Senkirkin (BioDeep_00000003966)

 

Secondary id: BioDeep_00000395563

PANOMIX_OTCML-2023


代谢物信息卡片


Senkirkine

化学式: C19H27NO6 (365.1838)
中文名称: 氧化苦参碱, 氧化苦参碱又名苦参素
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 40.1%

分子结构信息

SMILES: C/C=C\1/C[C@H]([C@@](C(=O)OC/C/2=C/CN(CC[C@H](C2=O)OC1=O)C)(C)O)C
InChI: InChI=1S/C19H27NO6/c1-5-13-10-12(2)19(3,24)18(23)25-11-14-6-8-20(4)9-7-15(16(14)21)26-17(13)22/h5-6,12,15,24H,7-11H2,1-4H3/b13-5-,14-6-/t12-,15-,19-/m1/s1

描述信息

CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 178
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 168
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 158
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 148
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 138
INTERNAL_ID 138; CONFIDENCE Reference Standard (Level 1)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 128
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 118
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 108
INTERNAL_ID 2283; CONFIDENCE Reference Standard (Level 1)
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2283

同义名列表

3 个代谢物同义名

Senkirkine; Senkirkin; Senkirkine



数据库引用编号

69 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

31 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ABCB1, ARG1, CASP3, CASP7, CASP8, CASP9, CYP1A1, CYP3A4, FAS, NR1H2, NUPR1, SREBF1, SREBF2, TP53
Peripheral membrane protein 2 CYP1A1, CYP1B1
Endoplasmic reticulum membrane 6 CYP1A1, CYP1B1, CYP3A4, CYP3A5, SREBF1, SREBF2
Nucleus 11 ARG1, CASP3, CASP7, CASP8, CASP9, NR1H2, NUPR1, PPARA, SREBF1, SREBF2, TP53
cytosol 12 AP1AR, ARG1, CASP3, CASP7, CASP8, CASP9, FAS, GPT, NR1H2, SREBF1, SREBF2, TP53
nuclear body 1 FAS
centrosome 1 TP53
nucleoplasm 9 CASP3, CASP7, CASP8, NR1H2, NUPR1, PPARA, SREBF1, SREBF2, TP53
RNA polymerase II transcription regulator complex 1 NR1H2
Cell membrane 2 ABCB1, FAS
lamellipodium 1 CASP8
Cytoplasmic granule 1 ARG1
Multi-pass membrane protein 3 ABCB1, SREBF1, SREBF2
Golgi apparatus membrane 2 SREBF1, SREBF2
cell surface 2 ABCB1, FAS
glutamatergic synapse 1 CASP3
Golgi apparatus 2 AP1AR, FAS
Golgi membrane 2 SREBF1, SREBF2
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 CASP3
Cytoplasm, cytosol 1 CASP7
Lysosome 1 SGSH
endosome 1 AP1AR
plasma membrane 2 ABCB1, FAS
Membrane 6 ABCB1, CYP1B1, CYP3A4, CYP3A5, FAS, TP53
apical plasma membrane 1 ABCB1
extracellular exosome 4 ABCB1, FAS, GPT, SGSH
endoplasmic reticulum 3 SREBF1, SREBF2, TP53
extracellular space 2 ARG1, CASP7
lysosomal lumen 1 SGSH
perinuclear region of cytoplasm 1 NUPR1
mitochondrion 5 CASP8, CASP9, CYP1A1, CYP1B1, TP53
protein-containing complex 4 CASP8, CASP9, SREBF1, TP53
intracellular membrane-bounded organelle 5 CYP1A1, CYP1B1, CYP3A4, CYP3A5, SREBF2
Microsome membrane 4 CYP1A1, CYP1B1, CYP3A4, CYP3A5
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 FAS
extracellular region 1 ARG1
mitochondrial outer membrane 1 CASP8
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 1 TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
external side of plasma membrane 1 FAS
nucleolus 1 TP53
Early endosome 1 AP1AR
Apical cell membrane 1 ABCB1
Cell projection, lamellipodium 1 CASP8
Cytoplasm, perinuclear region 1 NUPR1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 FAS
Cytoplasm, cytoskeleton 1 TP53
Nucleus, PML body 1 TP53
PML body 1 TP53
Late endosome 1 AP1AR
chromatin 5 NR1H2, PPARA, SREBF1, SREBF2, TP53
cytoskeleton 1 CASP8
Secreted, extracellular space 1 CASP7
site of double-strand break 1 TP53
intercellular bridge 1 NUPR1
nuclear envelope 1 SREBF1
Cytoplasmic vesicle membrane 1 SREBF1
Melanosome 1 FAS
cell body 1 CASP8
germ cell nucleus 1 TP53
replication fork 1 TP53
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
specific granule lumen 1 ARG1
transport vesicle 1 AP1AR
azurophil granule lumen 1 ARG1
ER to Golgi transport vesicle membrane 2 SREBF1, SREBF2
apoptosome 1 CASP9
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NUPR1
external side of apical plasma membrane 1 ABCB1
SREBP-SCAP-Insig complex 1 SREBF2
CD95 death-inducing signaling complex 2 CASP8, FAS
death-inducing signaling complex 3 CASP3, CASP8, FAS
ripoptosome 1 CASP8
[Isoform 1]: Cell membrane 1 FAS
Cytoplasmic vesicle, COPII-coated vesicle membrane 2 SREBF1, SREBF2
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
glycogen granule 1 FAS
caspase complex 1 CASP9
[Sterol regulatory element-binding protein 2]: Endoplasmic reticulum membrane 1 SREBF2
[Processed sterol regulatory element-binding protein 2]: Nucleus 1 SREBF2


文献列表

  • Yusuke Kamiya, Tomonori Miura, Airi Kato, Norie Murayama, Makiko Shimizu, Hiroshi Yamazaki. Plasma Concentration Profiles for Hepatotoxic Pyrrolizidine Alkaloid Senkirkine in Humans Extrapolated from Rat Data Sets Using a Simplified Physiologically Based Pharmacokinetic Model. Drug metabolism and bioanalysis letters. 2022; 15(1):64-69. doi: 10.2174/1872312801666211220110055. [PMID: 34931973]
  • Julia Buchmueller, Heike Sprenger, Johanna Ebmeyer, Josef Daniel Rasinger, Otto Creutzenberg, Dirk Schaudien, Jan G Hengstler, Georgia Guenther, Albert Braeuning, Stefanie Hessel-Pras. Pyrrolizidine alkaloid-induced transcriptomic changes in rat lungs in a 28-day subacute feeding study. Archives of toxicology. 2021 08; 95(8):2785-2796. doi: 10.1007/s00204-021-03108-x. [PMID: 34185104]
  • Johanna Ebmeyer, Josef Daniel Rasinger, Jan G Hengstler, Dirk Schaudien, Otto Creutzenberg, Alfonso Lampen, Albert Braeuning, Stefanie Hessel-Pras. Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study. Archives of toxicology. 2020 05; 94(5):1739-1751. doi: 10.1007/s00204-020-02779-2. [PMID: 32419051]
  • Mariko Kitajima, Kei Okabe, Megumi Yoshida, Ryo Nakabayashi, Kazuki Saito, Noriyuki Kogure, Hiromitsu Takayama. New otonecine-type pyrrolizidine alkaloid from Petasites japonicus. Journal of natural medicines. 2019 Jun; 73(3):602-607. doi: 10.1007/s11418-019-01285-9. [PMID: 30784002]
  • Johanna Ebmeyer, Jessica Behrend, Mario Lorenz, Georgia Günther, Raymond Reif, Jan G Hengstler, Albert Braeuning, Alfonso Lampen, Stefanie Hessel-Pras. Pyrrolizidine alkaloid-induced alterations of prostanoid synthesis in human endothelial cells. Chemico-biological interactions. 2019 Jan; 298(?):104-111. doi: 10.1016/j.cbi.2018.11.007. [PMID: 30465738]
  • Julia Waizenegger, Albert Braeuning, Markus Templin, Alfonso Lampen, Stefanie Hessel-Pras. Structure-dependent induction of apoptosis by hepatotoxic pyrrolizidine alkaloids in the human hepatoma cell line HepaRG: Single versus repeated exposure. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Apr; 114(?):215-226. doi: 10.1016/j.fct.2018.02.036. [PMID: 29458164]
  • Claudia Luckert, Stefanie Hessel, Dido Lenze, Alfonso Lampen. Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis. Toxicology in vitro : an international journal published in association with BIBRA. 2015 Oct; 29(7):1669-82. doi: 10.1016/j.tiv.2015.06.021. [PMID: 26100227]
  • Eva Castells, Patrick P J Mulder, Míriam Pérez-Trujillo. Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry. 2014 Dec; 108(?):137-46. doi: 10.1016/j.phytochem.2014.09.006. [PMID: 25269662]
  • Jia-Yin Han, Yan Yi, Ai-Hua Liang, Yu-Shi Zhang, Chun-Ying Li, Yong Zhao, Hong-Yu Cui, Yu-Ting Lu. [Embryotoxicity of Senecionis Scandentis Hebra on in vitro cultured mouse embryos]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Sep; 49(9):1267-72. doi: . [PMID: 25518325]
  • Tri R Nuringtyas, Robert Verpoorte, Peter G L Klinkhamer, Monique M van Oers, Kirsten A Leiss. Toxicity of pyrrolizidine alkaloids to Spodoptera exigua using insect cell lines and injection bioassays. Journal of chemical ecology. 2014 Jun; 40(6):609-16. doi: 10.1007/s10886-014-0459-4. [PMID: 24981118]
  • Stefanie Hessel, Christoph Gottschalk, Dania Schumann, Anja These, Angelika Preiss-Weigert, Alfonso Lampen. Structure-activity relationship in the passage of different pyrrolizidine alkaloids through the gastrointestinal barrier: ABCB1 excretes heliotrine and echimidine. Molecular nutrition & food research. 2014 May; 58(5):995-1004. doi: 10.1002/mnfr.201300707. [PMID: 24375927]
  • Yu-Hsuan Lan, Jo-Hua Chiang, Wen-Wen Huang, Chi-Cheng Lu, Jing-Gung Chung, Tian-Shung Wu, Jia-Hua Jhan, Kuei-Li Lin, Shu-Jen Pai, Yu-Jen Chiu, Minoru Tsuzuki, Jai-Sing Yang. Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):178178. doi: 10.1155/2012/178178. [PMID: 22474491]
  • Dandan Cheng, Heather Kirk, Klaas Vrieling, Patrick P J Mulder, Peter G L Klinkhamer. The relationship between structurally different pyrrolizidine alkaloids and western flower thrips resistance in F(2) hybrids of Jacobaea vulgaris and Jacobaea aquatica. Journal of chemical ecology. 2011 Oct; 37(10):1071-80. doi: 10.1007/s10886-011-0021-6. [PMID: 21969251]
  • Maria Fernanda Pereira Lavieri Gomes, Cristina de Oliveira Massoco, José Guilherme Xavier, Leoni Villano Bonamin. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study. Evidence-based complementary and alternative medicine : eCAM. 2010 Jun; 7(2):197-202. doi: 10.1093/ecam/nem172. [PMID: 18955295]
  • Sven Sehlmeyer, Linzhu Wang, Dorothee Langel, David G Heckel, Hoda Mohagheghi, Georg Petschenka, Dietrich Ober. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera). PloS one. 2010 May; 5(5):e10435. doi: 10.1371/journal.pone.0010435. [PMID: 20454663]
  • Zhangjian Jiang, Feng Liu, Jennifer Jia Lei Goh, Lijun Yu, Sam Fong Yau Li, Eng Shi Ong, Choon Nam Ong. Determination of senkirkine and senecionine in Tussilago farfara using microwave-assisted extraction and pressurized hot water extraction with liquid chromatography tandem mass spectrometry. Talanta. 2009 Jul; 79(2):539-46. doi: 10.1016/j.talanta.2009.04.028. [PMID: 19559918]
  • Song-Lin Li, Ge Lin, Peter P Fu, Chi-Leung Chan, Mi Li, Zhi-Hong Jiang, Zhong-Zhen Zhao. Identification of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scandentis (Qianliguang). Rapid communications in mass spectrometry : RCM. 2008; 22(4):591-602. doi: 10.1002/rcm.3398. [PMID: 18220326]
  • Juan Camilo Marín Loaiza, Ludger Ernst, Till Beuerle, Claudine Theuring, Carlos L Céspedes, Thomas Hartmann. Pyrrolizidine alkaloids of the endemic Mexican genus Pittocaulon and assignment of stereoisomeric 1,2-saturated necine bases. Phytochemistry. 2008 Jan; 69(1):154-67. doi: 10.1016/j.phytochem.2007.07.004. [PMID: 17719067]
  • Nan Mei, Lei Guo, Lu Zhang, Leming Shi, Yongming Andrew Sun, Chris Fung, Carrie L Moland, Stacey L Dial, James C Fuscoe, Tao Chen. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale). BMC bioinformatics. 2006 Sep; 7 Suppl 2(?):S16. doi: 10.1186/1471-2105-7-s2-s16. [PMID: 17118137]
  • T Hartmann, C Theuring, T Beuerle, E A Bernays, M S Singer. Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect biochemistry and molecular biology. 2005 Oct; 35(10):1083-99. doi: 10.1016/j.ibmb.2005.05.011. [PMID: 16102415]
  • Lijun Yu, Yan Xu, Huatao Feng, Sam Fong Yau Li. Separation and determination of toxic pyrrolizidine alkaloids in traditional Chinese herbal medicines by micellar electrokinetic chromatography with organic modifier. Electrophoresis. 2005 Sep; 26(17):3397-404. doi: 10.1002/elps.200500233. [PMID: 16080213]
  • Mirka Macel, Maaike Bruinsma, Sander M Dijkstra, Tessa Ooijendijk, Hermann M Niemeyer, Peter G L Klinkhamer. Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. Journal of chemical ecology. 2005 Jul; 31(7):1493-508. doi: 10.1007/s10886-005-5793-0. [PMID: 16222788]
  • T Hartmann, C Theuring, T Beuerle, N Klewer, S Schulz, M S Singer, E A Bernays. Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect biochemistry and molecular biology. 2005 May; 35(5):391-411. doi: 10.1016/j.ibmb.2004.12.010. [PMID: 15804574]
  • N Mei, L Guo, P P Fu, R H Heflich, T Chen. Mutagenicity of comfrey (Symphytum Officinale) in rat liver. British journal of cancer. 2005 Mar; 92(5):873-5. doi: 10.1038/sj.bjc.6602420. [PMID: 15726100]
  • Tomasz Mroczek, Karine Ndjoko, Kazimierz Głowniak, Kurt Hostettmann. On-line structure characterization of pyrrolizidine alkaloids in Onosma stellulatum and Emilia coccinea by liquid chromatography-ion-trap mass spectrometry. Journal of chromatography. A. 2004 Nov; 1056(1-2):91-7. doi: . [PMID: 15595537]
  • Mirka Macel, Klaas Vrieling. Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Tyria jacobaeae. Journal of chemical ecology. 2003 Jun; 29(6):1435-46. doi: 10.1023/a:1024269621284. [PMID: 12918926]
  • H Eröksüz, Y Eröksüz, H Ozer, I Yaman, F Tosun, C Akyüz Kizilay, U Tamer. Toxicity of Senecio vernalis to laying hens and evaluation of residues in eggs. Veterinary and human toxicology. 2003 Mar; 45(2):76-80. doi: . [PMID: 12678291]
  • Tomasz Mroczek, Kazimierz Glowniak, Anna Wlaszczyk. Simultaneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. Journal of chromatography. A. 2002 Mar; 949(1-2):249-62. doi: 10.1016/s0021-9673(01)01498-4. [PMID: 11999741]
  • M T Skaanild, C Friis, L Brimer. Interplant alkaloid variation and Senecio vernalis toxicity in cattle. Veterinary and human toxicology. 2001 Jun; 43(3):147-51. doi: . [PMID: 11383654]
  • M Bah, R Bye, R Pereda-Miranda. Hepatotoxic pyrrolizidine alkaloids in the Mexican medicinal plant Packera candidissima (Asteraceae: Senecioneae). Journal of ethnopharmacology. 1994 Jun; 43(1):19-30. doi: 10.1016/0378-8741(94)90112-0. [PMID: 7967646]