Gluconasturtiin (BioDeep_00000003557)

 

Secondary id: BioDeep_00000342196

natural product human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


{[(e)-(3-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}propylidene)amino]oxy}sulphonic acid

化学式: C15H21NO9S2 (423.0658)
中文名称: 芥子油苷乙基苯酚钾盐
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 38.26%

分子结构信息

SMILES: C1=CC=C(C=C1)CCC(=NOS(=O)(=O)O)SC2C(C(C(C(O2)CO)O)O)O
InChI: InChI=1S/C15H21NO9S2/c17-8-10-12(18)13(19)14(20)15(24-10)26-11(16-25-27(21,22)23)7-6-9-4-2-1-3-5-9/h1-5,10,12-15,17-20H,6-8H2,(H,21,22,23)/b16-11+



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

31 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANXA5, CASP3, CASP7, CYP1A1, CYP2E1, HPGDS, MAPK8, MSMP, NQO1, PLA2G12A, PTGS1, PTGS2, TYR
Peripheral membrane protein 6 ANXA5, CYP1A1, CYP1B1, CYP2E1, PTGS1, PTGS2
Endoplasmic reticulum membrane 7 CYP1A1, CYP1A2, CYP1B1, CYP2E1, HMOX1, PTGS1, PTGS2
Nucleus 6 CASP3, CASP7, GABPA, HMOX1, MAPK8, NQO1
cytosol 8 ANXA5, CASP3, CASP7, GLS, HMOX1, HPGDS, MAPK8, NQO1
dendrite 1 NQO1
nucleoplasm 6 CASP3, CASP7, GABPA, HMOX1, HPGDS, MAPK8
Cell membrane 1 TNF
Cytoplasmic side 1 HMOX1
Synapse 3 GLS, MAPK8, NQO1
cell surface 1 TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 1 PTGS1
mitochondrial inner membrane 2 CYP1A1, CYP2E1
neuronal cell body 3 CASP3, NQO1, TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 CASP7, GLS, NQO1
Lysosome 1 TYR
plasma membrane 1 TNF
Membrane 4 ANXA5, CYP1B1, HMOX1, NQO1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 2 ANXA5, PTGS1
endoplasmic reticulum 2 HMOX1, PTGS2
extracellular space 5 CASP7, HMOX1, IL10, MSMP, TNF
perinuclear region of cytoplasm 2 HMOX1, TYR
mitochondrion 3 CYP1A1, CYP1B1, GLS
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 7 CYP1A1, CYP1A2, CYP1B1, CYP2E1, HPGDS, PTGS1, TYR
Microsome membrane 6 CYP1A1, CYP1A2, CYP1B1, CYP2E1, PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 3 IL10, MSMP, PLA2G12A
extracellular region 4 ANXA5, IL10, PLA2G12A, TNF
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 1 GLS
photoreceptor outer segment 1 PTGS1
external side of plasma membrane 2 ANXA5, TNF
Melanosome membrane 1 TYR
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 2 CYP1A1, CYP2E1
Membrane raft 1 TNF
focal adhesion 1 ANXA5
collagen-containing extracellular matrix 1 ANXA5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 2 PTGS1, PTGS2
chromatin 1 GABPA
phagocytic cup 1 TNF
Secreted, extracellular space 1 CASP7
[Isoform 1]: Mitochondrion 1 GLS
Endomembrane system 1 PTGS1
Melanosome 1 TYR
endoplasmic reticulum lumen 1 PTGS2
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
[Isoform 3]: Mitochondrion 1 GLS
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endothelial microparticle 1 ANXA5
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Azra Đulović, Franko Burčul, Vedrana Čikeš Čulić, Patrick Rollin, Ivica Blažević. Glucosinolates and Cytotoxic Activity of Collard Volatiles Obtained Using Microwave-Assisted Extraction. Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041657. [PMID: 36838645]
  • Marta Klimek-Szczykutowicz, Michał Dziurka, Ivica Blažević, Azra Đulović, Sebastian Granica, Izabela Korona-Glowniak, Halina Ekiert, Agnieszka Szopa. Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA® Temporary Immersion Systems. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225257. [PMID: 33187324]
  • Marie Groenbaek, Ulla Kidmose, Erik Tybirk, Hanne Lakkenborg Kristensen. Glucosinolate Content and Sensory Evaluation of Baby Leaf Rapeseed from Annual and Biennial White- and Yellow-Flowering Cultivars with Repeated Harvesting in Two Seasons. Journal of food science. 2019 Jul; 84(7):1888-1899. doi: 10.1111/1750-3841.14680. [PMID: 31237979]
  • Young-Sang Lee, Kang-Mo Ku, Talon M Becker, John A Juvik. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization. PloS one. 2017; 12(9):e0185112. doi: 10.1371/journal.pone.0185112. [PMID: 28945821]
  • Anika E Wagner, Christine Sturm, Stefanie Piegholdt, Insa M A Wolf, Tuba Esatbeyoglu, Gina Rosalinda De Nicola, Renato Iori, Gerald Rimbach. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1--studies in cultured HT-29 cells and mice. The Journal of nutritional biochemistry. 2015 Jun; 26(6):661-6. doi: 10.1016/j.jnutbio.2015.01.004. [PMID: 25776458]
  • Kang-Mo Ku, Elizabeth H Jeffery, John A Juvik, Mosbah M Kushad. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots. Journal of agricultural and food chemistry. 2015 Mar; 63(11):2947-55. doi: 10.1021/jf505591z. [PMID: 25684599]
  • Ann G Liu, John A Juvik, Elizabeth H Jeffery, Lisa D Berman-Booty, Steven K Clinton, John W Erdman. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis. Journal of medicinal food. 2014 Nov; 17(11):1177-82. doi: 10.1089/jmf.2013.0145. [PMID: 24983303]
  • Niels Agerbirk, Carl Erik Olsen, Don Cipollini, Marian Ørgaard, Ib Linde-Laursen, Frances S Chew. Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers. Journal of agricultural and food chemistry. 2014 Oct; 62(39):9586-96. doi: 10.1021/jf5032795. [PMID: 25226408]
  • Andreas Loebers, Frieder Müller-Uri, Wolfgang Kreis. A young root-specific gene (ArMY2) from horseradish encoding a MYR II myrosinase with kinetic preference for the root-specific glucosinolate gluconasturtiin. Phytochemistry. 2014 Mar; 99(?):26-35. doi: 10.1016/j.phytochem.2013.11.008. [PMID: 24333031]
  • Kang Mo Ku, Elizabeth H Jeffery, John A Juvik. Influence of seasonal variation and methyl jasmonate mediated induction of glucosinolate biosynthesis on quinone reductase activity in broccoli florets. Journal of agricultural and food chemistry. 2013 Oct; 61(40):9623-31. doi: 10.1021/jf4027734. [PMID: 24032372]
  • Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. PloS one. 2012; 7(4):e35545. doi: 10.1371/journal.pone.0035545. [PMID: 22536404]
  • Sabita N Saldanha, Trygve O Tollefsbol. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. Journal of oncology. 2012; 2012(?):192464. doi: 10.1155/2012/192464. [PMID: 22187555]
  • Jeffrey A Harvey, Nicole M van Dam, Ciska E Raaijmakers, James M Bullock, Rieta Gols. Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia. 2011 Jun; 166(2):421-31. doi: 10.1007/s00442-010-1861-4. [PMID: 21140168]
  • Mayank S Malik, Melissa B Riley, Jason K Norsworthy, William Bridges. Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions. Journal of agricultural and food chemistry. 2010 Nov; 58(22):11626-32. doi: 10.1021/jf102809b. [PMID: 20964435]
  • Monika Okulicz. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats. Plant foods for human nutrition (Dordrecht, Netherlands). 2010 Sep; 65(3):217-24. doi: 10.1007/s11130-010-0183-3. [PMID: 20809411]
  • Calida S Neal, Dale P Fredericks, Cara A Griffiths, Alan D Neale. The characterisation of AOP2: a gene associated with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana. BMC plant biology. 2010 Aug; 10(?):170. doi: 10.1186/1471-2229-10-170. [PMID: 20699011]
  • Eun-Sun Hwang, Hyong Joo Lee. Effects of phenylethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. International journal of food sciences and nutrition. 2010 May; 61(3):324-36. doi: 10.3109/09637481003639092. [PMID: 20402549]
  • David J Williams, Christa Critchley, Sharon Pun, Mridusmita Chaliha, Timothy J O'Hare. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochemistry. 2009 Jul; 70(11-12):1401-9. doi: 10.1016/j.phytochem.2009.07.035. [PMID: 19747700]
  • Marzena Wielanek, Aleksandra Królicka, Katarzyna Bergier, Ewa Gajewska, Maria Skłodowska. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production. Biotechnology letters. 2009 Jun; 31(6):917-21. doi: 10.1007/s10529-009-9953-0. [PMID: 19229477]
  • Jóska Gerendás, Stephanie Breuning, Thorsten Stahl, Volker Mersch-Sundermann, Karl H Mühling. Isothiocyanate concentration in Kohlrabi (Brassica oleracea L. Var. gongylodes) plants as influenced by sulfur and nitrogen supply. Journal of agricultural and food chemistry. 2008 Sep; 56(18):8334-42. doi: 10.1021/jf800399x. [PMID: 18715015]
  • Hanneke van Leur, Louise E M Vet, Wim H van der Putten, Nicole M van Dam. Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. Journal of chemical ecology. 2008 Feb; 34(2):121-31. doi: 10.1007/s10886-007-9424-9. [PMID: 18213497]
  • Hanneke van Leur, Ciska E Raaijmakers, Nicole M van Dam. A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry. 2006 Jun; 67(12):1214-23. doi: 10.1016/j.phytochem.2006.04.021. [PMID: 16777152]
  • Lijiang Song, John J Morrison, Nigel P Botting, Paul J Thornalley. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS. Analytical biochemistry. 2005 Dec; 347(2):234-43. doi: 10.1016/j.ab.2005.09.040. [PMID: 16289008]
  • M Okulicz, I Bialik, J Chichłowska. The time-dependent effect of gluconasturtiin and phenethyl isothiocyanate on metabolic and antioxidative parameters in rats. Journal of animal physiology and animal nutrition. 2005 Dec; 89(11-12):367-72. doi: 10.1111/j.1439-0396.2005.00523.x. [PMID: 16401187]
  • Xian Li, Mosbah M Kushad. Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). Journal of agricultural and food chemistry. 2004 Nov; 52(23):6950-5. doi: 10.1021/jf0401827. [PMID: 15537302]
  • D Canistro, C Della Croce, R Iori, J Barillari, G Bronzetti, G Poi, M Cini, L Caltavuturo, P Perocco, M Paolini. Genetic and metabolic effects of gluconasturtiin, a glucosinolate derived from cruciferae. Mutation research. 2004 Jan; 545(1-2):23-35. doi: 10.1016/j.mrfmmm.2003.08.001. [PMID: 14698414]
  • J Barillari, D Gueyrard, P Rollin, R Iori. Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia. 2001 Nov; 72(7):760-4. doi: 10.1016/s0367-326x(01)00320-3. [PMID: 11677014]
  • E W UNDERHILL. BIOSYNTHESIS OF MUSTARD OIL GLUCOSIDES. V. FORMATION OF GLUCONASTURTIIN FROM L-GAMMA-PHENYLBUTYRINE-C14-N15 IN WATERCRESS. Canadian journal of biochemistry. 1965 Feb; 43(?):179-87. doi: ". [PMID: 14325968]