Triacontanol 100 microg/mL in Methyl-tert-butyl ether

C30H62O (438.48)


Triacontan-1-ol is an ultra-long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogens is replaced by a hydroxy group. It is a fatty alcohol 30:0 and an ultra-long-chain primary fatty alcohol. 1-Triacontanol is a natural product found in Haplophyllum bucharicum, Euphorbia dracunculoides, and other organisms with data available. See also: Saw Palmetto (part of); Iris versicolor root (part of).

   

Robinin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chromen-4-one

C33H40O19 (740.2164)


Robinin is a glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone and a dihydroxyflavone. It is functionally related to a kaempferol. Robinin is a natural product found in Aconitum anthora, Astragalus aegobromus, and other organisms with data available. A glycosyloxyflavone that is kaempherol substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-galactopyranosyl residue at position 3 and a 6-deoxy-alpha-L-mannopyranosyl residue at position 7 via a glycosidic linkage. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1]. Robinin is present in?flavonoid?fraction of?Vigna unguiculata?leaf. Robinin inhibits upregulated expression of TLR2 and TLR4. Robinin ameliorates oxidized low density lipoprotein?(Ox-LDL) induced inflammatory insult through TLR4/NF-κB pathway[1].

   

Sedoheptulose 7-phosphate

sedoheptulose-7-phosphate

C7H15O10P (290.0403)


   

5-Hydroxyflavone

5-Hydroxyflavone

C15H10O3 (238.063)


5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

Ureidoisobutyric acid

(2S)-3-[(C-Hydroxycarbonimidoyl)amino]-2-methylpropanoate

C5H10N2O3 (146.0691)


Ureidoisobutyric acid, also known as 3-ureidoisobutyrate or beta-UBA, belongs to the class of organic compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidoisobutyric acid is an extremely weak basic (essentially neutral) compound (based on its pKa). Ureidoisobutyric acid exists in all living organisms, ranging from bacteria to humans. Within humans, ureidoisobutyric acid participates in a number of enzymatic reactions. In particular, ureidoisobutyric acid can be biosynthesized from dihydrothymine through its interaction with the enzyme dihydropyrimidinase. Outside of the human body, ureidoisobutyric acid has been detected, but not quantified in, several different foods, such as bread, squashberries, black elderberries, black crowberries, and climbing beans. This could make ureidoisobutyric acid a potential biomarker for the consumption of these foods. Ureidoisobutyric acid is increased in the urine of patients with beta-ureidopropionase (EC 3.5.1.6) deficiency (PMID: 12271438), a genetic disorder. Ureidoisobutyric acid can be used to predict a patients individual phenotypes of enzyme deficiencies in pyrimidine metabolism when associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil (PMID: 12798197).

   

Aldophosphamide

3-({amino[bis(2-chloroethyl)amino]phosphoryl}oxy)propanal

C7H15Cl2N2O3P (276.0197)


Detoxification of cyclophosphamide is effected, in part, by hepatic class 1 aldehyde dehydrogenase (ALDH-1)-catalyzed oxidation of aldophosphamide, a pivotal aldehyde intermediate, to the nontoxic metabolite, carboxyphosphamide. Detoxification of aldophosphamide may also be effected by enzymes, viz. Thus, NAD-linked oxidation and NADPH-linked reduction of aldophosphamide catalyzed by relevant erythrocyte enzymes were quantified. (PMID: 9394035) Class 1 aldehyde dehydrogenases (ALDH-1) function as drug resistance gene products by catalyzing the irreversible conversion of aldophosphamide, an active metabolite of cyclophosphamide, to an inert compound. (PMID: 9322086) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

beta-Farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.1878)


A mixture with 1,3,6,10-Farnesatetraene JXF60-O has been isolated from many plant sources and is used as a food flavourant (woodgreen flavour). beta-Farnesene is found in sweet basil. (E)-beta-Farnesene is found in anise. (E)-beta-Farnesene is a constituent of hop, camomile and other essential oils (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Quercimeritrin

Quercetin 7-O-beta-D-glucoside

C21H20O12 (464.0955)


Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

penitrem A

21-chloro-15,16,33,33-tetramethyl-24-methylidene-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraene-5,9,28-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

Androst-5-ene-3beta,17beta-diol

2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-diol

C19H30O2 (290.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents

   

2-Amino-3-hydroxy-3-phenylpropanoic acid

(2Rs,3Sr)-2-amino-3-Hydroxy-3-phenylpropanoic acid

C9H11NO3 (181.0739)


   

beta,beta-Dimethylacrylshikonin

1-(5,8-Dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl 3-methylbut-2-enoic acid

C21H22O6 (370.1416)


(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

3-Amino-4-methylpentanoic acid

3-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

Ajmalicine

Methyl 16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,18-pentaene-19-carboxylic acid

C21H24N2O3 (352.1787)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Enhydrin

Methyl 9-(acetyloxy)-10-(2,3-dimethyloxirane-2-carbonyloxy)-4-methyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylic acid

C23H28O10 (464.1682)


   

Histidinol

2-amino-3-(3H-imidazol-4-yl)propan-1-ol

C6H11N3O (141.0902)


   

Stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


   

Tropine

8-Methyl-8-azabicyclo[3.2.1]octan-3-ol

C8H15NO (141.1154)


Pseudotropine, also known as tropine hydrochloride, (endo)-isomer or tropine, (exo)-isomer, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Pseudotropine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Pseudotropine can be found in a number of food items such as winter savory, japanese chestnut, blackcurrant, and black walnut, which makes pseudotropine a potential biomarker for the consumption of these food products. Pseudotropine (3β-tropanol, ψ-tropine, 3-pseudotropanol or PTO) is a derivative of tropane and an isomer of tropine . Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

Curzerenone C

(5R,6R)-6-ethenyl-3,6-dimethyl-5-(prop-1-en-2-yl)-4,5,6,7-tetrahydro-1-benzofuran-4-one

C15H18O2 (230.1307)


Curzerenone c is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Curzerenone c is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Curzerenone c can be found in turmeric, which makes curzerenone c a potential biomarker for the consumption of this food product. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].

   

Curdione

6-Cyclodecene-1,4-dione, 6,10-dimethyl-3-(1-methylethyl)-, (3S-(3R*,6E,10R*))- (9CI)

C15H24O2 (236.1776)


Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].

   

Gentisin

1,7-Dihydroxy-3-methoxyxanthone; 1,7-Dihydroxy-3-methoxyxanthen-9-one

C14H10O5 (258.0528)


Gentisin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. It has a role as a plant metabolite. It is a member of xanthones, a polyphenol and an aromatic ether. Gentisin is a natural product found in Pterocarpus santalinus, Gentiana orbicularis, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. Gentisin is found in alcoholic beverages. Gentisin is a pigment from root of Gentiana lutea (yellow gentian

   

Bellidin

1,3,5,8-Tetrahydroxyxanthone; Desmethylbellidifolin

C13H8O6 (260.0321)


Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.

   

Geniposidic_acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Quercimeritrin

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Isoflavanone

Isoflavanone

C15H12O2 (224.0837)


Isoflavone in which the double bond between positions 2 and 3 has been reduced to a single bond.

   

Furanodienon

CYCLODECA(B)FURAN-4(7H)-ONE, 8,11-DIHYDRO-3,6,10-TRIMETHYL-, (5E,9E)-

C15H18O2 (230.1307)


Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].

   

Enhydrin

CHEBI:604463

C23H28O10 (464.1682)


   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Pinoquercetin

3,3,4,5,7-Pentahydroxy-6-methylflavone

C16H12O7 (316.0583)


A pentahydroxyflavone that is quercetin substituted by a methyl group at position 6.

   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.1878)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   

Renardin

2,9-DIOXA-14-AZABICYCLO(9.5.1)HEPTADEC-11-ENE-3,8,17-TRIONE, 4-ETHYLIDENE-7-HYDROXY-6,7,14-TRIMETHYL-, (1R,4Z,6R,7R)-

C19H27NO6 (365.1838)


Senkirkine is a macrolide. Senkirkine is a natural product found in Tussilago farfara, Senecio gallicus, and other organisms with data available. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of).

   

Vestitol

(3S)-3,4-Dihydro-3-(2-hydroxy-4-methoxyphenyl)-2H-1-benzopyran-7-ol

C16H16O4 (272.1049)


The S-enantiomer of vestitol. Vestitol is a member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent, a plant metabolite and a phytoalexin. It is an aromatic ether, a member of hydroxyisoflavans and a methoxyisoflavan. Vestitol is a natural product found in Lotus japonicus, Medicago rugosa, and other organisms with data available. A member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity.

   

2-AMINOBENZIMIDAZOLE

1-METHYLBENZOTRIAZOLE

C7H7N3 (133.064)


A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003

   

Fenpropimorph

Pesticide7_Fenpropimorph_C20H33NO_Morpholine, 4-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethyl-, (2R,6S)-

C20H33NO (303.2562)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146

   

alpha-Hydroxyisobutyric acid

alpha-Hydroxyisobutyric acid

C4H8O3 (104.0473)


A 2-hydroxy monocarboxylic acid that is isobutyric acid bearing a hydroxy substituent at position 2. It is a metabolite of methyl tertiary-butyl ether. Acquisition and generation of the data is financially supported in part by CREST/JST. 2-Hydroxyisobutyric acid is an endogenous metabolite.

   

Dihydrocapsaicin

Dihydrocapsaicin

C18H29NO3 (307.2147)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.271 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.269 Acquisition and generation of the data is financially supported in part by CREST/JST. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

tripelennamine

tripelennamine

C16H21N3 (255.1735)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Geniposidic acid

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.

   

Nodakenin

(R)-2-(2-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one

C20H24O9 (408.142)


Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].

   

Ricinine

Ricinine

C8H8N2O2 (164.0586)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.369

   

Rhein

2-Anthracenecarboxylic acid, 9,10-dihydro-4,5-dihydroxy-9,10-dioxo-

C15H8O6 (284.0321)


D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.164 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.166

   

Histidinol

Histidinol

C6H11N3O (141.0902)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040

   

3-Adenylic acid

Adenosine 3-monophosphate From Yeast

C10H14N5O7P (347.0631)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056

   

Ergocornine

Ergocorninine

C31H39N5O5 (561.2951)


Ergotaman bearing a hydroxy group at the 12 position, isopropyl groups at the 2 and 5alpha positions, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.024 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.017

   

Erythromycin Ethylsuccinate

butanedioic acid O4-[4-(dimethylamino)-2-[[14-ethyl-7,12,13-trihydroxy-4-[(5-hydroxy-4-methoxy-4,6-dimethyl-2-oxanyl)oxy]-3,5,7,9,11,13-hexamethyl-2,10-dioxo-oxacyclotetradec-6-yl]oxy]-6-methyl-3-oxanyl] ester O1-ethyl ester

C43H75NO16 (861.5086)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.195 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.192 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.193 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.

   

Tazarotene

Tazarotene (Avage)

C21H21NO2S (351.1293)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Aica ribonucleotide

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5-monophosphate

C9H15N4O8P (338.0627)


A 1-(phosphoribosyl)imidazolecarboxamide that is acadesine in which the hydroxy group at the 5 position has been converted to its monophosphate derivative. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-acetylputrescine

N-acetylputrescine

C6H14N2O (130.1106)


An N-monoacetylalkane-alpha,omega-diamine that is the N-monoacetyl derivative of putrescine.

   

L-Histidinol

L-Histidinol

C6H11N3O (141.0902)


An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).

   

dethiobiotin

dl-Dithiobiotin

C10H18N2O3 (214.1317)


A hexanoic acid having a 5-methyl-2-oxoimidazolidin-4-yl group at the 6-position. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].

   

Tryptophol

5-21-03-00061 (Beilstein Handbook Reference)

C10H11NO (161.0841)


An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

Neohesperidin

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Tridecylic acid

TRIDECANOIC ACID

C13H26O2 (214.1933)


A C13 straight-chain saturated fatty acid. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Herbacetin

4H-1-Benzopyran-4-one, 3,5,7,8-tetrahydroxy-2-(4-hydroxyphenyl)-

C15H10O7 (302.0427)


Herbacetin is a pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. It has a role as an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a plant metabolite, an antilipemic drug, an anti-inflammatory agent and an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is functionally related to a kaempferol. Herbacetin is a natural product found in Sedum anglicum, Sedum apoleipon, and other organisms with data available. See also: Larrea tridentata whole (part of). A pentahydroxyflavone that is kaempferol substituted by a hydroxy group at position 8. It is a natural flavonoid from flaxseed which exerts antioxidant, anti-inflammatory and anticancer activities. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2]. Herbacetin is a natural flavonoid from flaxseed, exerts various pharmacological activities, including antioxidant, anti-inflammatory and anticancer effects[1]. Herbacetin is an Ornithine decarboxylase (ODC) allosteric inhibitor, directly binds to Asp44, Asp243, and Glu384 on ODC. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis[2].

   

methamidophos

Pesticide1_Methamidophos_C2H8NO2PS_O,S-Dimethyl phosphoramidothioate

C2H8NO2PS (141.0013)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Phenylacetylglycine

Phenylacetylglycine

C10H11NO3 (193.0739)


A N-acylglycine that is glycine substituted on nitrogen with a phenylacetyl group. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].

   

indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

N8-Acetylspermidine

N8-Acetylspermidine

C9H21N3O (187.1685)


   

penciclovir

penciclovir

C10H15N5O3 (253.1175)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

N-Acetylhistamine

N-[2-(1H-imidazol-5-yl)ethyl]acetamide

C7H11N3O (153.0902)


A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

isomaltulose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


   

Rutamarin

2-[6-(2-methylbut-3-en-2-yl)-7-oxo-2,3-dihydrofuro[3,2-g]chromen-2-yl]propan-2-yl acetate

C21H24O5 (356.1624)


   

Linamarin

2-methyl-2-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]propanenitrile

C10H17NO6 (247.1056)


Linamarin, a natural compound, possesses anticancer activity[1]. Linamarin, a natural compound, possesses anticancer activity[1].

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

ergotamine

Ergotaminum

C33H35N5O5 (581.2638)


A peptide ergot alkaloid that is dihydroergotamine in which a double bond replaces the single bond between positions 9 and 10. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia

   

CARTEOLOL

CARTEOLOL

C16H24N2O3 (292.1787)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

3-Hydroxycinnamic acid

3-Hydroxycinnamic acid

C9H8O3 (164.0473)


Annotation level-1 (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Protirelin

holo-transferrin

C16H22N6O4 (362.1702)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C76367 - Thyrotropin-Releasing Hormone Analogue V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CJ - Tests for thyreoidea function A tripeptide composed of L-pyroglutamyl, L-histidyl and L-prolinamide residues joined in sequence. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Protirelin is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions.

   

N-(2-Phenylethyl)acetamide

N-(2-Phenylethyl)acetamide

C10H13NO (163.0997)


   

phenolphthalein

phenolphthalein

C20H14O4 (318.0892)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3720; ORIGINAL_PRECURSOR_SCAN_NO 3717 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3689; ORIGINAL_PRECURSOR_SCAN_NO 3687 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3685; ORIGINAL_PRECURSOR_SCAN_NO 3683 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3891; ORIGINAL_PRECURSOR_SCAN_NO 3888 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3687; ORIGINAL_PRECURSOR_SCAN_NO 3684 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3922; ORIGINAL_PRECURSOR_SCAN_NO 3920 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8029; ORIGINAL_PRECURSOR_SCAN_NO 8028 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8044; ORIGINAL_PRECURSOR_SCAN_NO 8041 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8074; ORIGINAL_PRECURSOR_SCAN_NO 8072 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8093; ORIGINAL_PRECURSOR_SCAN_NO 8092 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8106; ORIGINAL_PRECURSOR_SCAN_NO 8104 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8082; ORIGINAL_PRECURSOR_SCAN_NO 8078

   

4-Chloro-3-methylphenol

4-Chloro-3-methylphenol

C7H7ClO (142.0185)


CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534

   

BENZOYLFORMIC ACID

Phenylglyoxylic acid

C8H6O3 (150.0317)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

7α-Hydroxy-4-cholesten-3-one

7-alpha-Hydroxy-4-cholesten-3-one

C27H44O2 (400.3341)


   

Veraguensin

(2S,3S,4S,5R)-2,5-bis(3,4-dimethoxyphenyl)-3,4-dimethyl-tetrahydrofuran

C22H28O5 (372.1937)


Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1] Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1]

   

safrole

safrole

C10H10O2 (162.0681)


A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.

   

7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene

(5xi,7xi,10xi)-eudesma-4(14),11-diene 4a-methyl-1-methylidene-7-(prop-1-en-2-yl)decahydronaphthalene

C15H24 (204.1878)


   

Pseudotropine

Pseudotropine

C8H15NO (141.1154)


Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

C13:0

TRIDECANOIC ACID

C13H26O2 (214.1933)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

7,8-Diaminononanoic acid

7,8-DAP;7,8-DAPA;7,8-Diaminononanoate;7,8-diaminopelargonic acid;DAP;DAPA

C9H20N2O2 (188.1525)


An amino fatty acid carrying amino substituents at positions 7 and 8. Some of its isomers are naturally occurring intermediates of biotin synthesis, and targets of antimicrobial and herbicide development.

   

FA 20:5;O2

4-((1R,5S)-5-((R,1E,5Z)-3-hydroxyundeca-1,5-dien-1-yl)-4-oxocyclopent-2-en-1-yl)butanoic acid

C20H30O4 (334.2144)


An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

Prostaglandin D1

9S,15S-dihydroxy-11-oxo-13E-prostaenoic acid

C20H34O5 (354.2406)


   

Prostaglandin B1

9-oxo-15S-hydroxy-8(12),13E-prostadienoic acid

C20H32O4 (336.23)


A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).

   

FOH 16:0

3S,7S-dimethyl-tetradecan-2S-ol

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

AA-861

2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone;2-(12-Hydroxy-5,10-dodecadiynyl)-3,5,6-trimethyl-p-benzoquinone;2-(12-hydroxydodeca-5,10-diynyl)-3,5,6-trimethyl-1,4-benzoquinone;6-(12-hydroxydodeca-5,10-diyn-1-yl)-2,3,5-trimethyl-1,4-benzoquinone;AA-861;AA861

C21H26O3 (326.1882)


D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor Docebenone (AA 861) is a potent, selective and orally active 5-LO (5-lipoxygenase) inhibitor.

   

CoA 16:0;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-{[3-({2-[(2-hydroxyhexadecanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C37H66N7O18P3S (1021.3398)


   

CoA 12:0

Dodecanoyl-CoA

C33H58N7O17P3S (949.2823)


   

ST 27:4;O3

(25R)-5alpha,8alpha-epidioxy-24R,26-cyclo-cholest-6,22E-dien-3beta-ol

C27H40O3 (412.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

beta-selinene

(+)-beta-selinene;(4aR,7R,8aS)-7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene;[4aR-(4aalpha,7alpha,8abeta)]-decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-naphthalene

C15H24 (204.1878)


An optically active form of beta-selinene having (+)-(4aR,7R,8aS)-configuration.

   

Coenzyme Q6

ubiquinone-6

C39H58O4 (590.4335)


   

carthamidin

4,5,7,8-TETRAHYDROXYFLAVANONE

C15H12O6 (288.0634)


A tetrahydroxyflavanone that is (S)-naringenin substituted by an additional hydroxy group at position 6.

   

4-CHLOROANILINE

1-Amino-4-chlorobenzene

C6H6ClN (127.0189)


   

1-[4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione

2,4(1H,3H)-Pyrimidinedione,1-(2-deoxy-b-D-threo-pentofuranosyl)-5-methyl-

C10H14N2O5 (242.0903)


1-(2-Deoxy-β-D-threo-pentofuranosyl)thymine is a thymidine analog. Analogs of this series have insertional activity towards replicated DNA. They can be used to label cells and track DNA synthesis[1].

   

pcb 1

2-Monochlorobiphenyl

C12H9Cl (188.0393)


   

D-Sedoheptulose 7-phosphate

{[(2R,3S,4R,5S,6S)-3,4,5,6-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}phosphonic acid

C7H15O10P (290.0403)


D-Sedoheptulose 7-phosphate (CAS: 2646-35-7) is an intermediate of the pentose phosphate pathway (PPP) that has two functions: (1) the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and (2) the formation of ribose residues for nucleotide and nucleic acid biosynthesis (PMID: 16055050). It is formed by transketolase and acted upon (degraded) by transaldolase. Sedoheptulose 7-phosphate can be increased in the blood of patients affected with a transaldolase deficiency, a genetic disorder (PMID: 12881455). Sedoheptulose is a ketoheptose, a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature (Wikipedia). D-Sedoheptulose 7-phosphate is an intermediate of the Pentose phosphate pathway (PPP) that has two functions: the generation of NADPH for reductive syntheses and oxidative stress responses within cells, and the formation of ribose residues for nucleotide and nucleic acid biosynthesis. (PMID 16055050)

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

C40H77O10P (748.5254)


   

Stilbene oxide

Oxirane, 2,3-diphenyl-,(2R,3S)-rel-

C14H12O (196.0888)


   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

chlorpropham

N-3-Chlorophenylisopropylcarbamate

C10H12ClNO2 (213.0557)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

2-Naphthoic acid

2-Naphthalenecarboxylic acid

C11H8O2 (172.0524)


A naphthoic acid that is naphthalene carrying a carboxy group at position 2.

   

estramustine

estra-1,3,5(10)-triene-3,17beta-diol, 3-[bis(2-chloroethyl)carbamate]

C23H31Cl2NO3 (439.1681)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D009676 - Noxae > D000477 - Alkylating Agents Same as: D04066

   

tetrachloroethane

1,1,1,2-TETRACHLOROETHANE

C2H2Cl4 (165.8911)


   

(+)-3-Carene

(+)-alpha-carene

C10H16 (136.1252)


Widespread plant product, found especies in turpentine oils (from Pinus subspecies) and oil of galbanum. (+)-alpha-Carene is found in sweet marjoram and herbs and spices.

   

17066-67-0

(3R,4aS,8aR)-8a-methyl-5-methylidene-3-prop-1-en-2-yl-1,2,3,4,4a,6,7,8-octahydronaphthalene

C15H24 (204.1878)


   

Safrol

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2,4-6H,1,3,7H

C10H10O2 (162.0681)


   

CHEBI:7

InChI=1\C10H16\c1-7-4-5-8-9(6-7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1252)


   

Farnesene

1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-

C15H24 (204.1878)


Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Tridekan

InChI=1\C13H28\c1-3-5-7-9-11-13-12-10-8-6-4-2\h3-13H2,1-2H

C13H28 (184.2191)


Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Uniphat A60

Palmitic acid, methyl ester (8CI)

C17H34O2 (270.2559)


Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Curzerenone

4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, (5R,6R)-rel-

C15H18O2 (230.1307)


Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].

   

cuminal

InChI=1\C10H12O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-8H,1-2H

C10H12O (148.0888)


Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

AI3-20480

Myricyl alcohol (VAN)

C30H62O (438.48)


   

LS-631

InChI=1\C8H6O3\c9-4-6-1-2-7-8(3-6)11-5-10-7\h1-4H,5H

C8H6O3 (150.0317)


   

477-49-6

(5aR,8aR,9R)-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydroisobenzofurano[5,6-f][1,3]benzodioxole-5,8-quinone

C22H20O8 (412.1158)


Podophyllotoxone is isolated from the roots of Dysosma versipellis and has anti-cancer activities.Podophyllotoxone is able to inhibit the tubulin polymerization[1]. Podophyllotoxone is isolated from the roots of Dysosma versipellis and has anti-cancer activities.Podophyllotoxone is able to inhibit the tubulin polymerization[1].

   

I6783_SIGMA

(1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid

C20H30O2 (302.2246)


D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

23513-08-8

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

Gentisin

5-18-04-00497 (Beilstein Handbook Reference)

C14H10O5 (258.0528)


   

Isopimpinellin

7H-Furo(3,2-g)(1)benzopyran-7-one, 4,9-dimethoxy- (8CI)(9CI)

C13H10O5 (246.0528)


Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Amide C18

Stearic acid amide

C18H37NO (283.2875)


Stearamide is a primary fatty acid amide. Stearamide displays cytotoxic and ichthytoxic activity[1].

   

Veratral

InChI=1\C9H10O3\c1-11-8-4-3-7(6-10)5-9(8)12-2\h3-6H,1-2H

C9H10O3 (166.063)


Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.

   

furanodienone

(5Z,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one

C15H18O2 (230.1307)


   

AI3-32389

InChI=1\C9H8O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-6,10H,(H,11,12)\b5-4

C9H8O3 (164.0473)


(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Tridecanoic acid

tridecanoic acid

C13H26O2 (214.1933)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Ethol

InChI=1\C16H34O\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17\h17H,2-16H2,1H

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

83-32-9

InChI=1\C12H10\c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11\h1-6H,7-8H

C12H10 (154.0782)


   

Nonox A

InChI=1\C16H13N\c1-2-9-14(10-3-1)17-16-12-6-8-13-7-4-5-11-15(13)16\h1-12,17

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

AI3-36442

(C16-C22) Alkylcarboxylic acid

C19H38O2 (298.2872)


Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Gingerdione

3,5-Decanedione, 1-(4-hydroxy-3-methoxyphenyl)-

C17H24O4 (292.1675)


   

AI3-26172

InChI=1\C2H6S3\c1-3-5-4-2\h1-2H

C2H6S3 (125.9632)


Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Bio1_001201

7-[2-[(E,3S)-3-hydroxyoct-1-enyl]-5-keto-1-cyclopentenyl]enanthic acid

C20H32O4 (336.23)


   

Ricinin

3-Pyridinecarbonitrile, 1,2-dihydro-4-methoxy-1-methyl-2-oxo- (9CI)

C8H8N2O2 (164.0586)


   

EU-0100782

Nonanamide, N-((4-hydroxy-3-methoxyphenyl)methyl)-8-methyl- (9CI)

C18H29NO3 (307.2147)


Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Chamazulen

4-05-00-01736 (Beilstein Handbook Reference)

C14H16 (184.1252)


   

melilotin

InChI=1\C9H8O2\c10-9-6-5-7-3-1-2-4-8(7)11-9\h1-4H,5-6H

C9H8O2 (148.0524)


Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].

   

Kokusaginin

4-27-00-02295 (Beilstein Handbook Reference)

C14H13NO4 (259.0845)


   

24 25-Dihydroxy VD3

24,25-Dihydroxyvitamin D3

C27H44O3 (416.329)


24,25-Dihydroxyvitamin D (24R,25(OH)2D3) circulates in blood at concentrations about 1000 times higher than 1alpha,25(OH)2D3. 24-Hydroxylase is present in the proximal convoluted tubule cells of the kidney and in virtual all target cells of 1alpha,25(OH)2D3. Interestingly, 1alpha,25(OH)2D3 is a very strong inducer of 24-hydroxylase activity and 24R,25(OH)2D3 formationand is) also parathyroid hormone (PTH) regulates 24-hydroxylase activity but in a tissue specific manner, i.e. inhibitory in the kidney while a synergistic effect together with 1alpha,25(OH)2D3 is observed in osteoblasts. Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1alpha,25(OH)2D3 and 25-(OH)D3. However, through the past decades data have accumulated that 24R,25(OH)2D3 is not merely a degradation product but has effects on its own. Classic studies have demonstrated the significance of 24R,25(OH)2D3 for normal chicken egg hatchability and calcium and phosphorus homeostasis. More recently it became apparent that 24R,25(OH)2D3 also has distinct effects on cartilage in particular the resting zone cells. 24R,25(OH)2D3 stimulates osteocalcin synthesis in human osteoblasts. 24R,25(OH)2D3 plays a role in bone metabolism but that it acts in concert with 1alpha,25(OH)2D3 to obtain an optimal effect. (PMID: 11179746 ) [HMDB]

   

Stigmatellin A

Stigmatellin A

C30H42O7 (514.293)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

3-Deoxyestrone

Estra-1,3,5(10)-trien-17-one

C18H22O (254.1671)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

8-GINGEROL

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

DHSA

Calcium (9 or 10)-hydroxy-(10 or 9)-oxidooctadecanoate

C18H36O4 (316.2613)


9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available. A hydroxy-fatty acid formally derived from stearic acid by hydroxy substitution at positions 9 and 10.

   

thiouracil

2-thiouracil

C4H4N2OS (128.0044)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents A nucleobase analogue that is uracil in which the oxo group at C-2 is replaced by a thioxo group. C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents 2-Thiouracil (Thiouracil) is an antithyroid compound. 2-Thiouracil can function as a highly specific melanoma seeker. 2-Thiouracil is a selective inhibitor of neuronal nitric oxide synthase (nNOS) with a Ki of 20 μM[1][2].

   

Cetyl alcohol

Hexadecan-1-ol

C16H34O (242.261)


A long-chain primary fatty alcohol that is hexadecane substituted by a hydroxy group at position 1. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

pipobroman

pipobroman

C10H16Br2N2O2 (353.9578)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

G-29701

oxyphenbutazone

C19H20N2O3 (324.1474)


A metabolite of phenylbutazone obtained by hydroxylation at position 4 of one of the phenyl rings. Commonly used (as its hydrate) to treat pain, swelling and stiffness associated with arthritis and gout, it was withdrawn from the market 1984 following association with blood dyscrasis and Stevens-Johnson syndrome. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AA - Butylpyrazolidines S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Oxyphenbutazone is a Phenylbutazone (HY-B0230) metabolite, with anti-inflammatory effect. Oxyphenbutazone is an orally active non-selective COX inhibitor. Oxyphenbutazone selectively kills non-replicating Mycobaterium tuberculosis[1][2].

   

SULFANILIC ACID

4-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.

   

METAXALONE

METAXALONE

C12H15NO3 (221.1052)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

triallate

triallate

C10H16Cl3NOS (303.0018)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

N-Nitrosopyrrolidine

N-Nitrosopyrrolidine

C4H8N2O (100.0637)


   

Cogentin

Benztropine

C21H25NO (307.1936)


N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

MGK-264

N-(2-Ethylhexyl)-5-norbornene-2,3-dicarboximide

C17H25NO2 (275.1885)


   

ACENAPHTHENE

ACENAPHTHENE

C12H10 (154.0782)


   

FLUNISOLIDE

FLUNISOLIDE

C24H31FO6 (434.2105)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

chlorphenesin

chlorphenesin

C9H11ClO3 (202.0397)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Metipranolol

Metipranolol

C17H27NO4 (309.194)


3-(Propan-2-ylamino)propane-1,2-diol in which the hydrogen of the primary hydroxy group is substituted by a 4-acetoxy-2,3,5-trimethylphenoxy group. A non-cardioselective beta-blocker, it is used to lower intra-ocular pressure in the management of open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].

   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

diethylcarbamazine

diethylcarbamazine

C10H21N3O (199.1685)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors

   

ceftizoxime

ceftizoxime

C13H13N5O5S2 (383.0358)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins A parenteral third-generation cephalosporin, bearing a 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino group at the 7beta-position. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   
   

METIAMIDE

METIAMIDE

C9H16N4S2 (244.0816)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

2-Naphthoxyacetic acid

2-Naphthoxyacetic acid

C12H10O3 (202.063)


   

Isonicotinamide

Isonicotinamide

C6H6N2O (122.048)


   

Glutarimide

Glutarimide

C5H7NO2 (113.0477)


D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

CANNABICHROMENE

CANNABICHROMENE

C21H30O2 (314.2246)


   

benzocatechol

Naphthalene-1,2-diol

C10H8O2 (160.0524)


   

6-Methyladenine

N6-Methyladenine

C6H7N5 (149.0701)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A methyladenine that is 9H-purin-6-amine substituted by a methyl group at the amino nitrogen. D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

4-quinolone

4-Hydroxyquinoline

C9H7NO (145.0528)


   

sulconazole

sulconazole

C18H15Cl3N2S (396.0021)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Buformin

Buformin

C6H15N5 (157.1327)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

Lauroyl-CoA

Lauroyl-CoA

C33H58N7O17P3S (949.2823)


A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of lauric (dodecanoic) acid.

   

7-Dehydrodesmosterol

7-Dehydrodesmosterol

C27H42O (382.3235)


A 3beta-sterol having the structure of desmosterol with an extra double bond at C-7--C-8.

   

Deoxycytidine diphosphate

Deoxycytidine diphosphate

C9H15N3O10P2 (387.0233)


A 2-deoxycytidine phosphate that is the 2- deoxy derivative of cytidine 5-diphosphate (CDP).

   

5-xanthylic acid

Xanthosine-5-monophosphate

C10H13N4O9P (364.042)


A purine ribonucleoside 5-monophosphate having xanthine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-Ureidoisobutyric acid

beta-Ureidoisobutyric acid

C5H10N2O3 (146.0691)


   

delta-12-Prostaglandin J2

delta-12-Prostaglandin J2

C20H30O4 (334.2144)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents

   

4-imidazolone

4-imidazolone

C3H4N2O (84.0324)


   

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline

C11H15NO2 (193.1103)


   

aminoacetone

aminoacetone

C3H7NO (73.0528)


A propanone consisting of acetone having an amino group at the 1-position.

   
   

5-Aminoimidazole ribonucleotide

5-Aminoimidazole ribonucleotide

C8H14N3O7P (295.0569)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2S)-2-Amino-4-oxobutanoic acid

(2S)-2-Amino-4-oxobutanoic acid

C4H7NO3 (117.0426)


   

1,2,6-Trigalloylglucose

1,2,6-Trigalloylglucose

C27H24O18 (636.0963)


   

(S)-3-hydroxypalmitoyl-CoA

(S)-3-hydroxypalmitoyl-CoA

C37H66N7O18P3S (1021.3398)


A long-chain (3S)-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (S)-3-hydroxypalmitic acid.

   

(R)-S-Lactoylglutathione

(R)-S-Lactoylglutathione

C13H21N3O8S (379.1049)


The S-[(R)-lactoyl] derivative of glutathione. It is an intermediate in the pyruvate metabolism. D000970 - Antineoplastic Agents

   

4-Methylhistamine

4-Methylhistamine

C6H11N3 (125.0953)


An aralkylamino compound that is histamine bearing a methyl substituent at the 5 position on the ring.

   

Uroporphyrinogen I

Uroporphyrinogen I

C40H44N4O16 (836.2752)


   

Phosphohydroxypyruvic acid

Phosphohydroxypyruvic acid

C3H5O7P (183.9773)


   

GUANOSINE-3-monophosphATE

GUANOSINE-3-monophosphATE

C10H14N5O8P (363.058)


   

7alpha-Hydroxytestosterone

7alpha-Hydroxytestosterone

C19H28O3 (304.2038)


   

2-Methylhistamine

2-Methylhistamine

C6H11N3 (125.0953)


An aralkylamino compound that is histamine bearing a methyl substituent at the 2 position on the ring.

   
   

N-Methyl-L-histidine

N-Methyl-L-histidine

C7H11N3O2 (169.0851)


   

Sedoheptulose 7-phosphate

Sedoheptulose 7-phosphate

C7H15O10P (290.0403)


A ketoheptose phosphate consisting of sedoheptulose having a phosphate group at the 7-position. It is an intermediate metabolite in the pentose phosphate pathway.

   

3-deoxy-D-arabino-heptulosonate-7-phosphate

7-phospho-2-dehydro-3-deoxy-D-arabino-heptonic acid

C7H13O10P (288.0246)


A ketoaldonic acid phosphate consisting of 2-dehydro-3-deoxy-D-arabino-heptonic acid having a phospho group at the 7-position.

   

Triacetate

Triacetate

C6H8O4 (144.0423)


   

2-Hydroxy-1,4-benzoquinone

2-Hydroxy-1,4-benzoquinone

C6H4O3 (124.016)


The simplest member of the class of 2-hydroxy-1,4-benzoquinones, that is 1,4-benzoquinone in which a single hydrogen is replaced by a hydroxy group.

   
   

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

(2S,4R,5S)-tetrahydropyran-2,4,5-triol

C5H10O4 (134.0579)


   

(3Z)-phytochromobilin

(3Z)-phytochromobilin

C33H36N4O6 (584.2635)


   

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H15N4O14P3 (507.9798)


   

BISPHENOL A DIGLYCIDYL ETHER

2,2-Bis(4-glycidyloxyphenyl)propane

C21H24O4 (340.1675)


D009676 - Noxae > D002273 - Carcinogens

   

metolachlor

metolachlor [ANSI, WSSA]

C15H22ClNO2 (283.1339)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

PIPERONAL

PIPERONAL

C8H6O3 (150.0317)


An arenecarbaldehyde that is 1,3-benzodioxole substituted by a formyl substituent at position 5. It has been isolated from Piper nigrum.

   

2,6-DNT

2,6-DINITROTOLUENE

C7H6N2O4 (182.0328)


   

22:4n6

(7Z,10Z,13Z,16Z)-Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)


The all-cis-isomer of a C22 polyunsaturated fatty acid having four double bonds in the 7-, 10-, 13- and 16-positions. One of the most abundant fatty acids in the early human brain.

   

N-PHENYL-1-NAPHTHYLAMINE

N-Phenyl-1-naphthalenamine

C16H13N (219.1048)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D002273 - Carcinogens

   

Octadecanamide

Stearic acid amide

C18H37NO (283.2875)


A fatty amide of stearic acid. Stearamide is a primary fatty acid amide. Stearamide displays cytotoxic and ichthytoxic activity[1].

   

4-Toluenesulfonamide

4-Toluenesulfonamide

C7H9NO2S (171.0354)


C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Kelthane

Kelthane

C14H9Cl5O (367.9096)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

DIBROMOCHLOROMETHANE

DIBROMOCHLOROMETHANE

CHBr2Cl (205.8133)


   

QUINALPHOS

QUINALPHOS

C12H15N2O3PS (298.0541)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

(±)-nicotine

3-(1-methylpyrrolidin-2-yl)pyridine

C10H14N2 (162.1157)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2.

   

PCB 52

2,2,5,5-TETRACHLOROBIPHENYL

C12H6Cl4 (289.9224)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Diphenylcarbazide

1,5-Diphenylcarbazide

C13H14N4O (242.1168)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

5,6-Epoxyretinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-{2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}nona-2,4,6,8-tetraenoic acid

C20H28O3 (316.2038)


A retinoid obtained by epoxidation across the 5,6-double bond of retinoic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Urs-12-en-28-oic acid, 3-hydroxy-, (3beta)-

Urs-12-en-28-oic acid, 3-hydroxy-, (3beta)-

C30H48O3 (456.3603)


   

Nafoxidine

Nafoxidine

C29H31NO2 (425.2355)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Peonidin-3-glucoside

Peonidin 3-O-glucoside

C22H23O11+ (463.124)


   

Deoxyribose 5-phosphate

Deoxyribose 5-phosphate

C5H11O7P (214.0242)


   

2-aminoacridone

2-aminoacridone

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

Phenethyl glucosinolate

Phenethyl glucosinolate

C15H21NO9S2 (423.0658)


   

adrenic acid

Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)