N-Acetylputrescine (BioDeep_00000001393)

 

Secondary id: BioDeep_00000399964

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


N-Acetylputrescine monohydrochloride

化学式: C6H14N2O (130.1106)
中文名称: N-(4-氨基丁基)乙酰胺, N-(4-氨基丁基)-乙酰胺, N-乙酰腐胺, N-(4-氨基丁基)-乙酰胺 盐酸盐
谱图信息: 最多检出来源 Homo sapiens(blood) 9.59%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

N-Acetylputrescine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n-acetylputrescine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001393). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)NCCCCN
InChI: InChI=1S/C6H14N2O/c1-6(9)8-5-3-2-4-7/h2-5,7H2,1H3,(H,8,9)

描述信息

N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. N-Acetylputrescine can be found in Corynebacterium as well (PMID:25919117).
N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. [HMDB]
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID A051

同义名列表

9 个代谢物同义名

N-Acetylputrescine monohydrochloride; N-acetyl putrescine hydrochloride; N-(4-Aminobutyl)acetamide; Monoacetylputrescine; N-acetyl putrescine; N-acetylputrescine; Acetylputrescine; N-Acetylputrescine; N-Acetylputrescine



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(1)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 HDAC10, HDAC9, IDH1, ODC1, PAOX, PTEN, PTGS2, SAT1, TP53, XDH
Peripheral membrane protein 2 AOC1, PTGS2
Endoplasmic reticulum membrane 1 PTGS2
Nucleus 5 HDAC10, HDAC9, PTEN, SPEG, TP53
cytosol 12 ADSL, AMD1, HDAC10, IDH1, IDH2, ODC1, PAOX, PTEN, SAT1, SRM, TP53, XDH
centrosome 1 TP53
nucleoplasm 4 HDAC10, HDAC9, PTEN, TP53
Cell membrane 2 AOC1, SAT1
Multi-pass membrane protein 2 ATP4A, SAT1
neuronal cell body 1 SAT1
Cytoplasm, cytosol 2 IDH1, SAT1
plasma membrane 5 AOC1, ATP4A, IFNLR1, PTEN, SAT1
Membrane 4 ATP4A, IFNLR1, SAT1, TP53
apical plasma membrane 2 ATP4A, PTEN
axon 1 SAT1
basolateral plasma membrane 1 SAT1
caveola 1 PTGS2
extracellular exosome 4 AOC1, IDH1, IDH2, SAT1
endoplasmic reticulum 2 PTGS2, TP53
extracellular space 5 AOC1, ATP4A, IL17A, TG, XDH
bicellular tight junction 1 AOC1
mitochondrion 3 IDH1, IDH2, TP53
protein-containing complex 3 ADSL, PTGS2, TP53
intracellular membrane-bounded organelle 1 HDAC10
Microsome membrane 1 PTGS2
postsynaptic density 1 PTEN
Single-pass type I membrane protein 1 IFNLR1
Secreted 2 IL17A, TG
extracellular region 5 AOC1, IDH1, IL17A, PTEN, TG
cytoplasmic side of plasma membrane 1 PTEN
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 IDH2, TP53
Extracellular side 1 AOC1
transcription regulator complex 2 HDAC9, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
external side of plasma membrane 1 IL17A
dendritic spine 1 PTEN
nucleolus 1 TP53
Apical cell membrane 1 ATP4A
Cytoplasm, cytoskeleton 1 TP53
Peroxisome 5 AOC1, IDH1, IDH2, PAOX, XDH
sarcoplasmic reticulum 1 XDH
peroxisomal matrix 2 IDH1, PAOX
Cell projection, dendritic spine 1 PTEN
Nucleus, PML body 2 PTEN, TP53
PML body 2 PTEN, TP53
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, neuron projection 1 PTEN
neuron projection 2 PTEN, PTGS2
chromatin 1 TP53
cell projection 1 PTEN
Secreted, extracellular space 1 AOC1
Basolateral cell membrane 1 SAT1
site of double-strand break 1 TP53
germ cell nucleus 1 TP53
replication fork 1 TP53
ficolin-1-rich granule lumen 1 IDH1
secretory granule lumen 1 IDH1
endoplasmic reticulum lumen 1 PTGS2
histone methyltransferase complex 1 HDAC9
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
specific granule lumen 1 AOC1
tertiary granule lumen 1 IDH1
histone deacetylase complex 2 HDAC10, HDAC9
Schmidt-Lanterman incisure 1 PTEN
[Isoform 1]: Nucleus 1 TP53
external side of apical plasma membrane 1 SAT1
myelin sheath adaxonal region 1 PTEN
[Isoform alpha]: Secreted 1 PTEN
potassium:proton exchanging ATPase complex 1 ATP4A
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Su H Chu, Jing Cui, Jeffrey A Sparks, Bing Lu, Sara K Tedeschi, Cameron B Speyer, LauraKay Moss, Marie L Feser, Lindsay B Kelmenson, Elizabeth A Mewshaw, Jess D Edison, Kevin D Deane, Clary Clish, Jessica Lasky-Su, Elizabeth W Karlson, Karen H Costenbader. Circulating plasma metabolites and risk of rheumatoid arthritis in the Nurses' Health Study. Rheumatology (Oxford, England). 2020 11; 59(11):3369-3379. doi: 10.1093/rheumatology/keaa125. [PMID: 32310291]
  • Yann-Ru Lou, Sheaza Ahmed, Jian Yan, Adewale M Adio, Hannah M Powell, Paul F Morris, Georg Jander. Arabidopsis ADC1 functions as an Nδ -acetylornithine decarboxylase. Journal of integrative plant biology. 2020 May; 62(5):601-613. doi: 10.1111/jipb.12821. [PMID: 31081586]
  • Robin Mesnage, Sarah Z Agapito-Tenfen, Vinicius Vilperte, George Renney, Malcolm Ward, Gilles-Eric Séralini, Rubens O Nodari, Michael N Antoniou. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Scientific reports. 2016 12; 6(?):37855. doi: 10.1038/srep37855. [PMID: 27991589]
  • Yann-Ru Lou, Melike Bor, Jian Yan, Aileen S Preuss, Georg Jander. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation. Plant physiology. 2016 06; 171(2):1443-55. doi: 10.1104/pp.16.00446. [PMID: 27208290]
  • Alberto Valdés, Virginia García-Cañas, Carolina Simó, Clara Ibáñez, Vicente Micol, Jose A Ferragut, Alejandro Cifuentes. Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Analytical chemistry. 2014 Oct; 86(19):9807-15. doi: 10.1021/ac502401j. [PMID: 25188358]
  • Daniela Münch, Terry Roemer, Sang Ho Lee, Marianne Engeser, Hans Georg Sahl, Tanja Schneider. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS pathogens. 2012 Jan; 8(1):e1002509. doi: 10.1371/journal.ppat.1002509. [PMID: 22291598]
  • Ana Marta Silva, Anabela Cordeiro-da-Silva, Graham H Coombs. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS neglected tropical diseases. 2011 Dec; 5(12):e1451. doi: 10.1371/journal.pntd.0001451. [PMID: 22206037]
  • Jeong Ah Byun, Man Ho Choi, Myeong Hee Moon, Gu Kong, Bong Chul Chung. Serum polyamines in pre- and post-operative patients with breast cancer corrected by menopausal status. Cancer letters. 2009 Jan; 273(2):300-4. doi: 10.1016/j.canlet.2008.08.024. [PMID: 18805631]
  • Fumie Yusa, Jürgen M Steiner, Wolfgang Löffelhardt. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC evolutionary biology. 2008 Nov; 8(?):304. doi: 10.1186/1471-2148-8-304. [PMID: 18976493]
  • Tobias Wunder, Roman Martin, Wolfgang Löffelhardt, Enrico Schleiff, Jürgen M Steiner. The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC evolutionary biology. 2007 Nov; 7(?):236. doi: 10.1186/1471-2148-7-236. [PMID: 18045484]
  • Ophélie Fliniaux, François Mesnard, Sophie Raynaud-Le Grandic, Sylvie Baltora-Rosset, Christophe Bienaimé, Richard J Robins, Marc-André Fliniaux. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. Journal of experimental botany. 2004 May; 55(399):1053-60. doi: 10.1093/jxb/erh119. [PMID: 15073218]
  • B Pfanzagl, W Löffelhardt. In vitro synthesis of peptidoglycan precursors modified with N-acetylputrescine by Cyanophora paradoxa cyanelle envelope membranes. Journal of bacteriology. 1999 Apr; 181(8):2643-7. doi: 10.1128/jb.181.8.2643-2647.1999. [PMID: 10198034]
  • K Tomita, T Miura, S Ota, K Nomura. Enzymatic analysis of acetylpolyamine. Journal of pharmaceutical and biomedical analysis. 1998 Dec; 18(4-5):889-92. doi: 10.1016/s0731-7085(98)00226-x. [PMID: 9919993]
  • K Hiramatsu, S Kamei, M Sugimoto, K Kinoshita, K Iwasaki, M Kawakita. An improved method of determining free and acetylated polyamines by HPLC involving an enzyme reactor and an electrochemical detector. Journal of biochemistry. 1994 Mar; 115(3):584-9. doi: 10.1093/oxfordjournals.jbchem.a124379. [PMID: 8056776]
  • P Thai, M Carrier, L C Pelletier. [Urinary excretion of acetylated polyamines after heart transplantation in dogs]. Annales de chirurgie. 1994; 48(8):742-8. doi: NULL. [PMID: 7872624]
  • M Carrier, D H Russell, R C Cork, J Wild, R W Emery, J G Copeland. Analysis of risk factors for acute allograft rejection after heart transplantation. The Journal of heart transplantation. 1990 Jul; 9(4):372-5. doi: . [PMID: 2398431]
  • S B Rao, R A Young, H M Mehendale. Perturbations in polyamines and related enzymes following chlordecone-potentiated bromotrichloromethane hepatotoxicity. Journal of biochemical toxicology. 1990; 5(1):23-32. doi: 10.1002/jbt.2570050105. [PMID: 1698228]
  • S Yamamoto, T Kobayashi, Y Suemoto, M Makita. An improved gas chromatographic method for the determination of urinary acetylpolyamines. Chemical & pharmaceutical bulletin. 1984 May; 32(5):1878-84. doi: 10.1248/cpb.32.1878. [PMID: 6467469]
  • J L Ryan, P K Bondy, L Gobran, Z N Canellakis. Acetylated diamines inhibit endotoxin-induced lymphocyte activation. Journal of immunology (Baltimore, Md. : 1950). 1984 Apr; 132(4):1888-91. doi: NULL. [PMID: 6366053]
  • W J Hrushesky, J Merdink, M M Abdel-Monem. Circadian rhythmicity of polyamine urinary excretion. Cancer research. 1983 Aug; 43(8):3944-7. doi: NULL. [PMID: 6861156]
  • D H Russell, J D Ellingson, T P Davis. Analysis of polyamines and acetyl derivatives by a single automated amino acid analyzer technique. Journal of chromatography. 1983 Apr; 273(2):263-74. doi: 10.1016/s0378-4347(00)80948-2. [PMID: 6863443]
  • W Kersten. [Tumor therapy: control of results by analysis of polyamines?]. Deutsche medizinische Wochenschrift (1946). 1983 Feb; 108(7):243-5. doi: 10.1055/s-2008-1069534. [PMID: 6337807]
  • M Mach, U Schneider, W Kersten. Excretion of polyamines by children with leukemia during chemotherapy. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer. 1983; 84(?):413-20. doi: 10.1007/978-3-642-81947-6_31. [PMID: 6573734]
  • S Yamamoto, M Yokogawa, K Wakamatsu, H Kataoka, M Makita. Gas chromatographic method for the determination of urinary acetylpolyamines. Journal of chromatography. 1982 Dec; 233(?):29-38. doi: 10.1016/s0378-4347(00)81728-4. [PMID: 7161341]
  • C E Prussak, D H Russell. Single-step high-performance liquid chromatographic method for the analysis of acetylated polyamines. Journal of chromatography. 1982 Apr; 229(1):47-56. doi: 10.1016/s0378-4347(00)86035-1. [PMID: 7085834]
  • M M Abdel-Monem, J L Merdink. Determination of monoacetyldiamines and -polyamines in urine by high-performance liquid chromatography. Journal of chromatography. 1981 Mar; 222(3):363-70. doi: 10.1016/s0378-4347(00)84136-5. [PMID: 7228946]