Sarsasapogenin

(2aR,4S,5S,6aS,6bS,8aS,8bR,9S,10R,11aS,12aS,12bR)-5,6a,8a,9-tetramethyldocosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H44O3 (416.329)


(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.

   

5,7-Dihydroxy-4H-1-benzopyran-4-one

4H-1-Benzopyran-4-one, 5,7-dihydroxy-

C9H6O4 (178.0266)


5,7-Dihydroxychromone is a member of chromones. 5,7-Dihydroxychromone is a natural product found in Calluna vulgaris, Leucosidea sericea, and other organisms with data available. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in nuts. 5,7-Dihydroxy-4H-1-benzopyran-4-one is isolated from peanut shells. Isolated from peanut shells. 5,7-Dihydroxy-4H-1-benzopyran-4-one is found in peanut and nuts. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].

   

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.1475)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Dihydromethysticin

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

C15H16O5 (276.0998)


Dihydromethysticin is found in beverages. Dihydromethysticin is isolated from Piper methysticum (kava). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Dihydromethysticin is one of the six major kavalactones found in the kava plant Dihydromethysticin is a member of 2-pyranones and an aromatic ether. Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

   

Isobutylshikonin

[(1R)-1-(5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl] 2-methylpropanoate

C20H22O6 (358.1416)


Isobutylshikonin is a hydroxy-1,4-naphthoquinone. Isobutyrylshikonin is a natural product found in Lithospermum erythrorhizon with data available. Isobutylshikonin is a kind of shikonin pigments from hairy root culture of Lithospermum canescens[1].

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

Sudan_I

1-[(Z)-2-Phenylhydrazin-1-ylidene]naphthalen-2(1H)-one

C16H12N2O (248.095)


C.i. solvent yellow 14 appears as dark reddish-yellow leaflets or orange powder. Slight odor. (NTP, 1992) Sudan I is a monoazo compound. It has a role as a dye. It is functionally related to a 2-naphthol. D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 5651

   

(R)-mandelic Acid

Sertraline impurity E, European Pharmacopoeia (EP) Reference Standard

C8H8O3 (152.0473)


(R)-mandelic acid is the (R)-enantiomer of mandelic acid. It has a role as a human xenobiotic metabolite. It is a conjugate acid of a (R)-mandelate. It is an enantiomer of a (S)-mandelic acid. (r)-Mandelic acid is a natural product found in Pisolithus tinctorius, Pisolithus arhizus, and other organisms with data available. (R)-mandelic Acid, also known as (R)-2-Hydroxy-2-phenylacetic acid or (-)-(R)-Mandelate, is classified as a benzene or a Benzene derivative. Benzenes are aromatic compounds containing one monocyclic ring system consisting of benzene. (R)-mandelic Acid is considered to be soluble (in water) and acidic The (R)-enantiomer of mandelic acid. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M068 D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

(R)-Methysticin

5-Hydroxy-3-methoxy-7-(3,4-(methylenedioxy)phenyl)-2,6-heptadienoic acid gamma-lactone

C15H14O5 (274.0841)


Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].

   

Alisol

Dammar-13(17)-en-3-one, 24,25-epoxy-11,23-dihydroxy-,(8a,9b,11b,14b,23S,24R)-

C30H48O4 (472.3552)


Alisol B is a triterpenoid. Alisol B is a natural product found in Alisma, Alisma plantago-aquatica, and other organisms with data available. Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo: Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo:

   

Furanodienone

CYCLODECA(B)FURAN-4(7H)-ONE, 8,11-DIHYDRO-3,6,10-TRIMETHYL-, (5E,9E)-

C15H18O2 (230.1307)


Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isofuranodienone is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary) Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].

   

ARNEBIN-7

5,8-dihydroxy-2-(4-methylpent-3-en-1-yl)-1,4-dihydronaphthalene-1,4-dione

C16H16O4 (272.1049)


Deoxyshikonin is a hydroxy-1,4-naphthoquinone. Deoxyshikonin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2]. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF. Deoxyshikonin inhibited colorectal cancer (CRC) through the PI3K/Akt/mTOR pathway. Deoxyshikonin has proangiogenesis effect and antitumor activity. Deoxyshikonin is an antibacterial agent against methicillin-resistant S. aureus (MRSA) and S. pneumonia (MIC=17 μg/mL)[1][2][3]. Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2].

   

Xylobiose

(3R,4R,5R)-5-(((2S,3R,4S,5R)-3,4,5-Trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C10H18O9 (282.0951)


Xylobiose is a glycosylxylose that is D-xylopyranose having a beta-D-xylopyranosyl residue attached at position 4 via a glycosidic bond. It has a role as a bacterial metabolite. Xylobiose is a natural product found in Streptomyces ipomoeae, Chlamydomonas reinhardtii, and Streptomyces rameus with data available. 4-O-beta-D-Xylopyranosyl-L-arabinose is found in fruits. 4-O-beta-D-Xylopyranosyl-L-arabinose is isolated from acid hydrolysate of peach gum. Isolated from acid hydrolysate of peach gum. 4-O-beta-D-Xylopyranosyl-L-arabinose is found in fruits. Xylobiose (1,4-β-D-Xylobiose; 1,4-D-Xylobiose) is a disaccharide?of?xylose?monomers with a β-1, 4 bond between monomers[1].

   

(S)-[8]-Gingerol

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[8]-Gingerol is found in ginger. (S)-[8]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[8]-Gingerol is found in herbs and spices and ginger. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

(S)-4',5,7-Trihydroxy-6-prenylflavanone

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. (S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops). Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

friedelanol

(3S,4R,4aS,6aS,6aS,6bR,8aR,12aR,14aS,14bS)-4,4a,6a,6b,8a,11,11,14a-octamethyl-1,2,3,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-hexadecahydropicen-3-ol

C30H52O (428.4018)


Epi-Friedelanol is a triterpenoid. Epifriedelanol is a natural product found in Plenckia populnea, Quercus glauca, and other organisms with data available.

   

Bruceantin

methyl (1R,2S,3R,6R,8R,13S,14R,15R,16S,17S)-3-[(E)-3,4-dimethylpent-2-enoyl]oxy-10,15,16-trihydroxy-9,13-dimethyl-4,11-dioxo-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-9-ene-17-carboxylate

C28H36O11 (548.2258)


Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.

   

Azulene

InChI=1/C10H8/c1-2-5-9-7-4-8-10(9)6-3-1/h1-8

C10H8 (128.0626)


Azulene is a mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. It has a role as a plant metabolite and a volatile oil component. It is an ortho-fused bicyclic arene, a member of azulenes and a mancude carbobicyclic parent. Azulene is a natural product found in Anthemis cretica, Achillea millefolium, and other organisms with data available. Azulene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) A mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D09768 Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

Anabasine

1-[(tert-butyl)oxycarbonyl]-4-phenylpyrroline-3-carboxylicacid

C10H14N2 (162.1157)


Anabasine is a pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. It has a role as a plant metabolite, a teratogenic agent and a nicotinic acetylcholine receptor agonist. It is a piperidine alkaloid and a pyridine alkaloid. Anabasine is a natural product found in Nicotiana, Nicotiana tabacum, and Anabasis aphylla with data available. Anabasine is a nicotine analog that is an alkaloid found in tree tobacco (Nicotiana glauca) and is comprised of a pyridine substituted by a piperidin-2-yl group at position 3. Anabasine has been used as an industrial insecticide and, since it is present in trace amounts in tobacco smoke, its detection in urine can be used as an indicator of exposure to tobacco smoke. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a pyridine alkaloid found in the stem of the (Nicotiana glauca) plant, a close relative of (Nicotiana tabacum) the common tobacco plant. Anabasine is a metabolite of nicotine which can be used as an indicator of a persons exposure to tobbacco smoke. A piperidine botanical insecticide. A piperidine botanical insecticide. Anabasine is a pyridine and piperidine alkaloid found in the Tree Tobacco (Nicotiana glauca) plant, a close relative of the common tobacco plant (Nicotiana tabacum). It is a structural isomer of, and chemically similar to, nicotine. Its principal (historical) industrial use is as an insecticide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. A pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals (±) Anabasine is a biphasic muscle relaxant. (±) Anabasine is a biphasic muscle relaxant. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2]. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2].

   

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

(+)-Epicatechin

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Uvaretin

1- [ 2,4-Dihydroxy-3- [ (2-hydroxyphenyl) methyl ] -6-methoxyphenyl ] -3-phenyl-1-propanone

C23H22O5 (378.1467)


Uvaretin is a member of the class of dihydrochalcones that is 1,3-diphenylpropan-1-one in which the phenyl group that is bonded to the carbonyl group is substituted by hydroxy groups at positions 2 and 4, an o-hydroxybenzyl group at position 3, and a methoxy group at position 6. A cytotoxic natural product found particularly in Uvaria acuminata and Uvaria chamae. It has a role as an antineoplastic agent and a plant metabolite. It is a resorcinol, an aromatic ether, a polyketide and a member of dihydrochalcones. Uvaretin is a natural product found in Desmos chinensis, Uvaria chamae, and other organisms with data available. A member of the class of dihydrochalcones that is 1,3-diphenylpropan-1-one in which the phenyl group that is bonded to the carbonyl group is substituted by hydroxy groups at positions 2 and 4, an o-hydroxybenzyl group at position 3, and a methoxy group at position 6. A cytotoxic natural product found particularly in Uvaria acuminata and Uvaria chamae.

   

Chamuvarin

1-Propanone, 1-(4,6-dihydroxy-3-((2-hydroxyphenyl)methyl)-2-methoxyphenyl)-3-phenyl-

C23H22O5 (378.1467)


Isouvaretin is a diarylheptanoid. Isouvaretin is a natural product found in Desmos chinensis, Uvaria chamae, and other organisms with data available.

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

4-Hydroxy-3-methoxybenzenemethanol

2-Pyridinecarboxylicacid, 6-amino-3-bromo-, methyl ester

C8H10O3 (154.063)


4-Hydroxy-3-methoxybenzenemethanol, also known as 4-hydroxy-3-methoxybenzyl alcohol or 3-methoxy-4-hydroxybenzyl alcohol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-Hydroxy-3-methoxybenzenemethanol is a drug. 4-Hydroxy-3-methoxybenzenemethanol is a sweet, anise, and balsam tasting compound. 4-hydroxy-3-methoxybenzenemethanol has been detected, but not quantified, in fruits and herbs and spices. This could make 4-hydroxy-3-methoxybenzenemethanol a potential biomarker for the consumption of these foods. Vanillyl alcohol is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols. Vanillyl alcohol has been used in trials studying the treatment of Smoking. Vanillyl alcohol is a natural product found in Artemisia rutifolia, Euglena gracilis, and other organisms with data available. Constituent of Capsicum subspecies; flavouring ingredient. 4-Hydroxy-3-methoxybenzenemethanol is found in herbs and spices and fruits. A monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

Arecaidine

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

C7H11NO2 (141.079)


Arecaidine is a citraconoyl group. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

Cirsimaritin

5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one

C17H14O6 (314.079)


Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.

   

beta-Carotinal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. Constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. beta-Carotinal is found in many foods, some of which are eggs, green vegetables, sweet orange, and citrus. beta-Carotinal is found in citrus. beta-Carotinal is a constituent of orange peel, spinach, marigolds and egg yolks. Colour additive. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Tropine

InChI=1/C8H15NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-8,10H,2-5H2,1H

C8H15NO (141.1154)


Pseudotropine is a natural product found in Atropa belladonna and Datura stramonium with data available. KEIO_ID T024 Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one

DIMBOA pound>>2,4-Dihydroxy-7-methoxy-1,4-benzoxazinone;2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one

C9H9NO5 (211.0481)


DIMBOA is a lactol that is DIBOA in which the hydrogen at position 7 is replaced by a methoxy group. It has been isolated from the maize plants. It has a role as a plant metabolite and an allelochemical. It is a lactol, a benzoxazine, an aromatic ether and a cyclic hydroxamic acid. It is functionally related to a DIBOA. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one is a natural product found in Trichoderma virens with data available. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one is found in cereals and cereal products. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one is isolated from wheat, in which it is present mainly as glucoside. Appears to be a natural aphicide, insecticide and fungicide. Involved in the in vivo detoxification of herbicides , e.g. Simazin Isolated from wheat, in which it is present mainly as glucoside. Appears to be a natural aphicide, insecticide and fungicide. Involved in the in vivo detoxification of herbicides , e.g. Simazine. (R)-2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one is found in cereals and cereal products and corn. A lactol that is DIBOA in which the hydrogen at position 7 is replaced by a methoxy group. It has been isolated from the maize plants. DIMBOA, an antibiotic, is a benzoxazinoid, part of the chemical defense system of graminaceous plants such as maize, wheat, and rye. DIMBOA possess growth inhibitory properties against many strains of studied bacteria and fungi, such as Staphylococcus aureus, Escherichia coli as well as against Saccharomyces cerevisiae. DIMBOA exhibits a potent free-radical scavenging activity and a weaker iron (III) ions reducing activity. Antioxidant activity[1][2].

   

N-Methylcoclaurine

7-Isoquinolinol, 1,2,3,4-tetrahydro-1-[(4-hydroxyphenyl)methyl]-6-methoxy-2-methyl-, (1R)-

C18H21NO3 (299.1521)


(R)-N-methylcoclaurine is the (R)-enantiomer of N-methylcoclaurine. It is a conjugate base of a (R)-N-methylcoclaurinium. It is an enantiomer of a (S)-N-methylcoclaurine. (R)-N-Methylcoclaurine is a natural product found in Cyclea barbata, Cyclea peltata, and other organisms with data available.

   

Retronecine

InChI=1/C8H13NO2/c10-5-6-1-3-9-4-2-7(11)8(6)9/h1,7-8,10-11H,2-5H2/t7-,8-/m1/s

C8H13NO2 (155.0946)


Retronecine is a member of pyrrolizines. Retronecine is a natural product found in Senecio nebrodensis, Lappula spinocarpos, and other organisms with data available. Retronecine is a pyrrolizidine alkaloid found in a variety of plants in the genera Senecio and Crotalaria, and the family Boraginaceae. It is the most common central core for other pyrrolizidine alkaloids. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids

   

napelline

(1R,2R,4S,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].

   

Lauric aldehyde

InChI=1/C12H24O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h12H,2-11H2,1H

C12H24O (184.1827)


Dodecanal is a long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group. It has a role as a plant metabolite. It is a 2,3-saturated fatty aldehyde, a medium-chain fatty aldehyde and a long-chain fatty aldehyde. It derives from a hydride of a dodecane. Dodecanal is a natural product found in Mikania cordifolia, Zingiber mioga, and other organisms with data available. Occurs in peel oil from Citrus subspecies and kumquatand is also present in ginger, coriander, chervil and scallop. Flavouring agent. Lauric aldehyde is found in many foods, some of which are mollusks, rocket salad (sspecies), sweet orange, and fruits. Lauric aldehyde is found in citrus. Lauric aldehyde occurs in peel oil from Citrus species and kumquat. Also present in ginger, coriander, chervil and scallop. Lauric aldehyde is a flavouring agent. A long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group.

   

2-Hydroxycinnamic acid

(2E)-3-(2-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


2-coumaric acid, also known as o-coumaric acid, is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. It is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acids: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. 2-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 2-Hydroxycinnamic acid exists in all living organisms, ranging from bacteria to humans. 2-Hydroxycinnamic acid has been found in a few different foods, such as corns, hard wheats, and olives and in a lower concentration in pomegranates, american cranberries, and peanuts. 2-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as carrots, soy beans, ryes, rye bread, and turmerics. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. o-Coumaric acid is found in many foods, some of which are common wheat, date, bilberry, and corn. 2-coumaric acid is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. 2-Hydroxycinnamic acid is a natural product found in Mikania glomerata, Coffea arabica, and other organisms with data available. See also: Ipomoea aquatica leaf (part of). The trans-isomer of 2-coumaric acid. o-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=583-17-5 (retrieved 2024-07-01) (CAS RN: 583-17-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

BAS 490 F

kresoxim-methyl

C18H19NO4 (313.1314)


D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 154 Kresoxim-methyl (BAS 490 F), a Strobilurin-based fungicide, inhibits the respiration at the complex III (cytochrome bc1 complex). Kresoxim-methyl binds to complex III from yeast with an apparent Kd of 0.07 μM proving a high affinity for this enzyme[1][2].

   

Pirimicarb

Dimethylcarbamic acid 2-(dimethylamino)-5,6-dimethyl-4-pyrimidinyl ester

C11H18N4O2 (238.143)


CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6664; ORIGINAL_PRECURSOR_SCAN_NO 6663 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6584; ORIGINAL_PRECURSOR_SCAN_NO 6582 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6632; ORIGINAL_PRECURSOR_SCAN_NO 6631 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6671; ORIGINAL_PRECURSOR_SCAN_NO 6669 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6662; ORIGINAL_PRECURSOR_SCAN_NO 6661 CONFIDENCE standard compound; INTERNAL_ID 44; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2711 CONFIDENCE standard compound; INTERNAL_ID 8417 CONFIDENCE standard compound; INTERNAL_ID 4039 CONFIDENCE standard compound; INTERNAL_ID 2577 D010575 - Pesticides > D007306 - Insecticides KEIO_ID P177; [MS3] KO009152 KEIO_ID P177; [MS3] KO009153 KEIO_ID P177; [MS2] KO009151 D016573 - Agrochemicals KEIO_ID P177

   

D-alpha-Aminobutyric acid

alpha-Aminobutyric acid, (+-)-isomer

C4H9NO2 (103.0633)


D-alpha-Aminobutyric acid (AABA), also known as alpha-aminobutyrate, (R)-2-aminobutanoic acid or D-homoalanine, belongs to the class of organic compounds known as D-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-alpha-aminobutyric acid is an optically active form of alpha-aminobutyric acid having D-configuration. It is an enantiomer of a L-alpha-aminobutyric acid and a non-proteinogenic amino acid. Alpha-aminobutyric acid is one of the three isomers of aminobutyric acid. The two others are the neurotransmitter Gamma-Aminobutyric acid (GABA) and Beta-Aminobutyric acid (BABA) which is known for inducing plant disease resistance. Optically active organic compounds found in meteorites typically exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. D-enantiomers of non-proteinogenic amino acids are known to inhibit aerobic microorganisms. D-alpha-aminobutyric acid has been shown to inhibit microbial iron reduction by a number of Geobacter strains including Geobacter bemidjiensis, Geobacter metallireducens and Geopsychrobacter electrodiphilus (PMID: 25695622). D-alpha-Aminobutyric acid is a known substrate of D-amino acid oxidase (PMID: 6127341). Constituent of seedlings of Glycine max (soybean), Dolichos lablab (hyacinth bean), Canavalia gladiata (swordbean), Arachis hypogaea (peanut), Pisum sativum (pea), Phaseolus vulgaris (kidney bean) and Vigna sesquipedalis (asparagus bean) after hydrolysis D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Tryptophol

3-(2-Hydroxyethyl)-1H-indole

C10H11NO (161.0841)


Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

2-Amino-6-[(1R,2S)-1,2,3-trihydroxypropyl]-7,8-dihydro-3H-pteridin-4-one

2-Amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-dihydropteridine

C9H13N5O4 (255.0967)


7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].

   

Fenpyroximate

Pesticide4_Fenpyroximate_C24H27N3O4_tert-Butyl 4-[({[(1E)-(1,3-dimethyl-5-phenoxy-1H-pyrazol-4-yl)methylidene]amino}oxy)methyl]benzoate

C24H27N3O4 (421.2001)


CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10501; ORIGINAL_PRECURSOR_SCAN_NO 10500 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10529; ORIGINAL_PRECURSOR_SCAN_NO 10528 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10568; ORIGINAL_PRECURSOR_SCAN_NO 10566 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10573; ORIGINAL_PRECURSOR_SCAN_NO 10568 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10546; ORIGINAL_PRECURSOR_SCAN_NO 10545 CONFIDENCE standard compound; INTERNAL_ID 254; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10595; ORIGINAL_PRECURSOR_SCAN_NO 10594

   

Guanidinosuccinic acid

(2S)-2-(diaminomethylideneamino)butanedioic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.

   

L-2,4-diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


L-3-Amino-isobutanoic acid is a component of branched-chain amino acid biosynthesis and metabolism. It can also be used in pyrimidine metabolism. L-3-Amino-isobutanoic acid is produced from S-methylmalonate semialdehyde by the enzyme 4-aminobutyrate aminotransferase. KEIO_ID D038 L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

L-Aspartic acid

(2S)-2-aminobutanedioic acid

C4H7NO4 (133.0375)


Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets. [Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

Pirimiphos-methyl

O-(2-(diethylamino)-6-Methyl-4-pyrimidinyl) O,O- dimethylphosphorothioate lic

C11H20N3O3PS (305.0963)


CONFIDENCE standard compound; INTERNAL_ID 4028 CONFIDENCE standard compound; INTERNAL_ID 2575 CONFIDENCE standard compound; INTERNAL_ID 8410 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Bufotenin

3-(2-(Dimethylamino)ethyl)-1H-indol-5-ol (acd/name 4.0)

C12H16N2O (204.1263)


A hallucinogenic serotonin analog found in frog or toad skins, mushrooms, higher plants, and mammals, especially in the brains, plasma, and urine of schizophrenics. Bufotenin has been used as a tool in CNS studies and misused as a psychedelic. Bufotenin (5-OH-DMT), is a tryptamine related to the neurotransmitter serotonin. It is an alkaloid found in the skin of some species of toads; in mushrooms, higher plants, and mammals. Bufotenin is a chemical constituent in the venom and eggs of several species of toads belonging to the Bufo genus, but most notably in the Colorado River toad (Bufo alvarius) as it is the only toad species in which bufotenin is present in large enough quantities for a psychoactive effect. Extracts of toad venom, containing bufotenin and other bioactive compounds, have been used in some traditional medicines (probably derived from Bufo gargarizans), which has been used medicinally for centuries in China. Bufotenin is a constituent of the seeds of Anadenanthera colubrina and Anadenanthera peregrina trees. Anadenanthera seeds have been used as an ingredient in psychedelic snuff preparations by indigenous cultures of the Caribbean, Central and South America. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Tridemorph

2,6-Dimethyl-N-tridecyl-morpholine

C19H39NO (297.3031)


Systemic eradicant cereal fungicide Tridemorph is a fungicide. It was developed in the 1960s by the German multinational BASF who sell tridemorph under the trade name Calixin. It is used to control the fungus Erysiphe graminis in cereals, Mycosphaerella species in bananas, and Caticum solmonicolor in tea. Tridemorph is applied onto many crops across the world, but very little data on usage and production is in the public domain. In high doses it has been shown to have teratogenic effects. These effect are manifested in edemas, hemorrhages, hematomas, abnormal development of the brain (hydrocephalia), visceral cranium (micrognathia, cleft palate) and genitourinary system (hydronephrosis), in decreased size of pelvic bones, shoulder girdle, front and hind limbs, etc. (PMID 7324433

   

Methohexital

5-Allyl-1-methyl-5-(1-methyl-2-pentynyl)-2,4,6(1H,3H,5H)-pyrimidinetrione

C14H18N2O3 (262.1317)


Methohexital is only found in individuals that have used or taken this drug. It is an intravenous anesthetic with a short duration of action that may be used for induction of anesthesia. [PubChem]Methohexital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

N4-Acetylsulfamethoxazole

N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}ethanimidic acid

C12H13N3O4S (295.0627)


N4-Acetylsulfamethoxazole is a metabolite of the sulfonamide bacteriostatic antibiotic sulfamethoxazole. Sulfamethoxazole is metabolized via acetylation catalyzed by liver extramitochondrial N-acetyl transferases. Acetylsulfamethoxazole is excreted in urine. Acetylsulfamethoxazole and sulfamethoxazole can be used as a probe for the molecular percentage enrichment of liver extramitochondrial acetyl-CoA. N4-Acetylsulfamethoxazole can be used as a reference for measuring sulfamethoxazole impurities and waste determination (PMID: 15307787). It is one of the critical aspects of urine and stone analysis (PMID: 3811034) and its quantitative determination in body fluids could be performed by reversed-phase high-performance liquid chromatography, a rapid, precise and simple procedure (PMID: 6668314). It is also reported the renal excretion rate of the metabolite N4-acetylsulfamethoxazole is not dependent on the urinary pH (PMID: 670346). N4-Acetylsulfamethoxazole is only found in individuals who have consumed the drug sulfamethoxazole. D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 299

   

2'-Deoxyinosine triphosphate

{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(6-oxo-6,9-dihydro-3H-purin-9-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid

C10H15N4O13P3 (491.9848)


2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Mevalonic acid

beta,delta-Dihydroxy-beta-methylvaleric acid

C6H12O4 (148.0736)


Mevalonic acid, also known as MVA, mevalonate, or hiochic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Mevalonic acid is a key organic compound in biochemistry. It is found in most higher organisms ranging from plants to animals. Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes (in plants) and steroids (in animals). Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. The production of mevalonic acid by the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, is the rate-limiting step in the biosynthesis of cholesterol (PMID: 12872277). The cholesterol biosynthetic pathway has three major steps: (1) acetate to mevalonate, (2) mevalonate to squalene, and (3) squalene to cholesterol. In the first step, which catalyzed by thiolase, two acetyl-CoA molecules form acetoacetyl-CoA and one CoA molecule is released, then the acetoacetyl-CoA reacts with another molecule of acetyl-CoA and generates 3-hydroxy-3-methylglutaryl-CoA (HMGCoA). The enzyme responsible for this reaction is 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase): In the pathway to synthesize cholesterol, one of the HMG-CoA carboxyl groups undergoes reduction to an alcohol, releasing CoA, leading to the formation of mevalonate, a six carbon compound. This reaction is catalyzed by hydroxy-methylglutaryl-CoA reductase, In the second step (mevalonate to squalene) mevalonate receives a phosphoryl group from ATP to form 5-phosphomevalonate. This compound accepts another phosphate to generate mevalonate-5-pyrophosphate. After a third phosphorylation, the compound is decarboxylated, loses water, and generates isopentenyl pyrophosphate (IPP). Then through successive condensations, IPP forms squalene, a terpene hydrocarbon that contains 30 carbon atoms. By cyclization and other changes, this compound will finally result in cholesterol. Mevalonic acid is found, on average, in the highest concentration within a few different foods, such as apples, corns, and wild carrots and in a lower concentration in garden tomato (var.), pepper (C. frutescens), and cucumbers. Mevalonic acid has also been detected, but not quantified in, several different foods, such as sweet oranges, potato, milk (cow), cabbages, and white cabbages. This could make mevalonic acid a potential biomarker for the consumption of these foods. Plasma concentrations and urinary excretion of MVA are decreased by HMG-CoA reductase inhibitor drugs such as pravastatin, simvastatin, and atorvastatin (PMID: 8808497). Mevalonic acid (MVA) is a key organic compound in biochemistry. The anion of mevalonic acid, the predominant form in biological media, is known as mevalonate. This compound is of major pharmaceutical importance. Drugs, such as the statins, stop the production of mevalonate by inhibiting HMG-CoA reductase. [Wikipedia]. Mevalonic acid is found in many foods, some of which are pepper (c. frutescens), cabbage, wild carrot, and white cabbage.

   

Ribose 1-phosphate

{[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}phosphonic acid

C5H11O8P (230.0192)


Ribose 1-phosphate, also known as alpha-D-ribofuranose 1-phosphate or 1-O-phosphono-A-D-ribofuranose, is a member of the class of compounds known as pentoses. Pentoses are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Ribose 1-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Ribose 1-phosphate can be found in a number of food items such as cassava, capers, pine nut, and wheat, which makes ribose 1-phosphate a potential biomarker for the consumption of these food products. Ribose 1-phosphate can be found primarily in cellular cytoplasm. Ribose 1-phosphate exists in all living species, ranging from bacteria to humans. In humans, ribose 1-phosphate is involved in several metabolic pathways, some of which include pyrimidine metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, and azathioprine action pathway. Ribose 1-phosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, gout or kelley-seegmiller syndrome, transaldolase deficiency, and UMP synthase deficiency (orotic aciduria). Ribose 1-phosphate is an intermediate in the metabolism of Pyrimidine and the metabolism of Nicotinate and nicotinamide. It is a substrate for Uridine phosphorylase 2, Phosphoglucomutase, Purine nucleoside phosphorylase and Uridine phosphorylase 1. Ribose 1-phosphate can be formed from guanosine through the action of purine nucleoside phosphorylase. Ribose 1-phosphate can also act as a ribose donor in the synthesis of xanthosine as catalyzed by the same enzyme (purine nucleoside phosphorylase). The presence of guanase, which irreversibly converts guanine to xanthine, affects the overall process of guanosine transformation. As a result of this purine pathway, guanosine is converted into xanthosine, thus overcoming the lack of guanosine deaminase in mammals. The activated ribose moiety in Ribose 1-phosphate which stems from the catabolism of purine nucleosides can be transferred to uracil and, in the presence of ATP, used for the synthesis of pyrimidine nucleotides; therefore, purine nucleosides can act as ribose donors for the salvage of pyrimidine bases. (PMID: 9133638). COVID info from COVID-19 Disease Map Corona-virus KEIO_ID R017 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

17-beta-Estradiol glucuronide

(2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(14S,15S)-5-hydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-yl]oxy}oxane-2-carboxylic acid

C24H32O8 (448.2097)


17-beta-Estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 17-beta-estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

tropinone

8-methyl-8-azabicyclo[3.2.1]octan-3-one

C8H13NO (139.0997)


Tropinone, also known as 3-tropanone, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Tropinone is soluble (in water) and an extremely weak acidic compound (based on its pKa). Tropinone can be found in a number of food items such as walnut, japanese persimmon, komatsuna, and chicory roots, which makes tropinone a potential biomarker for the consumption of these food products. Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone . KEIO_ID T061 Tropinone, an alkaloid, acts as a synthetic intermediate to?Atropine[1].

   

Allidochlor

2-chloro-N,N-bis(prop-2-en-1-yl)acetamide

C8H12ClNO (173.0607)


   

Brompheniramine

3-(4-Bromophenyl)-N,N-dimethyl-3-(2-pyridinyl)-1-propanamine

C16H19BrN2 (318.0732)


Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. [HMDB] Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Vernam

N,N-dipropyl(propylsulfanyl)formamide

C10H21NOS (203.1344)


   

Cyclobenzaprine

dimethyl(3-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-ylidene}propyl)amine

C20H21N (275.1674)


Cyclobenzaprine is a skeletal muscle relaxant and a central nervous system (CNS) depressant. Cyclobenzaprine acts on the locus coeruleus where it results in increased norepinephrine release, potentially through the gamma fibers which innervate and inhibit the alpha motor neurons in the ventral horn of the spinal cord. It is structurally similar to Amitriptyline, differing by only one double bond. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Azocene

beta-(4-Chlorophenoxy)-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol

C14H18ClN3O2 (295.1087)


CONFIDENCE standard compound; INTERNAL_ID 741; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9290; ORIGINAL_PRECURSOR_SCAN_NO 9289 CONFIDENCE standard compound; INTERNAL_ID 741; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9319; ORIGINAL_PRECURSOR_SCAN_NO 9317 INTERNAL_ID 8442; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8442 CONFIDENCE standard compound; INTERNAL_ID 2582 D016573 - Agrochemicals D010575 - Pesticides

   

Testosterone Decanoate

Testosterone Decanoate

C29H46O3 (442.3447)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

spirodiclofen

Pesticide7_Spirodiclofen_C21H24Cl2O4_Butanoic acid, 2,2-dimethyl-, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl ester

C21H24Cl2O4 (410.1052)


   

Phendimetrazine

Phendimetrazine tartrate, (2S-trans(R-(r*,r*)))-isomer

C12H17NO (191.131)


Phendimetrazine is a weight loss medication. Phendimetrazine is chemically related to amphetamines and is a Schedule III drug under the Convention on Psychotropic Substances. In the United States, phendimetrazine is a Schedule III controlled substance under the Uniform Controlled Substances Act of 1970. D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Nordiazepam

7-Chloro-1,3-dihydro-5-phenyl-(2H)-1,4-benzodiazepin-2-one

C15H11ClN2O (270.056)


N-demethyldiazepam, also known as nordiazepam or calmday, is a member of the class of compounds known as 1,4-benzodiazepines. 1,4-benzodiazepines are organic compounds containing a benzene ring fused to a 1,4-azepine. N-demethyldiazepam is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-demethyldiazepam can be found in common wheat, corn, and potato, which makes N-demethyldiazepam a potential biomarker for the consumption of these food products. N-demethyldiazepam can be found primarily in blood and urine, as well as in human kidney and liver tissues. N-demethyldiazepam is a non-carcinogenic (not listed by IARC) potentially toxic compound. General supportive measures should be employed, along with intravenous fluids, and an adequate airway maintained. Hypotension may be combated by the use of norepinephrine or metaraminol. Dialysis is of limited value. Flumazenil (Anexate) is a competitive benzodiazepine receptor antagonist that can be used as an antidote for benzodiazepine overdose. In particular, flumazenil is very effective at reversing the CNS depression associated with benzodiazepines but is less effective at reversing respiratory depression. Its use, however, is controversial as it has numerous contraindications. It is contraindicated in patients who are on long-term benzodiazepines, those who have ingested a substance that lowers the seizure threshold, or in patients who have tachycardia or a history of seizures. As a general rule, medical observation and supportive care are the mainstay of treatment of benzodiazepine overdose. Although benzodiazepines are absorbed by activated charcoal, gastric decontamination with activated charcoal is not beneficial in pure benzodiazepine overdose as the risk of adverse effects often outweigh any potential benefit from the procedure. It is recommended only if benzodiazepines have been taken in combination with other drugs that may benefit from decontamination. Gastric lavage (stomach pumping) or whole bowel irrigation are also not recommended (T3DB). Nordiazepam is a metabolite of Diazepam. Diazepam, first marketed as Valium by Hoffmann-La Roche, is a benzodiazepine drug. Nordazepam, also known as desoxydemoxepam, nordiazepam and desmethyldiazepam, is a 1,4-benzodiazepine derivative. Like other benzodiazepine derivatives, it has anticonvulsant, anxiolytic, muscle relaxant and sedative properties. (Wikipedia) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3608

   

Hexadecanedioic acid

N-Tetradecane-omega,omega-dicarboxylic acid

C16H30O4 (286.2144)


Hexadecanedioic acid, also known as thapsic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Hexadecanedioic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in the liver (PMID: 4372285). It has antitumor activity (PMID: 14987827). Hexadecanedioic acid is activated by mitochondrial and microsomal fractions in liver (PMID 4372285). It has an antitumor activity (PMID 14987827). Hexadecanedioic acid is found in sweet cherry and potato. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

Methoxyfenozide

3-Methoxy-2-methylbenzoic acid 2-(3,5-dimethylbenzoyl)-2-(1,1-dimethylethyl)hydrazide

C22H28N2O3 (368.21)


CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9207; ORIGINAL_PRECURSOR_SCAN_NO 9204 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4782; ORIGINAL_PRECURSOR_SCAN_NO 4777 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4744; ORIGINAL_PRECURSOR_SCAN_NO 4743 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9204; ORIGINAL_PRECURSOR_SCAN_NO 9202 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9198; ORIGINAL_PRECURSOR_SCAN_NO 9195 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4749; ORIGINAL_PRECURSOR_SCAN_NO 4745 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4763; ORIGINAL_PRECURSOR_SCAN_NO 4760 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9185; ORIGINAL_PRECURSOR_SCAN_NO 9184 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4756; ORIGINAL_PRECURSOR_SCAN_NO 4754 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9149; ORIGINAL_PRECURSOR_SCAN_NO 9146 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9175; ORIGINAL_PRECURSOR_SCAN_NO 9172 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Cyclohexanecarboxylic acid

Cyclohexanecarboxylic acid, sodium salt, 11C-labeled

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a flavouring ingredien Flavouring ingredient KEIO_ID C180 Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

But-2-enoic acid

beta-Methylacrylic acid

C4H6O2 (86.0368)


But-2-enoic acid, also known as (2E)-2-butenoate or alpha-crotonic acid, belongs to the class of organic compounds known as straight chain organic acids. These are organic acids with a straight aliphatic chain. But-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Food flavour component KEIO_ID C093 NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

Tetramethrin

2,2-Dimethyl-3-(2-methylpropenyl)cyclopropanecarboxylic acid, ester with N-(hydroxymethyl)-1-cyclo hexene 1,2-dicarboximide

C19H25NO4 (331.1783)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals

   

Fluocinonide

2-[(1S,2S,4R,8S,9S,11S,12R,13S,19S)-12,19-difluoro-11-hydroxy-6,6,9,13-tetramethyl-16-oxo-5,7-dioxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-14,17-dien-8-yl]-2-oxoethyl acetate

C26H32F2O7 (494.2116)


Fluocinonide is only found in individuals that have used or taken this drug. It is a topical glucocorticoid used in the treatment of eczema. [PubChem]Fluocinonide is a potent glucocorticoid steroid used topically as anti-inflammatory agent for the treatment of skin disorders such as eczema. It relieves itching, redness, dryness, crusting, scaling, inflammation, and discomfort. Fluocinonide binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents

   

Butabarbital

2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-ethyl-5-(1-methylpropyl)-, monosodium salt

C10H16N2O3 (212.1161)


Butabarbital (trade name Butisol) is a prescription barbiturate sleep aid. Butabarbital has a particularly fast onset of effects and short duration of action compared to other barbiturates, which makes it useful for certain applications such as treating severe insomnia and relieving anxiety before surgical procedures; however it is also relatively dangerous particularly when combined with alcohol, and so is now rarely used, although it is still prescribed in some Eastern European and South American countries. Its short duration of action gives butabarbital a high abuse potential, comparable to secobarbital. [Wikipedia] D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate

   

Phosphatidylcholine O-34:2

Phosphorodithioic acid, O,O-diethyl S-((ethylthio)methyl) ester

C7H17O2PS3 (260.0128)


Phosphatidylcholine O-34:2, also known as Thimet or O,O-Diethyl S-ethylmercaptomethyl dithiophosphate, is classified as a member of the Dithiophosphate O-esters. Dithiophosphate O-esters are o-ester derivatives of dithiophosphates, with the general structure RSP(O)(O)=S (R = organyl group). Phosphatidylcholine O-34:2 is a non-carcinogenic (not listed by IARC) potentially toxic compound D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Dicyclomine

2-(Diethylamino)ethyl 1-cyclohexylcyclohexanecarboxylic acid

C19H35NO2 (309.2668)


Dicyclomine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic and in urinary incontinence. It has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. [PubChem]Action is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

3,3'-Dimethylbenzidine

3,3-dimethyl-[1,1-biphenyl]-4,4-diamine

C14H16N2 (212.1313)


CONFIDENCE standard compound; INTERNAL_ID 2434

   

Penciclovir

2-amino-9-[4-hydroxy-3-(hydroxymethyl)butyl]-6,9-dihydro-3H-purin-6-one

C10H15N5O3 (253.1175)


Penciclovir is only found in individuals that have used or taken this drug. It is a guanine analogue antiviral drug used for the treatment of various herpesvirus infections. It is a nucleoside analogue which exhibits low toxicity and good selectivity. [Wikipedia]Penciclovir has in vitro activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). In cells infected with HSV-1 or HSV-2, viral thymidine kinase phosphorylates penciclovir to a monophosphate form. The monophosphate form of the drug is then converted to penciclovir triphosphate by cellular kinases. The intracellular triphosphate of penciclovir is retained in vitro inside HSV-infected cells for 10-20 hours, compared with 0.7-1 hour for acyclovir. in vitro studies show that penciclovir triphosphate selectively inhibits viral DNA polymerase by competing with deoxyguanosine triphosphate. Inhibition of DNA synthesis of virus-infected cells inhibits viral replication. In cells not infected with HSV, DNA synthesis is unaltered. Resistant mutants of HSV can occur from qualitative changes in viral thymidine kinase or DNA polymerase. The most commonly encountered acyclovir-resistant mutants that are deficient in viral thymidine kinase are also resistant to penciclovir. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3288 KEIO_ID P157; [MS2] KO009149 KEIO_ID P157 Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].

   

Robinetin

4H-1-Benzopyran-4-one, 3,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O7 (302.0427)


Robinetin is a pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. It has a role as a plant metabolite. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Robinetin is a natural product found in Acacia mearnsii, Intsia bijuga, and other organisms with data available. A pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5]. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5].

   

N-Acetylanthranilate

2-(Acetylamino)-benzoic acid

C9H9NO3 (179.0582)


   

Taurocyamine

2-[(diaminomethylidene)amino]ethane-1-sulfonic acid

C3H9N3O3S (167.0365)


Taurocyamine is a guanidino-taurine analogue derived from taurine. It is an intermediate of taurine and hypotaurine metabolism. The concentration of taurocyamine present in the human urine and serum could be as low as 8-78 pmol/ml. (PMID: 6520173) Plasma levels of taurocyamine are significantly increased in patients with chronic renal failure with or without hemodialysis. (PMID: 10516995). Taurocyamine is an endogenous alkaline "shifter". It effectively reduces the extent of brain intracellular lactic acidosis brought about by anoxic insult. A pH alkaline shift may protect the brain against the deleterious effects of lactic acidosis. (PMID: 8241459). Taurocyamine is an inhibitor of taurine transport and a glycine receptor antagonist in the brain (PMID: 12411417). [HMDB] Taurocyamine is a guanidino-taurine analogue derived from taurine. It is an intermediate of taurine and hypotaurine metabolism. The concentration of taurocyamine present in the human urine and serum could be as low as 8-78 pmol/ml. (PMID: 6520173) Plasma levels of taurocyamine are significantly increased in patients with chronic renal failure with or without hemodialysis. (PMID: 10516995). Taurocyamine is an endogenous alkaline "shifter". It effectively reduces the extent of brain intracellular lactic acidosis brought about by anoxic insult. A pH alkaline shift may protect the brain against the deleterious effects of lactic acidosis. (PMID: 8241459). Taurocyamine is an inhibitor of taurine transport and a glycine receptor antagonist in the brain (PMID: 12411417).

   

D-Arabinose

WURCS=2.0/1,1,0/[a122h-1b_1-5]/1/

C5H10O5 (150.0528)


D-Arabinose (CAS: 10323-20-3) belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms. Outside of the human body, D-arabinose has been detected, but not quantified in, sweet basils and tamarinds. This could make D-arabinose a potential biomarker for the consumption of these foods. Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. D-Arabinose is found in sweet basil and tamarind. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

Confertin

Anhydrocumanin

C15H20O3 (248.1412)


A natural product found in Inula hupehensis. A pseudoguaianolide that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by an oxo group at position 5, methyl groups at positions 4a and 8 and a methylidene group at position 3. It has been isolated from the aerial parts of Inula hupehensis.

   

Punicic acid

cis-9, trans-11, trans-13-octadecatrienoic acid

C18H30O2 (278.2246)


alpha-Eleostearic acid is found in bitter gourd. alpha-Eleostearic acid is isolated from seed oil of Momordica charantia (bitter melon Isolated from seed oil of Momordica charantia (bitter melon). alpha-Eleostearic acid is found in bitter gourd and fruits.

   

Diguanosine tetraphosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C20H28N10O21P4 (868.0381)


P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).

   

2-Furoic acid

furan-2-carboxylic acid

C5H4O3 (112.016)


Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

3-(4-hydroxyphenyl)lactate

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.

   

Tetraphenylarsonium

Tetraphenylarsonium

C24H20As+ (383.0781)


   

benz(a)acridine

Benzo[a]acridine

C17H11N (229.0891)


CONFIDENCE standard compound; INTERNAL_ID 8030 CONFIDENCE standard compound; INTERNAL_ID 10

   

Hydrocortisoni acetas

11beta,17,21-trihydroxypregn-4-ene-3,20-dione, 21-acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

Amdinocillin

(2S,5R,6R)-6-[(Azepan-1-ylmethylidene)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C15H23N3O3S (325.146)


Amdinocillin is only found in individuals that have used or taken this drug. It is an amidinopenicillanic acid derivative with broad spectrum antibacterial action. It is poorly absorbed if given orally and is used in urinary infections and typhus. [PubChem]Amdinocillin is a stong and specific antagonist of Penicillin Binding Protein-2 (PBP 2). It is active against gram negative bacteria, preventing cell wall synthesis by inhibiting the activity of PBP2. PBP2 is a peptidoglycan elongation initiating enzyme. Peptidoglycan is a polymer of sugars and amino acids that is the main component of bacterial cell walls. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

N-Methylalanine

N-Methylalanine hydrochloride, (DL-ala)-isomer

C4H9NO2 (103.0633)


N-Methylalanine, also known as (S)-2-methylaminopropanoate or N-methyl-L-alanine, is classified as an alanine or an alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Methylalanine is considered to be soluble (in water) and acidic. (ChemoSummarizer) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M028

   

Toremifene

(2-{4-[(1Z)-4-chloro-1,2-diphenylbut-1-en-1-yl]phenoxy}ethyl)dimethylamine

C26H28ClNO (405.1859)


Toremifene is only found in individuals that have used or taken this drug. It is a first generation nonsteroidal selective estrogen receptor modulator (SERM) that is structurally related to tamoxifen. Like tamoxifen, it is an estrogen agonist for bone tissue and cholesterol metabolism but is antagonistic on mammary and uterine tissue. [PubChem]Toremifene is a nonsteroidal triphenylethylene derivative. Toremifene binds to estrogen receptors and may exert estrogenic, antiestrogenic, or both activities, depending upon the duration of treatment, animal species, gender, target organ, or endpoint selected. The antitumor effect of toremifene in breast cancer is believed to be mainly due to its antiestrogenic effects, in other words, its ability to compete with estrogen for binding sites in the cancer, blocking the growth-stimulating effects of estrogen in the tumor. Toremifene may also inhibit tumor growth through other mechanisms, such as induction of apoptosis, regulation of oncogene expression, and growth factors. L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BA - Anti-estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1-Hydroxy-2-naphthoic acid

1-Hydroxy-2-naphthoic acid, monosodium salt

C11H8O3 (188.0473)


1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

D-Leucic acid

delta-2-Hydroxy-4-methylpentanoic acid

C6H12O3 (132.0786)


D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). [HMDB] D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H091 (R)-Leucic acid is an amino acid metabolite[1].

   

9-Fluorenone

Fluoren-9-one

C13H8O (180.0575)


CONFIDENCE standard compound; INTERNAL_ID 11

   

Methyl beta-D-glucopyranoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol

C7H14O6 (194.079)


Methyl beta-D-glucopyranoside is found in cereals and cereal products. Methyl beta-D-glucopyranoside is present in Medicago sativa (alfalfa Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

Palatinose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Trehalose 6-phosphate

{[(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methoxy}phosphonic acid

C12H23O14P (422.0825)


Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. [HMDB]. Trehalose 6-phosphate is found in many foods, some of which are barley, cashew nut, kohlrabi, and american butterfish. Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. Trehalose 6-phosphate has been found to be a microbial metabolite in Escherichia, Mycobacterium and Saccharomyces (UniProt). KEIO_ID T065; [MS2] KO009301 D004791 - Enzyme Inhibitors KEIO_ID T065

   

Benzo[b]fluoranthene

pentacyclo[10.7.1.0²,⁷.0⁸,²⁰.0¹³,¹⁸]icosa-1(19),2,4,6,8(20),9,11,13,15,17-decaene

C20H12 (252.0939)


   

N-Acetyl-D-Glucosamine 6-Phosphate

{[(2R,3S,4R,5R)-5-acetamido-3,4,6-trihydroxyoxan-2-yl]methoxy}phosphonic acid

C8H16NO9P (301.0563)


N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. [HMDB] N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. KEIO_ID A144

   

Deoxyribose 1-phosphate

{[(4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}phosphonic acid

C5H11O7P (214.0242)


Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. [HMDB] Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. COVID info from COVID-19 Disease Map KEIO_ID D013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Glycyrrhizin

5-[(6-carboxy-3,4,5-trihydroxyoxan-2-yl)oxy]-6-[(11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,4-dihydroxyoxane-2-carboxylic acid

C42H62O16 (822.4038)


Licoricesaponin H2 is found in herbs and spices. Licoricesaponin H2 is a constituent of Glycyrrhiza uralensis (Chinese licorice). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Glycyrrhiza glabra (liquorice). Nutriceutical with anticancer props. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents KEIO_ID G057 Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Homocarnosine

(2S)-2-(4-aminobutanamido)-3-(1H-imidazol-4-yl)propanoic acid

C10H16N4O3 (240.1222)


Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573). Increased concentration of CSF homocarnosine has been found in familial spastic paraplegia. (PMID 842287). Homocarnosinosis (an inherited disorder, OMIM 236130) is characterized by an elevated level of the dipeptide homocarnosine (Hca) in the Cerebrospinal fluid (CSF) and the brain and by carnosinuria and serum carnosinase deficiency, and can co-exist with paraplegia, retinitis pigmentosa, and a progressive mental deficiency. (PMID 3736769). In glial tumors of human brain the content of homocarnosine has been found to be lower than in brain tissue (PMID 1032224), while an increase in content of homocarnosine was observed in brain tissue of animals under experimental trauma of cranium. (PMID 1025883). Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H013; [MS3] KO008992 KEIO_ID H013; [MS2] KO008991 KEIO_ID H013

   

Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


KEIO_ID H096

   

Methyl sulfate

Methyl hydrogen sulphuric acid

CH4O4S (111.983)


KEIO_ID M062

   

Propynoic acid

Propiolic acid, monosodium salt

C3H2O2 (70.0055)


Propynoic acid, also known as propiolic acid, is involved in propanoate metabolism and is interconverted into 2-propyn-1-al by mitochondrial aldehyde dehydrogenase. Propynoic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6°C and boil at about 144°C with decomposition. It is soluble in water and possesses an odour resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). It undergoes bromination to give dibromoacrylic acid. With hydrogen chloride it forms chloroacrylic acid. Its ethyl ester condenses with hydrazine to form pyrazolone. Propynoic acid forms a characteristic explosive silver salt upon the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes upon warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone (Wikipedia). Propynoic acid is involved in propanoate metabolism and is interconverted between 2-propyn1-al and propynoic acid by mitochondrial aldehyde dehydrogenase. Propiolic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6 degree centigrade, and boil at about 144 degree centigrade with decomposition. It is soluble in water and possesses an odor resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). Bromine converts it into dibromoacrylic acid, and it gives with hydrochloric acid O-chloracrylic acid. It forms a characteristic explosive silver salt on the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes on warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone. [HMDB] KEIO_ID P040

   

Z-Gly-Pro

Carbobenzoxyglycyl-L-proline

C15H18N2O5 (306.1216)


KEIO_ID Z003; [MS3] KO009084 KEIO_ID Z003; [MS2] KO009083 KEIO_ID Z003

   

5'-Deoxyadenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-methyloxolane-3,4-diol

C10H13N5O3 (251.1018)


5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. [HMDB] 5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. KEIO_ID D082; [MS2] KO008948 KEIO_ID D082 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1]. 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1].

   

Dimethyl malate

(3S)-2-hydroxy-2,3-dimethylbutanedioic acid

C6H10O5 (162.0528)


KEIO_ID D083

   

Cyanidin-3,5-diglucoside

2-(3,4-dihydroxyphenyl)-7-hydroxy-3,5-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-1λ⁴-chromen-1-ylium

[C27H31O16]+ (611.1612)


Cyanidin-3,5-diglucoside is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Cyanidin-3,5-diglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Cyanidin-3,5-diglucoside can be found in a number of food items such as winged bean, evening primrose, durian, and peppermint, which makes cyanidin-3,5-diglucoside a potential biomarker for the consumption of these food products. Cyanidin 3,5-diglucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2611-67-8 (retrieved 2024-09-27) (CAS RN: 2611-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Malvin

Malvidin-3, 5-di-O-glucoside chloride

[C29H35O17]+ (655.1874)


Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA99_Malvin_pos_10eV.txt [Raw Data] CBA99_Malvin_pos_30eV.txt [Raw Data] CBA99_Malvin_pos_20eV.txt [Raw Data] CBA99_Malvin_pos_40eV.txt [Raw Data] CBA99_Malvin_pos_50eV.txt

   

Peonidin-3-glucoside

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C22H23O11]+ (463.124)


Peonidin-3-glucoside has been proposed by Wu et al. [PMID: 12097661] to be a secondary metabolite of cyanidin-3-glucoside which may be methylated by liver enzymes during phase II metabolism. Peonidin 3-glucoside is isolated from grapes and many other plant spp. It is found in red wine, common wheat, and lowbush blueberry. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Glucotropaeolin

{[(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

C14H19NO9S2 (409.0501)


Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Cyanidin 3-O-sophoroside

Cyanidin-3-O-(2-O-beta-glucopyranosyl-beta-glucopyranoside)

[C27H31O16]+ (611.1612)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

UDP-L-rhamnose

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({[hydroxy({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})phosphoryl]oxy})phosphinic acid

C15H24N2O16P2 (550.0601)


UDP-L-rhamnose is synthesized from UDP-D-glucose. [HMDB]. UDP-L-rhamnose is found in many foods, some of which are maitake, orange bell pepper, common mushroom, and horseradish tree. Acquisition and generation of the data is financially supported in part by CREST/JST. UDP-L-rhamnose is synthesized from UDP-D-glucose.

   

Masoprocol

4-[(2S,3R)-3-[(3,4-dihydroxyphenyl)methyl]-2-methylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.

   

Hydrastine

3-((5R)-6-methyl(5,6,7,8-tetrahydro-2H-1,3-dioxoleno[4,5-g]isoquinolin-5-yl))( 3S)-6,7-dimethoxy-3-hydroisobenzofuran-1-one

C21H21NO6 (383.1369)


Hydrastine is a member of isoquinolines. It has a role as a metabolite. Hydrastine is a natural product found in Hydrastis canadensis, Fumaria indica, and other organisms with data available. See also: Goldenseal (part of). A natural product found in Hydrastis canadensis. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.582 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.578 Hydrastine is a natural alkaloid which is present in Hydrastis canadensis and other plants of the ranunculaceae family.

   

3-hydroxyflavone

2-(3-hydroxyphenyl)chromen-4-one

C15H10O3 (238.063)


   

2-Hydroxychalcone

2-Propen-1-one,1-(2-hydroxyphenyl)-3-phenyl-, (2E)-

C15H12O2 (224.0837)


   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

7-ACA

(6R,7R)-3-(acetyloxymethyl)-7-amino-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C10H12N2O5S (272.0467)


7beta-aminocephalosporanic acid is the alpha,beta-unsaturated monocarboxylic acid that is the active nucleus for the synthesis of cephalosporins and intermediates. It is functionally related to a cephalosporanic acid. It is a tautomer of a 7beta-aminocephalosporanic acid zwitterion. 7-Aminocephalosporanic acid has been reported in Apis cerana D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

(-)-Kaur-16-en-19-oic acid

(1S,4S,5R,9S,10R,13R)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylic acid

C20H30O2 (302.2246)


(-)-kaur-16-en-19-oic acid, also known as ent-kaurenoic acid or ent-kaur-16-en-19-oate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D (-)-kaur-16-en-19-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (-)-kaur-16-en-19-oic acid can be found in sugar apple and sunflower, which makes (-)-kaur-16-en-19-oic acid a potential biomarker for the consumption of these food products. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].

   

Epi-coprostanol

(1S,2S,5R,7S,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol

C27H48O (388.3705)


Epi-coprostanol, also known as epicholestanol or presteron, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, epi-coprostanol is considered to be a sterol lipid molecule. Epi-coprostanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Epi-coprostanol is a 27 carbon stanol formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. It is a breakdown product of 5b-coprastanol and can be found in treated sewage. It is considered to be an antioxidant and is a major constituent of ambergris. [HMDB] Same as: D01527

   

alpha-Bixin

(2E,4E,6E,8E,10E,12E,14E,16Z,18E)-20-methoxy-4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid

C25H30O4 (394.2144)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Principal colouring matter of Bixa orellana (annatto) seeds [DFC] Principal colouring matter of Bixa orellana (annatto) seeds. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

5alpha-Cholestane

(1S,2S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane

C27H48 (372.3756)


5alpha-Cholestane is found in potato. Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. (Wikipedia). Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. 5alpha-Cholestane is found in potato.

   

Dehydrolithocholic acid

3-Oxo-5α-cholan-24-oic Acid

C24H38O3 (374.2821)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

5,6-Epoxy-8,11,14-eicosatrienoic acid

5,6-Epoxy-8,11,14-eicosatrienoic acid, (2alpha,3alpha(2Z,5Z,8Z))-isomer

C20H32O3 (320.2351)


5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113) [HMDB] 5,6-Epoxy-8,11,14-eicosatrienoic acid is an Epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113).

   

9,10-Epoxystearic acid

9,10-Epoxystearic acid, (trans)-isomer

C18H34O3 (298.2508)


9,10-epoxystearate, also known as 18:0(9ep) or 9,10-epoxystearic acid, 14c-acid, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, 9,10-epoxystearate is considered to be an octadecanoid lipid molecule. 9,10-epoxystearate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-epoxystearate can be found in a number of food items such as garden cress, silver linden, european chestnut, and soft-necked garlic, which makes 9,10-epoxystearate a potential biomarker for the consumption of these food products.

   

Ubiquinone 6

2-[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C39H58O4 (590.4335)


Ubiquinone-6 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-6 has just 6 isoprene units. Normally in humans it has 10. Ubiquinone-6 is an intermediate in the synthesis of Ubiquionone 10. It is an endogenouse compound but it has also been isolated from foods containing bakers yeast. Ubiquionone 10 (CoQ10) is involved in cellular respiration. It is fat-soluble and is therefore mobile in cellular membranes; it plays a unique role in the electron transport chain (ETC). In the inner bacterial membrane, electrons from NADH and succinate pass through the ETC to the oxygen, which is then reduced to water. The transfer of electrons through ETC results in the pumping of H+ across the membrane creating a proton gradient across the membrane, which is used by ATP synthase (located on the membrane) to generate ATP. Isolated from bakers yeast (Saccharomyces cerevisiae)

   

dUDP

[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H14N2O11P2 (388.0073)


dUDP is a derivative of nucleic acid UTP, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of UTP has been removed, most likely by hydrolysis . [HMDB]. dUDP is found in many foods, some of which are yardlong bean, jackfruit, parsley, and red beetroot. dUDP is a derivative of nucleic acid UTP, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of UTP has been removed, most likely by hydrolysis (Wikipedia).

   

Morphinone

(1S,5R,13R,17R)-10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-one

C17H17NO3 (283.1208)


Morphinone is a very strong opioid. It is an intermediary substance in synthesises of semi-synthetic opioids, e.g. Naloxone and Naltrexone and Oxycodone. [HMDB]. Morphinone is found in many foods, some of which are bean, kombu, winter squash, and brassicas. Morphinone is a very strong opioid. It is an intermediary substance in synthesises of semi-synthetic opioids, e.g. Naloxone and Naltrexone and Oxycodone. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Norathyriol

1,3,6,7-TETRAHYDROXY-9H-XANTHEN-9-ONE

C13H8O6 (260.0321)


A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

2-Methylcitric acid

2-hydroxy-1-methylpropane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270), which are inherited disorders. MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine (PMID: 17295121). Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270). MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine. (PMID: 17295121) [HMDB] 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

Pantetheine

2,4-dihydroxy-3,3-dimethyl-N-{2-[(2-sulfanylethyl)carbamoyl]ethyl}butanamide

C11H22N2O4S (278.13)


Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

S-Methyl GSH

2-Amino-5-((1-((carboxymethyl)amino)-3-(methylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid

C11H19N3O6S (321.0995)


S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].

   

Glyceric acid 1,3-biphosphate

(R)-2-Hydroxy-3-(phosphonooxy)-1-monoanhydride with phosphoric propanoic acid

C3H8O10P2 (265.9593)


Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).

   

Acetoacetyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H40N7O18P3S (851.1363)


Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (mitochondrial), Hydroxymethylglutaryl-CoA synthase (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), Hydroxymethylglutaryl-CoA synthase (cytoplasmic), Peroxisomal bifunctional enzyme, Acetyl-CoA acetyltransferase (cytosolic), Acetyl-CoA acetyltransferase (mitochondrial), 3-hydroxyacyl-CoA dehydrogenase type II, Succinyl-CoA:3-ketoacid-coenzyme A transferase 2 (mitochondrial), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal) and Trifunctional enzyme alpha subunit (mitochondrial). [HMDB]. Acetoacetyl-CoA is found in many foods, some of which are bog bilberry, lemon balm, pineapple, and pak choy. Acetoacetyl-CoA belongs to the class of organic compounds known as aminopiperidines. Aminopiperidines are compounds containing a piperidine that carries an amino group. Acetoacetyl-CoA is a strong basic compound (based on its pKa). In humans, acetoacetyl-CoA is involved in the metabolic disorder called the short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (HADH) pathway. Acetoacetyl-CoA is an intermediate in the metabolism of butanoate. It is a substrate for succinyl-CoA:3-ketoacid-coenzyme A transferase, hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA acetyltransferase, and 3-ketoacyl-CoA thiolase.

   

Triphosphate

Bis(dihydroxidodioxidophosphato)hydroxidooxidophosphorus

H5O10P3 (257.9096)


Triphosphate is a salt or ester containing three phosphate groups. It is the ionic form of triphosphoric acid, a condensed form of phosphoric acid. Triphosphate is an intermediate in the biosynthesis of folate, the metabolism of purine, the metabolism of porphyrin and chlorophyll, the metabolism of pyrimidine, and the metabolism of thiamine. It is a substrate for transforming protein p21/H-Ras-1, bis(5-adenosyl)-triphosphatase, ectonucleoside triphosphate diphosphohydrolase, DNA polymerase gamma subunit 1, DNA nucleotidylexotransferase, inosine triphosphate pyrophosphatase, cob(I)yrinic acid a,c-diamide adenosyltransferase (mitochondrial), thiamine-triphosphatase, DNA-directed RNA polymerase III 32 kDa polypeptide, and 6-pyruvoyl tetrahydrobiopterin synthase. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. Polyphosphates are hydrolyzed into smaller units (orthophosphates) in the gut before absorption, which may induce metabolic acidosis. The acute toxicity of polyphosphonates is low as the lowest LD50 after oral administration is > 1,000 mg/kg body weight. Polyphosphates are moderately irritating to skin and mucous membrane because of their alkalinity. No mutagenic potential was observed when TTP was tested in a Salmonella/microsome assay (Ames test) and in a chromosomal aberration assay in vitro using a Chinese hamster fibroblast cell line (Ishidate et al. 1984). Tetrasodium pyrophosphate was not mutagenic in an in vitro assay using S. cerevisiae strains and S. typhimurium strains with and without the addition of mammalian metabolic activation preparations (IPCS 1982). Reproduction studies in three generations of rats on diets with 0.5\\% TTP were performed. TTP had no effects on fertility or litter size, or on growth or survival on offspring (Hodge 1964). Triphosphoric acid, also tripolyphosphoric acid, with formula H5P3O10, is a condensed form of phosphoric acid. In polyphosphoric acids, it is the next after pyrophosphoric acid, H4P2O7, also called diphosphoric acid. Compounds such as ATP (adenosine triphosphate) are esters of triphosphoric acid. [Wikipedia]

   

CDP-ethanolamine

(2-aminoethoxy)[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C11H20N4O11P2 (446.0604)


CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.

   

Dihydrolipoamide

Dihydrolipoamide, (+-)-isomer

C8H17NOS2 (207.0752)


Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG) [HMDB]. Dihydrolipoamide is found in many foods, some of which are enokitake, mugwort, welsh onion, and tea. Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG).

   

Xanthosine 5-triphosphate

({[({[(2R,3S,4R,5R)-5-(2,6-dihydroxy-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H15N4O15P3 (523.9747)


Xanthosine 5-triphosphate (XTP) is a Guanosine triphosphate (GTP) analogue. The base of XTP, xanthine, bears a keto group instead of an amino group at C2 of the purine rings. XTP can substitute for GTP in supporting receptor-mediated adenylyl cyclase activation. XTP competitively inhibits the binding of GTP to the guanine nucleotide-binding site of retinal G-protein, transducin (TD). These suggests that GTP, ITP, and XTP are differential signal sorters and signal amplifiers at the G-protein level. G-proteins mediate signal transfer from receptors to effector systems. (PMID: 9337071). Xanthosine 5-triphosphate is an intermediate of the Purine metabolism pathway, a substrate of the enzymes dinucleoside tetraphosphatase (EC 3.6.1.17) and nucleoside-triphosphate pyrophosphatase (EC 3.6.1.19). (KEGG). Xanthosine 5-triphosphate (XTP) is a Guanosine triphosphate (GTP) analogue. The base of XTP, xanthine, bears a keto group instead of an amino group at C2 of the purine rings. XTP can substitute for GTP in supporting receptor-mediated adenylyl cyclase activation. XTP competitively inhibits the binding of GTP to the guanine nucleotide-binding site of retinal G-protein, transducin (TD). These suggests that GTP, ITP, and XTP are differential signal sorters and signal amplifiers at the G-protein level. G-proteins mediate signal transfer from receptors to effector systems. (PMID: 9337071)

   

1-Hexadecanol

Normal primary hexadecyl alcohol

C16H34O (242.261)


Cetyl alcohol, also known as 1-hexadecanol and palmityl alcohol, is a solid organic compound and a member of the alcohol class of compounds. Its chemical formula is CH3(CH2)15OH. At room temperature, cetyl alcohol takes the form of a waxy white solid or flakes. It belongs to the group of fatty alcohols. With the demise of commercial whaling, cetyl alcohol is no longer primarily produced from whale oil, but instead either as an end-product of the petroleum industry, or produced from vegetable oils such as palm oil and coconut oil. Production of cetyl alcohol from palm oil gives rise to one of its alternative names, palmityl alcohol. Flavouring ingredient. Cetyl alcohol is found in many foods, some of which are rocket salad (sspecies), soft-necked garlic, bitter gourd, and kohlrabi. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   
   

3-Mercaptopyruvic acid

beta-3-Mercapto-2-oxo-propanoic acid

C3H4O3S (119.9881)


3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .

   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate. [HMDB] Dihydroxyfumaric acid is a known generator of superoxide anions and by hydroxyl free radicals. Dihydroxyfumarate exposure can cause insulin inhibitory effects. It can spontaneously convert to hydroxypyruvate or to oxaloglycolate.

   

Ribitol 5-phosphate

D-Ribitol-5-phosphate

C5H13O8P (232.0348)


   

18-Hydroxycorticosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-15-(hydroxymethyl)-2-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O5 (362.2093)


18-Hydroxycorticosterone is a corticosteroid and a derivative of corticosterone. If it is present in sufficiently high concentrations, it can lead to serious electrolyte imbalances (an electrolyte toxin). 18-Hydroxycorticosterone serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. Chronically high levels of 18-hydroxycorticosterone are associated with at least three inborn errors of metabolism including adrenal hyperplasia type V, corticosterone methyl oxidase I deficiency, and corticosterone methyl oxidase II deficiency. Each of these conditions is characterized by excessive amounts of sodium being released in the urine (salt wasting), along with insufficient release of potassium in the urine, usually beginning in the first few weeks of life. This imbalance leads to low levels of sodium and high levels of potassium in the blood (hyponatremia and hyperkalemia, respectively). Individuals with corticosterone methyloxidase deficiency can also have high levels of acid in the blood (metabolic acidosis). Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). The hyponatremia, hyperkalemia, and metabolic acidosis associated with corticosterone methyloxidase deficiency can cause nausea, vomiting, dehydration, low blood pressure, extreme tiredness (fatigue), and muscle weakness. 11 beta,18,21-Trihydroxypregn-4-ene-3,20-dione. 18-Hydroxycorticosterone is a derivative of corticosterone. It serves as an intermediate in the synthesis of aldosterone by the enzyme aldosterone synthase in the zona glomerulosa. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Hydrogen selenide

Hydrogen selenide, 75Se-labeled

H2Se (81.9322)


Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).

   

Coformycin

Coformycin

C11H16N4O5 (284.1121)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

Nitroethane

Ethylnitronate

C2H5NO2 (75.032)


   

L-Erythrulose

(3S)-1,3,4-Trihydroxybutan-2-one

C4H8O4 (120.0423)


L-Erythrulose is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the(L-ascorbate) AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.(PMID: 10727845) [HMDB] L-Erythrulose is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the(L-ascorbate) AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.(PMID: 10727845).

   

Eicosanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-[(2-{[2-(icosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727) [HMDB] Eicosanoyl-CoA is an intermediate metabolite in the synthesis of phosphatidic acid, a substrate of lysophosphatidic acid acyltransferase with high specificity as an acyl donor. Cells and membranes of mammalian cells synthesize their glycerophospholipids and triglycerides to maintain the cellular integrity and to provide energy for cellular functions. The phospholipids are synthesized de novo in cells through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. Several isoforms of the enzyme 1-acylglycerol-3-phosphate-O-acyltransferase (EC 2.3.1.51, AGPAT) acylate lysophosphatidic acid at the sn-2 position to produce phosphatidic acid. Bile acid-CoA:amino acid N-acyltransferase (EC 2.3.1.65, BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile and can utilize Eicosanoyl-CoA as an acyl donor as well; this may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. (PMID: 17535882, 12810727).

   

Linoleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z,12Z)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H66N7O17P3S (1029.3449)


Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long-chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation. ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (PMID: 17184976, 16020546).

   

Arachidonyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H66N7O17P3S (1053.3449)


Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).

   

L-Glutamic acid 5-phosphate

(2S)-2-Amino-5-oxo-5-(phosphonooxy)pentanoic acid

C5H10NO7P (227.0195)


L-Glutamic acid 5-phosphate is an intermediate in the urea cycle and the metabolism of amino groups. It is a substrate of aldehyde dehydrogenase 18 family, member A1 [EC:2.7.2.11 1.2.1.41] (KEGG)In citrulline biosynthesis, it is a substrate of the enzyme glutamate-5-semialdehyde dehydrogenase [EC 1.2.1.41] and in proline synthesis it is a substrate of the enzyme Glutamate 5-kinase [EC 2.7.2.11] (BioCyc). L-Glutamic acid 5-phosphate is an intermediate in the urea cycle and metabolism of amino groups, a substrate of aldehyde dehydrogenase 18 family, member A1 [EC:2.7.2.11 1.2.1.41] (KEGG)

   

Oxidized Photinus luciferin

2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazol-4(5H)-one

C10H6N2O2S2 (249.9871)


   

3-Hydroxyisobutyryl-CoA

3-hydroxy-2-methylpropanoyl-CoA

C25H42N7O18P3S (853.152)


   

5-Carboxy-2-oxohept-3-enedioate

5-oxopent-3-ene-1,2,5-tricarboxylic acid

C8H8O7 (216.027)


   

(S)-3-Hydroxy-N-methylcoclaurine

4-{[(1S)-7-hydroxy-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}benzene-1,2-diol

C18H21NO4 (315.1471)


(S)-3-Hydroxy-N-methylcoclaurine is an intermediate in the biosynthesis of alkaloids (KEGG ID C05202). It is the 10th to last step in the synthesis of morphine and is converted from (s)-N-methylcoclaurine via the enzyme tyrosinase [EC:1.14.18.1]. It is then converted to (S)-reticuline. [HMDB] (S)-3-Hydroxy-N-methylcoclaurine is an intermediate in the biosynthesis of alkaloids (KEGG ID C05202). It is the 10th to last step in the synthesis of morphine and is converted from (s)-N-methylcoclaurine via the enzyme tyrosinase [EC:1.14.18.1]. It is then converted to (S)-reticuline.

   

dihydrocorticosterone

17-hydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-one

C21H32O4 (348.23)


   

20alpha-Hydroxycholesterol

(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

AC1NOTCJ

Thiourocanic acid

C6H6N2O2S (170.015)


   

Indole-5,6-quinone

5,6-dihydro-1H-indole-5,6-dione

C8H5NO2 (147.032)


Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1]. [HMDB] Indole-5,6-quinone is involved in the tyrosine metabolism pathway. More specifically, indole-5,6-quinone is an intermediate in the production of melanin. Indole-5,6-quinone is produced from 5,6-dihydroxyindole by tyrosinase [EC:1.14.18.1].

   

Selenate

Selenic acid, disodium salt, 75Se-labeled

H2O4Se (145.9118)


Selenate, also known as selenic acid, is a member of the class of compounds known as non-metal selanates. These are inorganic non-metallic compounds containing a selenate as its largest oxoanion. Selenate can be found in a number of foods such as chives, naranjillas, moth beans, other soy products, black crowberries, rapes, acorns, and Alaska blueberries. Selenates are analogous to sulfates and have similar chemistry (Wikipedia). They are highly soluble in aqueous solutions at ambient temperatures (Wikipedia). Selenate can be metabolized to methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug1) and methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug3) (PMID: 25270623). Selenate is metabolized only marginally and is excreted rapidly via urine generally (PMID: 25270623). Sodium selenate is effectively used for bio-fortification of crops hence fortifying food/feed to mitigate selenium deficiency in humans and livestock (Wikipedia). The decahydrate is a common ingredient in multivitamins and livestock feed as a source of selenium (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements

   

N(omega)-Hydroxyarginine

(2S)-2-amino-5-[(Z)-N-hydroxycarbamimidamido]pentanoic acid

C6H14N4O3 (190.1066)


N-omega-hydroxy-l-arginine, also known as 6-noha, belongs to arginine and derivatives class of compounds. Those are compounds containing arginine or a derivative thereof resulting from reaction of arginine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-omega-hydroxy-l-arginine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). N-omega-hydroxy-l-arginine can be found in a number of food items such as chinese cinnamon, chervil, sugar apple, and safflower, which makes N-omega-hydroxy-l-arginine a potential biomarker for the consumption of these food products. N(omega)-Hydroxyarginine is a product of the arginine-nitric oxide pathway, and is the first intermediate in the process catalyzed by nitric oxide synthase (NOS) (EC 1.14.13.99). NOS is a heme protein that catalyzes the oxygenation of L-arginine in the presence of NADPH to form nitric oxide and citrulline. N(omega)-Hydroxyarginine appears to interfere with cell proliferation/cell growth by inhibiting arginase, a binuclear Mn(2+) metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea (EC 3.5.3.1). Arginase has 6R-tetrahydrobiopterin (H4B) as an enzyme-bound cofactor (PMID: 11259671, 11258880, 14504282, 9735327).

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

(KDO)2-lipid IVA

alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA (E. coli)

C84H154N2O37P2 (1844.9705)


Lipid IVA glycosylated with two 3-deoxy-D-manno-octulosonic acid (KDO) residues.

   

Tetrahymanol

(3S,4aR,6aR,6bR,8aS,12aS,12bR,14aR,14bR)-4,4,6a,6b,9,9,12a,14b-octamethyl-docosahydropicen-3-ol

C30H52O (428.4018)


Tetrahymanol is involved in the terpenoid biosynthesis pathway. Tetrahymanol is produced from squalene. [HMDB] Tetrahymanol is involved in the terpenoid biosynthesis pathway. Tetrahymanol is produced from squalene.

   

Imidazolone

4,5-dihydro-1H-imidazol-5-one

C3H4N2O (84.0324)


Imidazolone is one of the major advanced glycation end (AGE) products, that accumulate in neurons in different areas of human brain tissue localized especially in human pyramidal CA4 neurons in the hippocampus in an age-dependent manner.(PubMed ID 12406185 ) [HMDB] Imidazolone is one of the major advanced glycation end (AGE) products that accumulate in neurons in different areas of human brain tissue localized especially in human pyramidal CA4 neurons in the hippocampus in an age-dependent manner (PMID: 12406185).

   

Prostaglandin E3

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.

   

beta-Erythroidine

β-Erythroidine

C16H19NO3 (273.1365)


An organic heterotetracyclic indole alkaloid isolated from the seeds and other parts of Erythrina species. It differs from the alpha isomer in having the double bond of the dihydropyranone ring located beta,gamma- to the lactone carbonyl group instead of alpha,beta-.

   

Menadiol

Menadiol bissulfobenzoate

C11H10O2 (174.0681)


Prothrombogenic vitamin Menadiol (Dihydrovitamin K3), a menaquinol analogue, is an electron donor for reversed oxidative phosphorylation in submitochondrial particles[1].

   

OCTAMETHYLTRISILOXANE

OCTAMETHYLTRISILOXANE

C8H24O2Si3 (236.1084)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D001697 - Biomedical and Dental Materials

   

Olsalazine

5-[(E)-2-(3-carboxy-4-hydroxyphenyl)diazen-1-yl]-2-hydroxybenzoic acid

C14H10N2O6 (302.0539)


Olsalazine is an anti-inflammatory drug used in the treatment of Inflammatory Bowel Disease and Ulcerative Colitis. Olsalazine is a derivative of salicylic acid. Inactive by itself (it is a prodrug), it is converted by the bacteria in the colon to mesalamine. Mesalamine works as an anti-inflammatory agent in treating inflammatory diseases of the intestines. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents D018501 - Antirheumatic Agents

   

Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


An ergoline alkaloid comprising 6-methylergoline having additional unsaturation at the 9,10-position and a carboxy group at the 8-position.

   

Mivacurium

Mivacurium mixture of isomers

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

Apraclonidine

2,6-dichloro-N1-(4,5-dihydro-1H-imidazol-2-yl)benzene-1,4-diamine

C9H10Cl2N4 (244.0282)


Apraclonidine is only found in individuals that have used or taken this drug.Apraclonidine, also known as iopidine, is a sympathomimetic used in glaucoma therapy.Apraclonidine is a relatively selective alpha2 adrenergic receptor agonist that stimulates alpha1 receptors to a lesser extent. It has a peak ocular hypotensive effect occurring at two hours post-dosing. The exact mechanism of action is unknown, but fluorophotometric studies in animals and humans suggest that Apraclonidine has a dual mechanism of action by reducing aqueous humor production through the constriction of afferent ciliary process vessels, and increasing uveoscleral outflow. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists

   

Dyclonine

1-(4-butoxyphenyl)-3-(piperidin-1-yl)propan-1-one

C18H27NO2 (289.2042)


Dyclonine is only found in individuals that have used or taken this drug. It is an oral anaesthetic found in Sucrets, an over the counter throat lozenge. It is also found in some varieties of the Cepacol sore throat spray.Dyclonine blocks both the initiation and conduction of nerve impulses by decreasing the neuronal membranes permeability to sodium ions. This reversibly stabilizes the membrane and inhibits depolarization, resulting in the failure of a propagated action potential and subsequent conduction blockade. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Chlorphenesin

3-(4-Chlorophenoxy)-1,2-propanediol

C9H11ClO3 (202.0397)


Chlorphenesin is only found in individuals that have used or taken this drug. It is a centrally acting muscle relaxant. Its mode of action is unknown. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1203)The mechanism of action of chlorphenesin is not well defined, and its effects are measured mainly by subjective responses. It is known that chlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Cefpodoxime

(6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H17N5O6S2 (427.062)


Cefpodoxime is an oral third generation cephalosporin antibiotic. It is active against most Gram positive and Gram negative bacteria. It is commonly used to treat acute otitis media, pharyngitis, and sinusitis. Cefpodoxime proxetil is a prodrug which is absorbed and de-esterified by the intestinal mucosa to Cefpodoxime. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Nandrolone phenpropionate

(1S,2R,10R,11S,14S,15S)-15-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-14-yl 3-phenylpropanoate

C27H34O3 (406.2508)


Nandrolone phenpropionate is only found in individuals that have used or taken this drug. It is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a schedule III drug in the U.S. Nandrolone is an androgen receptor agonist. The drug bound to the receptor complexes which allows it to enter the nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Prednisolone Acetate

Prednisolone 21-acetate

C23H30O6 (402.2042)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Kenacourt

Triamcinolone diacetate

C25H31FO8 (478.2003)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D004791 - Enzyme Inhibitors

   

Eutypine

Eutypine; 4-Hydroxy-3-(3-methyl-3-butene-1-ynyl)benzaldehyde

C12H10O2 (186.0681)


Eutypine is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Eutypine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eutypine can be found in common grape, which makes eutypine a potential biomarker for the consumption of this food product.

   

Triacetylene

Triacetylene; 1,3,5-Hexatriyne

C6H2 (74.0156)


   

Atisine

Anthorine

C22H33NO2 (343.2511)


A organic heterohexacyclic compound and diterpene alkaloid isolated from Aconitum anthora. In solution, it is a 2:1 mixture of readily interconvertible epimers at position 20 (the carbon attached to both the nitrogen and an oxygen atom).

   

Gnidicin

thymeleatoxin

C36H36O10 (628.2308)


   

Raupine

Sarpagan-10,17-diol

C19H22N2O2 (310.1681)


   

Thujopsene

(-)-thujopsene

C15H24 (204.1878)


A thujopsene that has (S,S,S)-configuration.

   

Valerenic acid

2-Propenoic acid, 3-[(4S,7R,7aR)-2,4,5,6,7,7a-hexahydro-3,7-dimethyl-1H-inden-4-yl]-2-methyl-, (2E)-

C15H22O2 (234.162)


Valerenic acid is found in fats and oils. Valerenic acid is a constituent of Valeriana officinalis (valerian) Valerenic acid is a sesquiterpenoid constituent of the essential oil of the Valerian plant Constituent of Valeriana officinalis (valerian) Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

Cyanobenzene

Benzonitrile; Phenyl cyanide; Cyanobenzene

C7H5N (103.0422)


   

Gamma-glutamylglutamate

(2S)-2-[(4S)-4-amino-4-carboxybutanamido]pentanedioic acid

C10H16N2O7 (276.0957)


gammaGlutamylglutamic acid is made of two glutamic acid molecules. Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. (http://en.wikipedia.org/wiki/Glutamic_acid) [HMDB] gamma-Glutamylglutamic acid is a dipeptide composed of gamma-glutamate and glutamic acid. Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serve as metabolic fuel and other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: (1) damage to mitochondria from excessively high intracellular Ca2+ (2) Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produce spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (Wikipedia).

   

Gentisein

1,3,7-Trihydroxy-9H-xanthen-9-one, 9CI

C13H8O5 (244.0372)


Gentisein is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Gentisein is a natural product found in Hypericum scabrum, Cratoxylum formosum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. Gentisein is found in alcoholic beverages. Gentisein is isolated from Gentiana lutea (yellow gentian Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].

   

Isoscutellarein

5,7,8-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.0477)


   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

Arecaidine

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

C7H11NO2 (141.079)


Arecaidine is found in nuts. Arecaidine is an alkaloid from nuts of Areca catechu (betel nuts Arecaidine is a citraconoyl group. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2]. Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

   

Dunnione

2,3,3-trimethyl-2H,3H,4H,5H-naphtho[1,2-b]furan-4,5-dione

C15H14O3 (242.0943)


   

Ramentaceone

1,4-Naphthalenedione,5-hydroxy-7-methyl-

C11H8O3 (188.0473)


   

Arborinine

9(10H)-Acridinone, 1-hydroxy-2,3-dimethoxy-10-methyl- (9ci)

C16H15NO4 (285.1001)


Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue

   

Graveoline

2-(2H-1,3-benzodioxol-5-yl)-1-methyl-1,4-dihydroquinolin-4-one

C17H13NO3 (279.0895)


Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

Indeloxazine

2-(((1H-INDEN-7-YL)OXY)METHYL)MORPHOLINE

C14H17NO2 (231.1259)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Same as: D08077

   

Sulfometuron-methyl

methyl 2-({[(4,6-dimethylpyrimidin-2-yl)carbamoyl]amino}sulfonyl)benzoate

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

2,6-Dinitrotoluene

1-Methyl-2,6-dinitrobenzene

C7H6N2O4 (182.0328)


   

Cartap

Carbamothioic acid, S,s-(2-(dimethylamino)-1,3-propanediyl) ester, monohydrochloride

C7H15N3O2S2 (237.0606)


   

Tebufenpyrad

1H-Pyrazole-5-carboxamide, 4-chloro-N-((4-(1,1-dimethylethyl)phenyl)methyl)-3-ethyl-1-methyl-

C18H24ClN3O (333.1608)


CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10180 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10149; ORIGINAL_PRECURSOR_SCAN_NO 10147 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10178 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10099; ORIGINAL_PRECURSOR_SCAN_NO 10097 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10204; ORIGINAL_PRECURSOR_SCAN_NO 10202 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10140; ORIGINAL_PRECURSOR_SCAN_NO 10138

   

Thiocarbohydrazide

1,3-Diamino-2-thiourea

CH6N4S (106.0313)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Oligomycin C

Oligomycin C

C45H74O10 (774.5282)


An oligomycin with formula C45H74O10 that is oligomycin A in which the hydroxy group that is alpha- to a macrolide keto group has been replaced by a hydrogen. It is an inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins

   

TTFB

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

16-epivellosimine

(1S,12S,13S,14R,15E)-15-ethylidene-3,17-diazapentacyclo[12.3.1.0^{2,10}.0^{4,9}.0^{12,17}]octadeca-2(10),4(9),5,7-tetraene-13-carbaldehyde

C19H20N2O (292.1576)


16-epivellosimine is a member of the class of compounds known as macroline alkaloids. Macroline alkaloids are alkaloids with a structure that is based on the tetracyclic macroline skeleton. The macroline skeleton arises by scission of the C-21 to N-4 bond of the akuammilan skeleton, and mostly occurs in bisindole alkaloids. 16-epivellosimine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 16-epivellosimine can be found in a number of food items such as bitter gourd, red raspberry, orange bell pepper, and star anise, which makes 16-epivellosimine a potential biomarker for the consumption of these food products.

   

BPP 9a

ethyl4-ethoxy-6-methylnicotinate

C53H76N14O12 (1100.5767)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Same as: D06076 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Floridin

1-{[(6R,7R)-2-carboxylato-7-{[1-hydroxy-2-(thiophen-2-yl)ethylidene]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl]methyl}pyridin-1-ium

C19H17N3O4S2 (415.066)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic It is used in food processing as a filtration agent and flocculating agent Same as: D01075

   

Levonordefrin

4-(2-amino-1-Hydroxypropyl)-1,2-benzenediol hydrochloride, (r*,r*)-(+,-)-isomer

C9H13NO3 (183.0895)


Levonordefrin is only found in individuals that have used or taken this drug. It acts as a topical nasal decongestant and vasoconstrictor, most often used in dentistry.It is designed to mimic the molecular shape of adrenaline. It binds to alpha-adrenergic receptors in the nasal mucosa. Here it can, therefore, cause vasoconstriction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].

   

alpha-Methyl-m-tyrosine

2-amino-3-(3-hydroxyphenyl)-2-methylpropanoic acid

C10H13NO3 (195.0895)


   

stigmatellin

Stigmatellin A

C30H42O7 (514.293)


A member of the class of chromones that is isolated from Stigmatella aurantiaca Sg a15. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   
   
   

2-Pentyl-3-phenyl-2-propenal

2-Propenal, 3-phenyl-, monopentyl deriv

C14H18O (202.1358)


2-Pentyl-3-phenyl-2-propenal, also known as alpha-amylcinnamaldehyde or pentylcinnamaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. 2-Pentyl-3-phenyl-2-propenal is practically insoluble in water. 2-Pentyl-3-phenyl-2-propenal is a flavouring agent and has a sweet, floral, and fruity taste. It is a non-carcinogenic (not listed by IARC) potentially toxic compound.

   

Argipressin

2-{[(1-{19-amino-13-benzyl-6,9,12,15,18-pentahydroxy-10-[2-(C-hydroxycarbonimidoyl)ethyl]-7-[(C-hydroxycarbonimidoyl)methyl]-16-[(4-hydroxyphenyl)methyl]-1,2-dithia-5,8,11,14,17-pentaazacycloicosa-5,8,11,14,17-pentaene-4-carbonyl}pyrrolidin-2-yl)(hydroxy)methylidene]amino}-5-carbamimidamido-N-[(C-hydroxycarbonimidoyl)methyl]pentanimidate

C46H65N15O12S2 (1083.4378)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Same as: D00101 Argipressin (Arg8-vasopressin) binds to the V1, V2, V3-vascular arginine vasopressin receptor, with a Kd value of 1.31 nM in A7r5 rat aortic smooth muscle cells for V1.

   

Tet-glycine

2-amino-2-(2H-tetrazol-5-yl)acetic acid

C3H5N5O2 (143.0443)


   

Furo(3,4-b)pyridine-3-carboxylic acid, 1,4,5,7-tetrahydro-4-(2-(difluoromethoxy)phenyl)-2-methyl-5-oxo-, ethyl ester

Furo(3,4-b)pyridine-3-carboxylic acid, 1,4,5,7-tetrahydro-4-(2-(difluoromethoxy)phenyl)-2-methyl-5-oxo-, ethyl ester

C18H17F2NO5 (365.1075)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

TRAM-3

(2-Chlorophenyl)diphenylmethanol

C19H15ClO (294.0811)


   

FA 18:1;O

omega‐cycloheptyl‐alpha‐hydroxyundecanoic Acid

C18H34O3 (298.2508)


   

DCEBIO

5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H8Cl2N2O (230.0014)


   

Cholinephosphorylneogalatriaosylceramide

Cholinephosphorylneogalatriaosylceramide

C63H122N2O21P+ (1273.8277)


   

1-Naphthaldehyde

1-Naphthalenecarboxaldehyde

C11H8O (156.0575)


1-naphthaldehyde, also known as alpha-naphthal or 1-formylnaphthalene, is a member of the class of compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. 1-naphthaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1-naphthaldehyde can be found in a number of food items such as black crowberry, devilfish, other soy product, and chinese bayberry, which makes 1-naphthaldehyde a potential biomarker for the consumption of these food products. This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.

   

2-Naphthaldehyde

2-Naphthalenecarboxaldehyde

C11H8O (156.0575)


This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.

   

(1,2-diphenylethenyl)benzene

(1,2-diphenylethenyl)benzene

C20H16 (256.1252)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists

   

FOH 8:0;O

(R)-(+)-1,2-EPOXYHEXANE

C8H18O2 (146.1307)


   

PCB 48

2,2,4,5-tetrachlorobiphenyl

C12H6Cl4 (289.9224)


   

1,6-DINITROPYRENE

1,6-DINITROPYRENE

C16H8N2O4 (292.0484)


D009676 - Noxae > D009153 - Mutagens

   

3,4-Dichlorophenol

3,4-DICHLOROPHENOL

C6H4Cl2O (161.9639)


   

Phthalazone

1(2H)-PHTHALAZINONE

C8H6N2O (146.048)


   

Diethyl sulfate

Diethyl sulfate, tin salt

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

1,4-Dihydroxynaphthalene

1,4-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

17beta-Acetylestradiol

acetic acid (3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl) ester

C20H26O3 (314.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.

   

Decylubiquinol

2-Decyl-5,6-dimethoxy-3-methyl-1,4-benzenediol

C19H32O4 (324.23)


   

HC Toxin

(6R,9S,14aR)-3,6R-dimethyl-9S-(7-((S)-oxiran-2-yl)-7-oxoheptyl)decahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecine-1,4,7,10-tetranone

C21H32N4O6 (436.2322)


A homodetic cyclic tetrapeptide made up from L-alanyl, D-alanyl, L-prolyl and 2-amino-8-oxo-9,10-epoxydecanoyl residues.

   
   

2-Nitrobenzoic acid

O-Carboxynitrobenzene

C7H5NO4 (167.0219)


   

Dimethylurea

N,N-Dimethyl-urea

C3H8N2O (88.0637)


Dimethylurea (DMU) (IUPAC systematic name: 1,3-Dimethylurea ) is a urea derivative and used as an intermediate in organic synthesis. It is a colorless crystalline powder with little toxicity.

   

Lignocericyl coenzyme A

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(tetracosanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C45H82N7O17P3S (1117.4701)


This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.

   

N-Desmethyltamoxifen

(2-{4-[(1Z)-1,2-diphenylbut-1-en-1-yl]phenoxy}ethyl)(methyl)amine

C25H27NO (357.2093)


N-Desmethyltamoxifen is only found in individuals that have used or taken Tamoxifen. N-Desmethyltamoxifen is a metabolite of Tamoxifen. N-desmethyltamoxifen belongs to the family of Stilbenes. These are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

5,6-Dihydro-5-fluorouracil

5-Fluorodihydrouracil, sodium salt

C4H5FN2O2 (132.0335)


5,6-Dihydro-5-fluorouracil is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia)

   

Plastoquinol A

Plastoquinol A

C53H82O2 (750.6314)


   

Yessotoxin

{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid

C55H82O21S2 (1142.479)


Yessotoxin is found in mollusks. Toxic constituent of scallops (Patinopecten yessoensis). Toxic constituent of scallops (Patinopecten yessoensis). Yessotoxin is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

2-(2-Aminoethyl)thiazole

2-(2-Aminoethyl)thiazole dihydrochloride

C5H8N2S (128.0408)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   

(S)-3-Hydroxyisobutyryl-CoA

{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-3-{[2-({2-[(3-hydroxy-2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O18P3S (853.152)


(S)-3-Hydroxyisobutyryl-CoA is s metabolite of 3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4 ) during beta-alanine metabolism (KEGG 00410), propanoate metabolism (KEGG 00640), and valine, leucine and isoleucine degradation (KEGG 00280). Deficiencies of this enzyme in valine degradation can result in hypotonia, poor feeding, motor delay, and subsequent neurological regression in infancy, episodes of ketoacidosis and Leigh-like changes in the basal ganglia on a magnetic resonance imaging scan (PMID 17160907). [HMDB] (S)-3-Hydroxyisobutyryl-CoA is s metabolite of 3-hydroxyisobutyryl-CoA hydrolase (EC 3.1.2.4 ) during beta-alanine metabolism (KEGG 00410), propanoate metabolism (KEGG 00640), and valine, leucine and isoleucine degradation (KEGG 00280). Deficiencies of this enzyme in valine degradation can result in hypotonia, poor feeding, motor delay, and subsequent neurological regression in infancy, episodes of ketoacidosis and Leigh-like changes in the basal ganglia on a magnetic resonance imaging scan (PMID 17160907).

   

D-Histidine

2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0695)


   

flumequine

flumequine

C14H12FNO3 (261.0801)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 1030 CONFIDENCE standard compound; INTERNAL_ID 8533 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3642

   

Graveoline

Graveoline

C17H13NO3 (279.0895)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].

   

CoA 4:1;O2

5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

C25H40N7O19P3S (867.1312)


The (R)-enantiomer of methylmalonyl-CoA.

   

UNII:EU52DFC4WJ

N-Methyl-DL-aspartic acid

C5H9NO4 (147.0532)


N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].

   

skrofulein

Skrofulein;Scrophulein;5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxychromen-4-one

C17H14O6 (314.079)


Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).

   

beta-Bixin

2,4,6,8,10,12,14,16,18-EICOSANONAENEDIOIC ACID, 4,8,13,17-TETRAMETHYL-, 1-METHYL ESTER, (2E,4E,6E,8E,10E,12E,14E,16E,18E)-

C25H30O4 (394.2144)


beta-Bixin is a constituent of the pigment annatto found in Bixa orellana (achiote). Annatto has been linked with many cases of food-related allergies, and is the only natural food coloring believed to cause as many allergic-type reactions as artificial food coloring. Because it is a natural colorant, companies using annatto may label their products "all natural" or "no artificial colors". Annatto, sometimes called Roucou, is a derivative of the achiote trees of tropical regions of the Americas, used to produce a red food coloring and also as a flavoring. Its scent is described as "slightly peppery with a hint of nutmeg" and flavor as "slightly sweet and peppery". It is a major ingredient in the popular spice blend "Sazn" made by Goya Foods D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of Bixa orellana (annatto) Beta-Bixin is a diterpenoid. Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

7,8-Dihydroneopterin

2-Amino-4-hydroxy-6-(D-erythro-1’,2’,3’-trihydroxypropyl)-7,8-dihydropteridine

C9H13N5O4 (255.0967)


7,8-Dihydroneopterin, also known as dihydroneopterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are synthesized in several parts of the body, including the pineal gland. 7,8-Dihydroneopterin is a strong basic compound (based on its pKa). Within humans, 7,8-dihydroneopterin participates in a number of enzymatic reactions. In particular, 7,8-dihydroneopterin can be biosynthesized from sepiapterin; which is catalyzed by the enzyme sepiapterin reductase or carbonyl reductase [NADPH] 1. In humans, 7,8-dihydroneopterin is involved in the metabolic disorder called hyperphenylalaninemia due to 6-pyruvoyltetrahydropterin synthase (PTPS) deficiency. 7,8-Dihydroneopterin is produced by human monocyte-derived macrophages upon stimulation with interferon-gamma. Increased amounts of 7,8-dihydroneopterin in human body fluids are found in many disorders, including viral infections and autoimmune diseases (PMID: 12804528). 7,8-dihydroneopterin, also known as npr, belongs to biopterins and derivatives class of compounds. Those are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland. 7,8-dihydroneopterin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroneopterin can be found in a number of food items such as prickly pear, star anise, cocoa bean, and black salsify, which makes 7,8-dihydroneopterin a potential biomarker for the consumption of these food products. 7,8-dihydroneopterin exists in all living organisms, ranging from bacteria to humans. In humans, 7,8-dihydroneopterin is involved in the pterine biosynthesis. 7,8-dihydroneopterin is also involved in several metabolic disorders, some of which include hyperphenylalaninemia due to dhpr-deficiency, sepiapterin reductase deficiency, dopa-responsive dystonia, and hyperphenylalaniemia due to guanosine triphosphate cyclohydrolase deficiency. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].

   

2,4-Diaminobutyric acid

2,4-Diaminobutyric acid monohydrochloride, (+-)-isomer

C4H10N2O2 (118.0742)


2,4-Diaminobutyric acid, also known as 2,4-diaminobutanoate or Dbu, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). 2,4-Diaminobutyric acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2,4-Diaminobutyric acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 2,4-Diaminobutyric acid has been detected, but not quantified in cow milk. This could make 2,4-diaminobutyric acid a potential biomarker for the consumption of these foods. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. 2,4-Diaminobutyric acid is a non-physiological, cationic amino acid analogue that is transported into cells by System A with potent antitumoral activity in vitro against human glioma cells, the result of the pronounced concentrated uptake of DAB in glioma cells to the extent that a cellular lysis could occur due to osmotic reasons. (PMID: 1561943) [HMDB] L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Flumequine

7-fluoro-12-methyl-4-oxo-1-azatricyclo[7.3.1.0⁵,¹³]trideca-2,5(13),6,8-tetraene-3-carboxylic acid

C14H12FNO3 (261.0801)


Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria. It functions by inhibiting DNA gyrase, a type II topoisomerase, and topoisomerase IV, enzymes necessary to separate bacterial DNA, thereby inhibiting cell division. Flumequine is a 9-fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[ij]quinolizine-2-carboxylic acid. The molecular formula is C14H12FNO3 It is a white powder, odorless, flavorless, insoluble in water but soluble in organic solvent. Flumequine is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections (all infections of the intestinal tract), as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France (and a few other European Countries) to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved. The first quinolone used was nalidixic acid (was marketed in many countries as Negram) followed by the fluoroquinolone flumequine. The first-generation fluoroquinolone agents, such as flumequine, had poor distribution into the body tissues and limited activity. As such they were used mainly for treatment of urinary tract infections. Flumequine (benzo quinolizine) was first patented in 1973, (German Patent) by Rikker Labs. Flumequine is a known antimicrobial compound described and claimed in U.S. Pat. No. 3,896,131 (Example 3), July 22, 1975. Flumequine is the first quinolone compound with a fluorine atom at the C6-position of the related quinolone basic molecular structure. Even though this was the first fluoroquinolone, it is oftentimes overlooked when classifying the drugs within this class by generations and excluded from such a list. There continues to be considerable debate as to whether or not this DNA damage is to be considered one of the mechanisms of action concerning the severe adverse reactions experienced by some patients following fluoroquinolone therapy. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

5beta-Coprostanol

(1S,2S,5S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol

C27H48O (388.3705)


Coprosterol or coprostanol is a cholesterol derivative found in human feces, gallstones, eggs, and other biological matter. Coprosterol is the odorous principle of feces. It is formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. This compound has frequently been used as a biomarker for the presence of human faecal matter in the environment. American physician Austin Flint named it stercorin (Wikipedia). The transformation of cholesterol into coprosterol in its passage through the body involves a reduction of the C5:C6 double bond, and a transition from the allocholanic- to the cholanic-ring system. Although it is established that the bacterial flora of the intestine is concerned in the reduction process, the mechanism by which the stereochemical change is brought about is unknown. Current data suggests that cholestenone and coprostanone, and not cholesterol itself, are the immediate precursors of coprosterol which is formed from them in the intestine by bacterial reduction. Coprosterol is also a microbial metabolite, it can be produced by Lactobacillus (PMID: 20338415). Coprosterol or coprostanol is a cholesterol derivative found in human feces, gallstones, eggs, and other biological matter. Coprosterol is the odorous principle of feces. It is formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. This compound has frequently been used as a biomarker for the presence of human faecal matter in the environment. American physician Austin Flint named it stercorin . The transformation of cholesterol into coprosterol in its passage through the body involves a reduction of the C5:C6 double bond, and a transition from the allocholanic- to the cholanic-ring system. Although it is established that the bacterial flora of the intestine is concerned in the reduction process, the mechanism by which the stereochemical change is brought about is unknown. Current data suggests that cholestenone and coprostanone, and not cholesterol itself, are the immediate precursors of coprosterol which is formed from them in the intestine by bacterial reduction. [HMDB] Same as: D01527

   

Leucinic acid

alpha-Hydroxyisocaproic acid, calcium (2:1) salt, (S)-isomer

C6H12O3 (132.0786)


Leucinic acid, also known as leucic acid, 2-hydroxyisocaproic acid or 2-hydroxy-4-methylvaleric acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Leucinic acid is a valeric acid derivative having a hydroxy substituent at the 2-position and a methyl substituent at the 4-position. It is an alpha-hydroxy analogue of leucine and a metabolite of the branched-chain amino acid leucine. Leucinic acid is found in all organisms ranging from bacteria to plants to animals. Leucinic acid has been found in a patient with dihydrolipoyl dehydrogenase (DLD) deficiency (PMID: 6688766). DLD deficiency is caused by mutations in the DLD gene and is inherited in an autosomal recessive manner. A common feature of dihydrolipoamide dehydrogenase deficiency is a potentially life-threatening buildup of lactic acid in tissues (lactic acidosis), which can cause nausea, vomiting, severe breathing problems, and an abnormal heartbeat. Neurological problems are also common in this condition; the first symptoms in affected infants are often decreased muscle tone (hypotonia) and extreme tiredness (lethargy). As the problems worsen, affected infants can have difficulty feeding, decreased alertness, and seizures. Liver problems can also occur in dihydrolipoamide dehydrogenase deficiency, ranging from an enlarged liver (hepatomegaly) to life-threatening liver failure. In some affected people, liver disease, which can begin anytime from infancy to adulthood, is the primary symptom. Leucinic acid is also present in the urine of patients with short bowel syndrome (PMID: 4018104) Leucinic acid has been isolated from amniotic fluid (PMID: 6467607), and have been found in a patient with dihydrolipoyl dehydrogenase deficiency (PMID 6688766).

   

Neopterin

[S-(R*,s*)]-2-amino-6-(1,2,3-trihydroxypropyl)-1H-pteridine-4-one

C9H11N5O4 (253.0811)


Neopterin, also known as monapterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative and are mainly synthesized in several parts of the body, including the pineal gland. Neopterin is a solid that is soluble in water. Neopterin is a catabolic product of guanosine triphosphate (GTP). In humans, it is involved in pterine biosynthesis and it also serves as a precursor in the biosynthesis of biopterin, which is an essential cofactor in neurotransmitter synthesis. Neopterin has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic toxins can cause kidney, liver and heart damage. They can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Uremic toxins such as neopterin are actively transported into the kidneys via organic ion transporters (especially OAT3). Elevated levels of neopterin result from immune system activation, including from malignant cancer, allograft rejection, viral infection, and autoimmune disorders (PMID: 19500901). Measurement of neopterin concentration allows estimation of the extent of oxidative stress elicited by the immune system. Neopterin concentrations usually correlate with the extent and activity of a given disease, and are also used to monitor the course of the disease. Elevated neopterin concentrations are among the best predictors of adverse outcome in patients with HIV infection, in cardiovascular disease, and in various types of cancer. Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.

   

(+)-Lysergic acid

6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxylic acid

C16H16N2O2 (268.1212)


   

Fungizone

33-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

C47H73NO17 (923.4878)


   

Monensin

4-[2-(5-ethyl-5-{5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl}oxolan-2-yl)-9-hydroxy-2,8-dimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

C36H62O11 (670.4292)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores D049990 - Membrane Transport Modulators

   

2,3-DI-Phytanyl-glycerol

2,3-bis[(3,7,11,15-tetramethylhexadecyl)oxy]propan-1-ol

C43H88O3 (652.6733)


   

Epitetracycline

4-(Dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-3,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboximidate

C22H24N2O8 (444.1533)


Sanclomycine, also known as achromycin or 4 epitetracycline, belongs to the class of organic compounds known as tetracyclines. These are polyketides having an octahydrotetracene-2-carboxamide skeleton, substituted with many hydroxy and other groups. Based on a literature review very few articles have been published on Sanclomycine. This compound has been identified in human blood as reported by (PMID: 31557052 ). Epitetracycline is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Epitetracycline is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Epitetracycline hydrochloride. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23313-80-6 (retrieved 2024-10-30) (CAS RN: 23313-80-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(1R,4R,5S,9R,10S,13R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid

(1R,4R,5S,9R,10S,13R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid

C20H30O2 (302.2246)


Kaurenoic acid, also known as kaur-16-en-18-oic acid or kaurenoate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Kaurenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Kaurenoic acid can be found in sunflower, which makes kaurenoic acid a potential biomarker for the consumption of this food product. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].

   

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enimidate

C18H27NO3 (305.1991)


   

Celestone

1-fluoro-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,13,15-trimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-3,6-dien-5-one

C22H29FO5 (392.1999)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

Cholestane

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane

C27H48 (372.3756)


   

Fipexide

1-{4-[(2H-1,3-benzodioxol-5-yl)methyl]piperazin-1-yl}-2-(4-chlorophenoxy)ethan-1-one

C20H21ClN2O4 (388.119)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent

   

Methysticin

6-[2-(2H-1,3-benzodioxol-5-yl)ethenyl]-4-methoxy-5,6-dihydro-2H-pyran-2-one

C15H14O5 (274.0841)


   

N-Methyl-DL-aspartic acid

2-(methylamino)butanedioic acid

C5H9NO4 (147.0532)


N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].

   

Tropine

8-Methyl-8-azabicyclo[3.2.1]octan-3-ol

C8H15NO (141.1154)


Pseudotropine, also known as tropine hydrochloride, (endo)-isomer or tropine, (exo)-isomer, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Pseudotropine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Pseudotropine can be found in a number of food items such as winter savory, japanese chestnut, blackcurrant, and black walnut, which makes pseudotropine a potential biomarker for the consumption of these food products. Pseudotropine (3β-tropanol, ψ-tropine, 3-pseudotropanol or PTO) is a derivative of tropane and an isomer of tropine . Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

H-D-Abu-OH

(R)-2-Aminobutanoic acid

C4H9NO2 (103.0633)


[Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is an antifungal metabolite.

   

Kaurenoic_acid

(4R,4aS,6aS,9R,11aR,11bS)-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O2 (302.2246)


Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].

   

Cyanidin 3-sophoroside

Cyanidin 3-O-sophoroside

C27H31O16+ (611.1612)


   

N-ACETYLANTHRANILIC ACID

N-Acetyl-anthranilic acid

C9H9NO3 (179.0582)


   

MANDELIC ACID

L-(+)-Mandelic acid

C8H8O3 (152.0473)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives A 2-hydroxy monocarboxylic acid that is acetic acid in which two of the methyl hydrogens are substituted by phenyl and hydroxyl groups. D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. Mandelic acid ((±)-Mandelic acid), an alpha-hydroxycarboxylic acid, has been widely used as an intermediate of pharmaceutical and fine chemicals. Mandelic acid shows antimicrobial activity and has been used for the research of urinary tract infections and vaginal trichomoniasis. Mandelic acid exhibits high sperm-immobilizing activity and low vaginal irritation[1][2].

   

S-Methylglutathione

S-Methylglutathione

C11H19N3O6S (321.0995)


S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].

   

(S)-3-Hydroxy-N-methylcoclaurine

(S)-3-Hydroxy-N-methylcoclaurine

C18H21NO4 (315.1471)


An isoquinoline alkaloid having a tetrahydroisoquinoline core with 3,4-dihydroxybenzyl, methoxy and hydroxy groups at the 1-, 6- and 7-positions respectively; major species at pH 7.3.

   

Furanodienon

CYCLODECA(B)FURAN-4(7H)-ONE, 8,11-DIHYDRO-3,6,10-TRIMETHYL-, (5E,9E)-

C15H18O2 (230.1307)


Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].

   

Isouvaretin

1- [ 4,6-Dihydroxy-3- [ (2-hydroxyphenyl) methyl ] -2-methoxyphenyl ] -3-phenyl-1-propanone

C23H22O5 (378.1467)


   

Isoscutellarein

5,7,8-Trihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O6 (286.0477)


A tetrahydroxyflavone that is apigenin with an extra hydroxy group at position 8.

   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

6-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. A trihydroxyflavanone having a structure of naringenin prenylated at C-6. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

9,10-EPOXYSTEARIC ACID

2-Oxiraneoctanoic acid,3-octyl-

C18H34O3 (298.2508)


   

11b,21-Dihydroxy-5b-pregnane-3,20-dione

11-hydroxy-17-(2-hydroxyacetyl)-10,13-dimethyl-1,2,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-one

C21H32O4 (348.23)


11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is an intermediate in C21-Steroid hormone metabolism. 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is the 3rd to last step in the synthesis of 3alpha,20alpha,21-Trihydroxy-5beta-pregnane-11-one and is converted from Corticosterone via the enzyme 3-oxo-5beta-steroid 4-dehydrogenase (EC 1.3.99.6). It is then converted to Tetrahydrocorticosterone via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50). [HMDB] 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is an intermediate in C21-Steroid hormone metabolism. 11beta,21-Dihydroxy-5beta-pregnane-3,20-dione is the 3rd to last step in the synthesis of 3alpha,20alpha,21-Trihydroxy-5beta-pregnane-11-one and is converted from Corticosterone via the enzyme 3-oxo-5beta-steroid 4-dehydrogenase (EC 1.3.99.6). It is then converted to Tetrahydrocorticosterone via the enzyme 3-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50).

   

Tetracosanoyl-CoA

{[(2R,4S,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(tetracosanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H82N7O17P3S (1117.4701)


Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-). [HMDB] Tetracosanoyl-CoA is an intermediate in the biosynthesis of unsaturated fatty acids. Tetracosanoyl-CoA is converted from Palmitoyl-CoA in multiple steps. It is then converted to lignoceric acid via a thiol-ester hydrolase (E 3.1.2.-).

   

valerenic acid

valerenic acid

C15H22O2 (234.162)


A monocarboxylic acid that is 2-methylprop-2-enoic acid which is substituted at position 3 by a 3,7-dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl group. A bicyclic sesquiterpenoid constituent of the essential oil of the Valerian plant. Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].

   

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.1475)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). A benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

alpha-Cadinol

alpha-Cadinol

C15H26O (222.1984)


A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.

   

Scoulerine

6H-Dibenzo[a,g]quinolizine-2,9-diol, 5,8,13,13a-tetrahydro-3,10-dimethoxy-, (.+/-.)-

C19H21NO4 (327.1471)


(R,S)-Scoulerine is an alkaloid. Scoulerine is a natural product found in Sarcocapnos saetabensis, Corydalis bungeana, and other organisms with data available.

   

fipexide

fipexide

C20H21ClN2O4 (388.119)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7254; ORIGINAL_PRECURSOR_SCAN_NO 7252 CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7270; ORIGINAL_PRECURSOR_SCAN_NO 7268 CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7288; ORIGINAL_PRECURSOR_SCAN_NO 7286 CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7280; ORIGINAL_PRECURSOR_SCAN_NO 7278 CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7292; ORIGINAL_PRECURSOR_SCAN_NO 7290 CONFIDENCE standard compound; INTERNAL_ID 1324; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7301; ORIGINAL_PRECURSOR_SCAN_NO 7299

   

pectin

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Xylose

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Norathyriol

9H-Xanthen-9-one, 1,3,6,7-tetrahydroxy-

C13H8O6 (260.0321)


Norathyriol is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C. It has a role as an antineoplastic agent, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a member of xanthones and a polyphenol. Norathyriol is a natural product found in Hypericum aucheri, Hypericum elegans, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7. Isolated from Garcinia mangostana and Maclura pomifera, it exhibits inhibitory activity against protein kinase C.

   

Nordazepam

Nordiazepam

C15H11ClN2O (270.056)


A 1,4-benzodiazepinone having phenyl and chloro substituents at positions 5 and 7 respectively; it has anticonvulsant, anxiolytic, muscle relaxant and sedative properties but is used primarily in the treatment of anxiety. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1611

   

Acetylsulfamethoxazole

N4-Acetyl-Sulfamethoxazole

C12H13N3O4S (295.0627)


D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 2672 CONFIDENCE standard compound; INTERNAL_ID 8589 CONFIDENCE standard compound; INTERNAL_ID 4117 CONFIDENCE standard compound; INTERNAL_ID 2014

   

Methoxyfenozide

Pesticide4_Methoxyfenozide_C22H28N2O3_N-(3,5-Dimethylbenzoyl)-3-methoxy-2-methyl-N-(2-methyl-2-propanyl)benzohydrazide

C22H28N2O3 (368.21)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2935 EAWAG_UCHEM_ID 2935; CONFIDENCE standard compound

   

Epicholestanol

5alpha-cholestan-3alpha-ol

C27H48O (388.3705)


A 5alpha-chloestane compound having a 3alpha-hydroxy substituent. Same as: D01527 Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

FLUOCINONIDE

FLUOCINONIDE

C26H32F2O7 (494.2116)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents

   

Mecillinam

Amdinocillin

C15H23N3O3S (325.146)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Piperyline

Trichostachine

C16H17NO3 (271.1208)


A N-acylpyrrolidine that is pyrollidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum.

   

Guanidinosuccinic acid

Guanidinosuccinic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid is a nitrogenous metabolite.

   

D-glucosamine 6-phosphate

D-glucosamine 6-phosphate

C6H14NO8P (259.0457)


   

Tryptophol

5-21-03-00061 (Beilstein Handbook Reference)

C10H11NO (161.0841)


An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

S-Sulfocysteine

S-sulfo-L-cysteine

C3H7NO5S2 (200.9766)


   

Homocarnosine

g-Aminobutyryl histidine

C10H16N4O3 (240.1222)


A histidine derivative that is histidine in which one of the hydrogens attached to the alpha-amino group has been replaced by a 4-aminobutanoyl group.

   
   

Hydroxyphenyllactic acid

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid

C9H10O4 (182.0579)


Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.

   

Hydrocortisonacetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2828 D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 8748 Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   

Ginsenoside Rf

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methyl-hept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-

C42H72O14 (800.4922)


Constituent of Panax ginseng (ginseng). The first pure ginseng constituent to show nearly all the activities of the plant extract. Ginsenoside Rf is found in tea. Annotation level-1 Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel.

   

PIRIMICARB

Pesticide3_Pirimicarb_C11H18N4O2_2-(Dimethylamino)-5,6-dimethyl-4-pyrimidinyl dimethylcarbamate

C11H18N4O2 (238.143)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

dihydrobiopterin

7,8-Dihydro-L-biopterin

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

2-FUROIC ACID

2-FUROIC ACID

C5H4O3 (112.016)


A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

HEXADECANEDIOIC ACID

HEXADECANEDIOIC ACID

C16H30O4 (286.2144)


An alpha,omega-dicarboxylic acid that is the 1,14-dicarboxy derivative of tetradecane. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples. Hexadecanedioic acid is covalently linked to Sepharose 4B, shows better performance in terms of specificity than dye-based resins and could be used for depletion of SA from plasma samples.

   

BROMPHENIRAMINE

BROMPHENIRAMINE

C16H19BrN2 (318.0732)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

2-Hydroxychalcone

2-Propen-1-one,1-(2-hydroxyphenyl)-3-phenyl-, (2E)-

C15H12O2 (224.0837)


2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3]. 2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3].

   

Methohexital

Methohexital

C14H18N2O3 (262.1317)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate

   

penciclovir

penciclovir

C10H15N5O3 (253.1175)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].

   

phendimetrazine

phendimetrazine

C12H17NO (191.131)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant C78272 - Agent Affecting Nervous System > C29728 - Anorexiant

   

Toremifene

Toremifene

C26H28ClNO (405.1859)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BA - Anti-estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

butabarbital

butabarbital

C10H16N2O3 (212.1161)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate

   

Trehalose-6-phosphate

Trehalose-6-phosphate

C12H23O14P (422.0825)


D004791 - Enzyme Inhibitors

   

isomaltulose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


   

Methysticin

5-Hydroxy-3-methoxy-7-(3,4-(methylenedioxy)phenyl)-2,6-heptadienoic acid gamma-lactone

C15H14O5 (274.0841)


Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].

   

7-Aminocephalosporanic acid

7-Aminocephalosporanic acid

C10H12N2O5S (272.0467)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Rutamarin

2-[6-(2-methylbut-3-en-2-yl)-7-oxo-2,3-dihydrofuro[3,2-g]chromen-2-yl]propan-2-yl acetate

C21H24O5 (356.1624)


   

Bixin

(2Z,4Z,6E,8Z,10E,12E,14Z,16Z,18Z)-20-methoxy-4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid

C25H30O4 (394.2144)


A carotenoic acid that is the 6-monomethyl ester of 9-cis-6,6-diapocarotene-6,6-dioic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Bixin (BX), isolated from the seeds of Bixa orellana, is a carotenoid, possessing anti-inflammatory, anti-tumor and anti-oxidant activities. Bixin treatment ameliorated cardiac dysfunction through inhibiting fibrosis, inflammation and reactive oxygen species (ROS) generation[1].

   

Cholestane

(1S,2S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecane

C27H48 (372.3756)


   

5-Deoxyadenosine

5-Deoxyadenosine

C10H13N5O3 (251.1018)


A 5-deoxyribonucleoside compound having adenosine as the nucleobase. 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1]. 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1].

   

3-Ketocholanic acid

3-Ketocholanic acid

C24H38O3 (374.2821)


CONFIDENCE standard compound; INTERNAL_ID 76

   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.2246)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Tridemorph

2,6-Dimethyl-4-tridecylmorpholine

C19H39NO (297.3031)


   

Azulene

Azulene

C10H8 (128.0626)


One micro litter of the liquid sample was dropped in a 10 mL glass vial. The vial was placed under the DART ion source.; Direct analysis in real time (DART) is a method of atmospheric pressure chemical ionization (APCI). Protons, H+, generated by glow discharge ionization of the He gas in the ionization chamber, DART-SVP (IonSense Inc., MA, USA), were major reactant ions for the chemical ionization of samples.; The interface introducing the product ions to the mass spectrometer was Vapur Interface (AMR. Inc., Tokyo, Japan). The pressure in the interface was 710 Torr (96.3 kPa).; 1 mg of azulene was placed on glass capillary. The capillary was placed in the gas flow that ran from the ion source.; Azulene was purchased from TCI A0634.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

Hydrocortisone acetate

Hydrocortisone acetate

C23H32O6 (404.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000893 - Anti-Inflammatory Agents Origin: Animal, Pregnanes Hydrocortisone acetate is a corticosteroid used to reduce swelling, itching and pain caused by minor skin irritations or hemorrhoids.

   
   

Sudan I

C.I. Solvent Yellow 14

C16H12N2O (248.095)


CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10862; ORIGINAL_PRECURSOR_SCAN_NO 10860 D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10878; ORIGINAL_PRECURSOR_SCAN_NO 10876 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10910; ORIGINAL_PRECURSOR_SCAN_NO 10908 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10917; ORIGINAL_PRECURSOR_SCAN_NO 10916 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10908; ORIGINAL_PRECURSOR_SCAN_NO 10905 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10943; ORIGINAL_PRECURSOR_SCAN_NO 10942

   

CDP-ethanolamine

CDP-ethanolamine

C11H20N4O11P2 (446.0604)


A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.

   

Morphinone

Morphinone

C17H17NO3 (283.1208)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

2-carboxy-1-naphthol

1-Hydroxy-2-naphthoic acid

C11H8O3 (188.0473)


A naphthoic acid with the carboxy group at position 2 and carrying a hydroxy substituent at the 1-position. It is a xenobiotic metabolite produced by the biodegradation of phenanthrene by microorganisms. 1-Hydroxy-2-naphthoic acid is an endogenous metabolite.

   

Tebufenpyrad

Pesticide4_Tebufenpyrad_C18H24ClN3O_1H-Pyrazole-5-carboxamide, 4-chloro-N-[[4-(1,1-dimethylethyl)phenyl]methyl]-3-ethyl-1-methyl-

C18H24ClN3O (333.1608)


   

Diguanosine tetraphosphate

Diguanosine tetraphosphate

C20H28N10O21P4 (868.0381)


   

Pseudotropine

Pseudotropine

C8H15NO (141.1154)


Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

Catechin C

(2S-cis)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-Benzopyran-3,5,7-triol

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin E3

9-oxo-11R,15S-dihydroxy-5Z,13E,17Z-prostatrienoic acid

C20H30O5 (350.2093)


   

FOH 16:0

3S,7S-dimethyl-tetradecan-2S-ol

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

CoA 18:2

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


   

CoA 20:4

(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-CoA;(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-coenzyme A;(5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoyl-coenzyme A;C20:4-CoA;all-cis-5,8,11,14-eicosatetraenoyl-CoA;all-cis-5,8,11,14-eicosatetraenoyl-coenzyme A;arachidonoyl-coenzyme A;arachidonyl-coenzyme A;cis-Delta(5,8,11,14)-eicosatetraenoyl-CoA;cis-Delta(5,8,11,14)-eicosatetraenoyl-coenzyme A

C41H66N7O17P3S (1053.3449)


   

CoA 4:0;O

(S)-3-hydroxy-2-methylpropanoyl-coenzyme A;(S)-3-hydroxy-2-methylpropionyl-coenzyme A;(S)-3-hydroxyisobutanoyl-CoA;(S)-3-hydroxyisobutanoyl-coenzyme A;(S)-3-hydroxyisobutyryl-coenzyme A

C25H42N7O18P3S (853.152)


   

CoA 20:0

Arachidoyl-CoA

C41H74N7O17P3S (1061.4075)


   

dihydrolipoamide

6,8-disulfanyloctanimidic acid

C8H17NOS2 (207.0752)


   

ST 21:3;O5

11beta,21-dihydroxy-3,20-dioxo-5beta-pregnan-18-al

C21H30O5 (362.2093)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Tetrahymanol

Tetrahymanol

C30H52O (428.4018)


   

Coenzyme Q6

ubiquinone-6

C39H58O4 (590.4335)


   

Cyanin

Cyanidin 3,5-diglucoside

C27H31O16+ (611.1612)


An anthocyanin cation that is cyanidin(1+) carrying two beta-D-glucosyl residues at positions 3 and 5.

   

TRIADIMENOL

TRIADIMENOL

C14H18ClN3O2 (295.1087)


A member of the class of triazoles that is 3,3-dimethyl-1-(1,2,4-triazol-1-yl)butane-1,2-diol substituted at position O1 by a 4-chlorophenyl group. A fungicide for cereals, beet and brassicas used to control a range of diseases including powdery mildew, rusts, bunts and smuts. D016573 - Agrochemicals D010575 - Pesticides

   

β-Estradiol 17-acetate

beta-Estradiol 17-acetate

C20H26O3 (314.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.

   

Plastoquinol-9

Plastoquinol-9

C53H82O2 (750.6314)


   
   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

2,3-DI-Phytanyl-glycerol

2,3-DI-Phytanyl-glycerol

C43H88O3 (652.6733)


   

Benzo[b]fluoranthene

Benzo[b]fluoranthene

C20H12 (252.0939)


   

naphthal

1-Formylnaphthalene

C11H8O (156.0575)


A naphthaldehyde with a formyl group at position 1.

   

cefaloridine

cephaloridine

C19H17N3O4S2 (415.066)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01075

   

Masoprocol

Masoprocol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Levonordefrin

alpha-Methylnoradrenaline

C9H13NO3 (183.0895)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].

   

Epidihydrocholesterin

Epidihydrocholesterin

C27H48O (388.3705)


   

2-NITROBENZOIC ACID

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

Indeloxazine

2-(((1H-INDEN-7-YL)OXY)METHYL)MORPHOLINE

C14H17NO2 (231.1259)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Same as: D08077

   

AIDS-026330

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

azulen

InChI=1\C10H8\c1-2-5-9-7-4-8-10(9)6-3-1\h1-8

C10H8 (128.0626)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

611-71-2

Benzeneacetic acid, alpha-hydroxy-, (alphaR)-

C8H8O3 (152.0473)


D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.

   

Dodecanal

InChI=1\C12H24O\c1-2-3-4-5-6-7-8-9-10-11-12-13\h12H,2-11H2,1H

C12H24O (184.1827)


   

23513-08-8

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

AIDS-226940

7-Isoquinolinol, 1,2,3,4-tetrahydro-1-[(4-hydroxyphenyl)methyl]-6-methoxy-2-methyl-, (1R)-

C18H21NO3 (299.1521)


   

c0588

Benzenemethanol, 4-hydroxy-3-methoxy-

C8H10O3 (154.063)


Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

Gentisein

9H-Xanthen-9-one, 1,3,7-trihydroxy-

C13H8O5 (244.0372)


Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].

   

furanodienone

(5Z,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one

C15H18O2 (230.1307)


   

Ethol

InChI=1\C16H34O\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17\h17H,2-16H2,1H

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

furoic acid

InChI=1\C5H4O3\c6-5(7)4-2-1-3-8-4\h1-3H,(H,6,7

C5H4O3 (112.016)


2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

31721-94-5

4H-1-Benzopyran-4-one, 5,7-dihydroxy-

C9H6O4 (178.0266)


5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1]. 5,7-Dihydroxychromone, the extract of Cudrania tricuspidata, activates Nrf2/ARE signal and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis. 5,7-Dihydroxychromone inhibits the expression of activated caspase-3 and caspase-9 and cleaved PARP in 6-OHDA-induced SH-SY5Y cells[1].

   

skrofulein

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-

C17H14O6 (314.079)


   

Actinex

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethyl-butyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

64-67-5

InChI=1\C4H10O4S\c1-3-7-9(5,6)8-4-2\h3-4H2,1-2H

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

Kokusaginin

4-27-00-02295 (Beilstein Handbook Reference)

C14H13NO4 (259.0845)


   

E160E

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

Xylobiose

(3R,4R,5R)-5-(((2S,3R,4S,5R)-3,4,5-Trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C10H18O9 (282.0951)


Xylobiose is a glycosylxylose that is D-xylopyranose having a beta-D-xylopyranosyl residue attached at position 4 via a glycosidic bond. It has a role as a bacterial metabolite. Xylobiose is a natural product found in Streptomyces ipomoeae, Chlamydomonas reinhardtii, and Streptomyces rameus with data available. A glycosylxylose that is D-xylopyranose having a beta-D-xylopyranosyl residue attached at position 4 via a glycosidic bond. Major or sole repeating unit in the main xylan chains of the plant xylans, arabinoxylans and glucuronoxylans. Isolated from Scotch pine (Pinus sylvestris). Xylobiose (1,4-β-D-Xylobiose; 1,4-D-Xylobiose) is a disaccharide?of?xylose?monomers with a β-1, 4 bond between monomers[1].

   

phorate

6Z-8-Hydroxygeraniol 8-O-glucoside

C7H17O2PS3 (260.0128)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals Constituent of fresh ginger (Zingiber officinale). 6Z-8-Hydroxygeraniol 8-O-glucoside is found in herbs and spices.

   

Linoleoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


An octadecadienoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of linoleic acid. Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976, 16020546) [HMDB]

   

Benzonitrile

Benzonitrile

C7H5N (103.0422)


Flavouring compound [Flavornet]

   

H-Dab.HBr

L-2,4-Diaminobutyric acid

C4H10N2O2 (118.0742)


A 2,4-diaminobutyric acid that has S-configuration. 2,4-diaminobutyric acid, also known as L-2,4-diaminobutanoate or alpha,gamma-diaminobutyrate, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 2,4-diaminobutyric acid is soluble (in water) and a moderately acidic compound (based on its pKa). 2,4-diaminobutyric acid can be synthesized from butyric acid. 2,4-diaminobutyric acid is also a parent compound for other transformation products, including but not limited to, N(4)-acetyl-L-2,4-diaminobutyric acid, (2S)-2-acetamido-4-aminobutanoic acid, and L-alpha-amino-gamma-oxalylaminobutyric acid. 2,4-diaminobutyric acid can be found in a number of food items such as caraway, chia, atlantic herring, and chayote, which makes 2,4-diaminobutyric acid a potential biomarker for the consumption of these food products. 2,4-diaminobutyric acid can be found primarily in blood and urine. Moreover, 2,4-diaminobutyric acid is found to be associated with alzheimers disease. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro. L-DABA (L-2,4-Diaminobutyric acid) is a week GABA transaminase inhibitor with an IC50 of larger than 500 μM; exhibits antitumor activity in vivo and in vitro.

   

Stigmatellin A

Stigmatellin A

C30H42O7 (514.293)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Dihydromethysticin

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

C15H16O5 (276.0998)


Dihydromethysticin is a member of 2-pyranones and an aromatic ether. Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

   

8-GINGEROL

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.2144)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

Apocarotenal

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

C30H40O (416.3079)


8-apo-beta,psi-caroten-8-al is an apo carotenoid triterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8-position. It is an enal and an apo carotenoid triterpenoid. Apocarotenal is a natural product found in Dracaena draco, Palisota barteri, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1]. β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

   

CYCLOHEXYLAMINE

CYCLOHEXYLAMINE

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

Cetyl alcohol

Hexadecan-1-ol

C16H34O (242.261)


A long-chain primary fatty alcohol that is hexadecane substituted by a hydroxy group at position 1. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

Tetramethrin

Tetramethrin

C19H25NO4 (331.1783)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals

   

CYCLOHEXANECARBOXYLIC ACID

CYCLOHEXANECARBOXYLIC ACID

C7H12O2 (128.0837)


Cyclohexanecarboxylic acid is a Valproate structural analogue with anticonvulsant action[1].

   

Pirimiphos-methyl

Pirimiphos-methyl

C11H20N3O3PS (305.0963)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

dicyclomine

dicyclomine

C19H35NO2 (309.2668)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

chlorphenesin

chlorphenesin

C9H11ClO3 (202.0397)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

cyclobenzaprine

cyclobenzaprine

C20H21N (275.1674)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

sulfometuron-methyl

sulfometuron-methyl [ANSI]

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   
   

bufotenin

Bufotenine

C12H16N2O (204.1263)


A tertiary amine that consists of N,N-dimethyltryptamine bearing an additional hydroxy substituent at position 5. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   
   

Nandrolone phenpropionate

Nandrolone phenylpropionate

C27H34O3 (406.2508)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

NITROETHANE

NITROETHANE

C2H5NO2 (75.032)


   

apraclonidine

apraclonidine

C9H10Cl2N4 (244.0282)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists

   

dyclonine

dyclonine

C18H27NO2 (289.2042)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Triamcinolone diacetate

Triamcinolone diacetate

C25H31FO8 (478.2003)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D004791 - Enzyme Inhibitors

   

SELENIC ACID

SELENIC ACID

H2O4Se (145.9118)


D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements

   

18-Hydroxycorticosterone

18-Hydroxycorticosterone

C21H30O5 (362.2093)


A 18-hydroxy steroid that is corticosterone substituted by a hydroxy group at position 18. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Olsalazine

Olsalazine

C14H10N2O6 (302.0539)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents D018501 - Antirheumatic Agents

   

Propiolic acid

Propiolic acidd

C3H2O2 (70.0055)


   

Mivacurium

Mivacurium

C58H80N2O14+2 (1028.5609)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist

   

Triphosphoric acid

Triphosphoric acid

H5O10P3 (257.9096)


   

CEFPODOXIME

CEFPODOXIME

C15H17N5O6S2 (427.062)


A third-generation cephalosporin antibiotic with methoxymethyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamino substituents at positions 3 and 7, respectively, of the cephem skeleton. Given by mouth as its proxetil ester prodrug, it is used to treat acute otitis media, pharyngitis, and sinusitis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Taurocyamine

Guanidinoethyl sulfonate

C3H9N3O3S (167.0365)


   

Pantetheine

(R)-Pantetheine

C11H22N2O4S (278.13)


An amide obtained by formal condensation of the carboxy group of pantothenic acid and the amino group of cysteamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methyl β-D-galactopyranoside

Methyl beta-D-galactopyranoside

C7H14O6 (194.079)


Methyl β-D-Galactopyranoside is an endogenous metabolite.

   

7,8-Dihydroneopterin

7,8-Dihydroneopterin

C9H13N5O4 (255.0967)


A neopterin where positions C-7 and C-8 have been hydrogenated. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].

   

Deoxyuridine-5-diphosphate

Deoxyuridine-5-diphosphate

C9H14N2O11P2 (388.0073)


   

4-imidazolone

4-imidazolone

C3H4N2O (84.0324)


   

Desthiobiotin

dl-Dithiobiotin

C10H18N2O3 (214.1317)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].

   

Ribose-1-phosphate

Ribose-1-phosphate

C5H11O8P (230.0192)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Methyl-L-alanine

N-Methyl-L-alanine

C4H9NO2 (103.0633)


A methyl-L-alanine in which one of the the amino hydrogen of L-alanine is replaced by a methyl group.

   

L-Erythrulose

L-(+)-Erythrulose

C4H8O4 (120.0423)


   

Methyl sulfate

Methyl sulfate

CH4O4S (111.983)


An alkyl sulfate that is the monomethyl ester of sulfuric acid.

   

2-(2-Aminoethyl)thiazole

2-Thiazol-2-yl-ethylamine

C5H8N2S (128.0408)


D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D017442 - Histamine Agonists

   
   

20-Hydroxycholesterol

20(S)-Hydroxycholesterol

C27H46O2 (402.3498)


An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   
   

N-OMEGA-hydroxy-L-arginine

N-OMEGA-hydroxy-L-arginine

C6H14N4O3 (190.1066)


   

gamma-Glutamylglutamate

gamma-Glutamylglutamate

C10H16N2O7 (276.0957)


   

Xanthosine triphosphate

Xanthosine triphosphate

C10H15N4O15P3 (523.9747)


The xanthosine 5-phosphate in which the 5-phosphate is a triphosphate group.

   

2-Deoxyinosine triphosphate

2-Deoxyinosine triphosphate

C10H15N4O13P3 (491.9848)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Acetyl-D-Glucosamine 6-Phosphate

N-Acetyl-D-Glucosamine 6-Phosphate

C8H16NO9P (301.0563)


An N-acyl-D-glucosamine 6-phosphate that is the N-acetyl derivative of D-glucosamine 6-phosphate. It is a component of the aminosugar metabolism.

   

3-hydroxy-2-methylpropanoyl-CoA

3-hydroxy-2-methylpropanoyl-CoA

C25H42N7O18P3S (853.152)


   

Dihydroxyfumaric acid

2-Butenedioic acid,2,3-dihydroxy-, (2E)-

C4H4O6 (148.0008)


   

Indole-5,6-quinone

Indole-5,6-quinone

C8H5NO2 (147.032)


   

alpha-Eleostearic acid

alpha-Eleostearic acid

C18H30O2 (278.2246)


   

gamma-Glutamyl phosphate

gamma-Glutamyl phosphate

C5H10NO7P (227.0195)


   

(S)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

C25H40N7O19P3S (867.1312)


The (S)-enantiomer of methylmalonyl-CoA.

   

L-Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


A non-proteinogenic L-alpha-amino acid that is the O-sulfo derivative of L-serine.

   

1,3,5-Hexatriyne

1,3,5-Hexatriyne

C6H2 (74.0156)


   

Uralsaponin A

Uralsaponin A

C42H62O16 (822.4038)


Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

   

Malvin

Malvin

C29H35O17+ (655.1874)


An anthocyanin cation that is malvidin carrying two beta-D-glucosyl residues at positions 3 and 5.

   

MDK-4025

(2-Chlorophenyl)diphenylmethanol

C19H15ClO (294.0811)


   

Thiourocanic acid

Thiourocanic acid

C6H6N2O2S (170.015)


   

2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazol-4(5H)-one

2-(6-hydroxy-1,3-benzothiazol-2-yl)-1,3-thiazol-4(5H)-one

C10H6N2O2S2 (249.9871)


   

(+)-Lysergic acid

6-Methyl-9,10-didehydroergoline-8-carboxylic acid

C16H16N2O2 (268.1212)


   

D-Ribitol-5-phosphate

D-Ribitol-5-phosphate

C5H13O8P (232.0348)


   
   

2-Benzylideneheptanal

alpha-Pentylcinnamaldehyde

C14H18O (202.1358)


   

O-Nitrobenzoate

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

2,6-DNT

2,6-DINITROTOLUENE

C7H6N2O4 (182.0328)


   

1,3-DIMETHYLUREA

1,3-DIMETHYLUREA

C3H8N2O (88.0637)


   

5,6-EET

(8Z,11Z,14Z)-5,6-Epoxyeicosa-8,11,14-trienoic acid

C20H32O3 (320.2351)


An EET obtained by formal epoxidation of the 5,6-double bond of arachidonic acid.

   

DL-Penicillamine

L-(+)-Penicillamine

C5H11NO2S (149.051)


D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents

   

CoA 24:0

C24:0-CoA;C24:0-coenzyme A;Lignoceroyl-coa;Lignoceroyl-coenzyme A;Tetracosanoyl-CoA;tetracosanoyl-coenzyme A

C45H82N7O17P3S (1117.4701)


A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of tetracosanoic (lignoceric) acid. It is an intermediate in the biosynthesis of unsaturated fatty acids.

   

Diethyl sulfate

Diethyl sulfate

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

P-Octylphenol

4-N-Octylphenol

C14H22O (206.1671)


A member of the class of phenols that is phenol which is substituted at the para- position by an octyl group. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

BENZOHYDROQUINONE

1,4-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

DL-Leucic Acid

2-hydroxy-4-methylvaleric acid

C6H12O3 (132.0786)


A valeric acid derivative having a hydroxy substituent at the 2-position and a methyl substituent at the 4-position; an alpha-hydroxy analogue of leucine. A bacterial metabolite, it has also been isolated from amniotic fluid, was found in a patient with dihydrolipoyl dehydrogenase deficiency and is present in the urine of patients with short bowel syndrome.

   

3,4-DICHLOROPHENOL

3,4-DICHLOROPHENOL

C6H4Cl2O (161.9639)


   

3,3-dimethylbenzidine

3,3-dimethylbenzidine

C14H16N2 (212.1313)


   
   

Ultram

Ultram

C16H25NO2 (263.1885)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2-Naphthaldehyde

2-Naphthalenecarboxaldehyde

C11H8O (156.0575)


A naphthaldehyde that is naphthalene substituted by a formyl group at position 2.

   

TRIPHENYLETHYLENE

TRIPHENYLETHYLENE

C20H16 (256.1252)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists

   

2-Methylcitric acid

2-Methylcitric acid

C7H10O7 (206.0427)


2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

Celestone

Celestone

C22H29FO5 (392.1999)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

Peonidin-3-glucoside

Peonidin 3-O-glucoside

C22H23O11+ (463.124)


   

N-Desmethyltamoxifen

N-Desmethyltamoxifen

C25H27NO (357.2093)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid

{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid

C55H82O21S2 (1142.479)


D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   
   

alpha-Methyl-m-tyrosine

DL-Phenylalanine, 3-hydroxy-a-methyl-

C10H13NO3 (195.0895)


   

(R)-Methysticin

(R)-Methysticin

C15H14O5 (274.0841)


   

D-Lysergic acid N,N-diethylamide

D-Lysergic acid N,N-diethylamide

C20H25N3O (323.1998)


   

3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

C23H32O6 (404.2199)


   

5-fluorodihydrouracil

5,6-Dihydro-5-fluorouracil

C4H5FN2O2 (132.0335)


   

17beta-Estradiol glucuronide

17beta-Estradiol glucuronide

C24H32O8 (448.2097)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate

[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate

C10H15N5O10P2 (427.0294)


   

3,5-dihydroxy-3-methylpentanoic acid

3,5-dihydroxy-3-methylpentanoic acid

C6H12O4 (148.0736)


   

alpha-Amylcinnamaldehyde

Heptanal, 2-benzylidene-

C14H18O (202.1358)


   

Cyanidin 3-O-sophoroside

Cyanidin 3-O-sophoroside

C27H31O16+ (611.1612)


   

Glyceric acid 1,3-biphosphate

phosphono 2-hydroxy-3-phosphonooxypropanoate

C3H8O10P2 (265.9593)


1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)