Acetoacetyl-CoA (BioDeep_00000004415)

 

Secondary id: BioDeep_00000630244, BioDeep_00001868601

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

化学式: C25H40N7O18P3S (851.1363)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 10.48%

分子结构信息

SMILES: CC(=O)CC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1) N2C=NC3=C2N=CN=C3N)O)OP(=O)(O)O)O
InChI: InChI=1S/C25H40N7O18P3S/c1-13(33)8-16(35)54-7-6-27-15(34)4-5-28-23(38)20(37)25(2,3)10-47-53(44,45)50-52(42,43)46-9-14-19(49-51(39,40)41)18(36)24(48-14)32-12-31-17-21(26)29-11-30-22(17)32/h11-12,14,18-20,24,36-37H,4-10H2,1-3H3,(H,27,34)(H,28,38)(H,42,43)(H,44,45)(H2,26,29,30)(H2,39,40,41)/t14-,18-,19-,20+,24-/m1/s1

描述信息

Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (mitochondrial), Hydroxymethylglutaryl-CoA synthase (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), Hydroxymethylglutaryl-CoA synthase (cytoplasmic), Peroxisomal bifunctional enzyme, Acetyl-CoA acetyltransferase (cytosolic), Acetyl-CoA acetyltransferase (mitochondrial), 3-hydroxyacyl-CoA dehydrogenase type II, Succinyl-CoA:3-ketoacid-coenzyme A transferase 2 (mitochondrial), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal) and Trifunctional enzyme alpha subunit (mitochondrial). [HMDB]. Acetoacetyl-CoA is found in many foods, some of which are bog bilberry, lemon balm, pineapple, and pak choy.
Acetoacetyl-CoA belongs to the class of organic compounds known as aminopiperidines. Aminopiperidines are compounds containing a piperidine that carries an amino group. Acetoacetyl-CoA is a strong basic compound (based on its pKa). In humans, acetoacetyl-CoA is involved in the metabolic disorder called the short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (HADH) pathway. Acetoacetyl-CoA is an intermediate in the metabolism of butanoate. It is a substrate for succinyl-CoA:3-ketoacid-coenzyme A transferase, hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA acetyltransferase, and 3-ketoacyl-CoA thiolase.

同义名列表

16 个代谢物同义名

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid; [5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-2,2-dimethyl-3-[2-[2-(3-oxobutanoylsulfanyl)ethylcarbamoyl]ethylcarbamoyl]propoxy]-phosphoryl]oxy-phosphoryl]oxymethyl]oxolan-3-yl]oxyphosphonic acid; Acetoacetyl coenzyme A sodium salt hydrate; S-Acetoacetyl-coenzyme A; 3-acetoacetyl-Coenzyme A; 3-oxobutyryl-Coenzyme A; S-Acetoacetyl-coenzym a; S-Acetoacetylcoenzyme A; acetoacetyl-Coenzyme A; Acetoacetyl coenzyme A; 3-Acetoacetyl-CoA; S-Acetoacetyl-CoA; 3-oxobutyryl-CoA; Acetoacetyl-CoA; Acetoacetyl coa; Acetoacetyl-CoA



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

519 个相关的代谢反应过程信息。

Reactome(34)

BioCyc(3)

WikiPathways(7)

Plant Reactome(240)

INOH(8)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(227)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ACADM, ACAT2, ACLY, COASY, FASN, G6PD, HADH, HSD17B10, SCP2, SRSF1
Peripheral membrane protein 1 G6PD
Endoplasmic reticulum membrane 3 ACAT1, ACAT2, HMGCR
Nucleus 5 ACADM, CS, SCP2, SERPINA3, SRSF1
cytosol 8 AACS, ACAT2, ACLY, FASN, G6PD, HMGCL, PDPN, SCP2
mitochondrial membrane 2 ACADM, IVD
nucleoplasm 5 ACLY, HADH, IVD, SCP2, SRSF1
lamellipodium 1 PDPN
ruffle membrane 1 PDPN
Multi-pass membrane protein 3 ACAT1, ACAT2, HMGCR
cell junction 1 PDPN
Golgi apparatus 1 FASN
Golgi membrane 1 INS
mitochondrial inner membrane 1 HADH
Cytoplasm, cytosol 4 AACS, ACAT2, ACLY, G6PD
plasma membrane 3 FASN, HSD17B10, PDPN
Membrane 8 ACAT1, ACLY, CS, FASN, G6PD, HMGCR, PDPN, SCP2
apical plasma membrane 1 PDPN
axon 1 ACADM
basolateral plasma membrane 1 PDPN
brush border 1 ACAT2
extracellular exosome 8 ACAT1, ACAT2, ACLY, COASY, CS, FASN, G6PD, SERPINA3
endoplasmic reticulum 4 ACAT1, ACAT2, HMGCR, SCP2
extracellular space 2 INS, SERPINA3
mitochondrion 12 ACADM, ACAT1, ACAT2, COASY, CS, HADH, HMGCL, HSD17B10, IVD, OXCT1, PDPN, SCP2
protein-containing complex 2 HMGCL, SCP2
intracellular membrane-bounded organelle 1 G6PD
filopodium 1 PDPN
Single-pass type I membrane protein 1 PDPN
Secreted 1 INS
extracellular region 3 ACLY, INS, SERPINA3
cytoplasmic side of plasma membrane 1 G6PD
mitochondrial outer membrane 1 COASY
Mitochondrion matrix 6 ACADM, COASY, CS, HADH, HMGCL, IVD
mitochondrial matrix 9 ACADM, ACAT1, COASY, CS, HADH, HMGCL, HSD17B10, IVD, OXCT1
anchoring junction 1 PDPN
centriolar satellite 1 G6PD
cytoplasmic vesicle 1 PDPN
Apical cell membrane 1 PDPN
Cell projection, ruffle membrane 1 PDPN
Mitochondrion inner membrane 1 HADH
Membrane raft 1 PDPN
mitochondrial nucleoid 2 HADH, HSD17B10
Peroxisome 2 HMGCL, SCP2
peroxisomal matrix 2 HMGCL, SCP2
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 1 SERPINA3
nuclear speck 1 SRSF1
ruffle 1 PDPN
cell projection 1 PDPN
Chromosome 1 SCP2
condensed chromosome, centromeric region 1 SCP2
blood microparticle 1 SERPINA3
Basolateral cell membrane 1 PDPN
Cell projection, microvillus membrane 1 PDPN
microvillus membrane 1 PDPN
nuclear envelope 1 SRSF1
endosome lumen 1 INS
lateral element 1 SCP2
Melanosome 1 FASN
Nucleus speckle 1 SRSF1
Peroxisome membrane 1 HMGCR
filopodium membrane 1 PDPN
ficolin-1-rich granule lumen 1 ACLY
secretory granule lumen 2 INS, SERPINA3
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
platelet alpha granule lumen 1 SERPINA3
transport vesicle 1 INS
azurophil granule lumen 2 ACLY, SERPINA3
mitochondrial fatty acid beta-oxidation multienzyme complex 1 HADH
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
tetraspanin-enriched microdomain 1 PDPN
mitochondrial ribonuclease P complex 1 HSD17B10
synaptonemal complex 1 SCP2
catalytic step 2 spliceosome 1 SRSF1
Cell projection, filopodium membrane 1 PDPN
lamellipodium membrane 1 PDPN
Cell projection, lamellipodium membrane 1 PDPN
[Isoform SCP2]: Peroxisome 1 SCP2
[Isoform SCPx]: Peroxisome 1 SCP2
Mitochondrion matrix, mitochondrion nucleoid 1 HSD17B10
glycogen granule 1 FASN
tRNA methyltransferase complex 1 HSD17B10
Cell projection, invadopodium 1 PDPN
[Podoplanin]: Membrane 1 PDPN
[29kDa cytosolic podoplanin intracellular domain]: Cytoplasm, cytosol 1 PDPN
leading edge of lamellipodium 1 PDPN


文献列表

  • Richard G Carroll, Zbigniew Zasłona, Silvia Galván-Peña, Emma L Koppe, Daniel C Sévin, Stefano Angiari, Martha Triantafilou, Kathy Triantafilou, Louise K Modis, Luke A O'Neill. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. The Journal of biological chemistry. 2018 04; 293(15):5509-5521. doi: 10.1074/jbc.ra118.001921. [PMID: 29463677]
  • Rajesh K Harijan, Muriel Mazet, Tiila R Kiema, Guillaume Bouyssou, Stefan E H Alexson, Ulrich Bergmann, Patrick Moreau, Paul A M Michels, Frédéric Bringaud, Rik K Wierenga. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Proteins. 2016 08; 84(8):1075-96. doi: 10.1002/prot.25054. [PMID: 27093562]
  • Tobias Bock, Janin Kasten, Rolf Müller, Wulf Blankenfeldt. Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus. Chembiochem : a European journal of chemical biology. 2016 07; 17(13):1257-62. doi: 10.1002/cbic.201600070. [PMID: 27124816]
  • Martin F Kemper, Shireesh Srivastava, M Todd King, Kieran Clarke, Richard L Veech, Robert J Pawlosky. An Ester of β-Hydroxybutyrate Regulates Cholesterol Biosynthesis in Rats and a Cholesterol Biomarker in Humans. Lipids. 2015 Dec; 50(12):1185-93. doi: 10.1007/s11745-015-4085-x. [PMID: 26498829]
  • Chitra Bhatia, Stephanie Oerum, James Bray, Kathryn L Kavanagh, Naeem Shafqat, Wyatt Yue, Udo Oppermann. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chemico-biological interactions. 2015 Jun; 234(?):114-25. doi: 10.1016/j.cbi.2014.12.013. [PMID: 25526675]
  • Richard B McQualter, Lars A Petrasovits, Leigh K Gebbie, Dirk Schweitzer, Deborah M Blackman, Panagiotis Chrysanthopoulos, Mark P Hodson, Manuel R Plan, James D Riches, Kristi D Snell, Stevens M Brumbley, Lars K Nielsen. The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant biotechnology journal. 2015 Jun; 13(5):700-7. doi: 10.1111/pbi.12298. [PMID: 25532451]
  • Joanne K Kelleher, Gary B Nickol. Isotopomer Spectral Analysis: Utilizing Nonlinear Models in Isotopic Flux Studies. Methods in enzymology. 2015; 561(?):303-30. doi: 10.1016/bs.mie.2015.06.039. [PMID: 26358909]
  • Betty Su, Robert O Ryan. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. Journal of inherited metabolic disease. 2014 May; 37(3):359-68. doi: 10.1007/s10545-013-9669-0. [PMID: 24407466]
  • Ihsan Ergün, M Cenk Akbostanci, Başol Canbakan, Bilge Koçer, Arzu Ensari, Gökhan Nergizoglu, Kenan Keven. Minimal change nephrotic syndrome with stiff-person syndrome: is there a link?. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2005 Jul; 46(1):e11-4. doi: 10.1053/j.ajkd.2005.03.009. [PMID: 15983949]
  • E B Taylor, W J Ellingson, J D Lamb, D G Chesser, W W Winder. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. American journal of physiology. Endocrinology and metabolism. 2005 Jun; 288(6):E1055-61. doi: 10.1152/ajpendo.00516.2004. [PMID: 15644453]
  • Werner J Kovacs, Lisa M Olivier, Skaidrite K Krisans. Central role of peroxisomes in isoprenoid biosynthesis. Progress in lipid research. 2002 Sep; 41(5):369-91. doi: 10.1016/s0163-7827(02)00002-4. [PMID: 12121718]
  • J M Jez, M B Austin, J Ferrer, M E Bowman, J Schröder, J P Noel. Structural control of polyketide formation in plant-specific polyketide synthases. Chemistry & biology. 2000 Dec; 7(12):919-30. doi: 10.1016/s1074-5521(00)00041-7. [PMID: 11137815]
  • S Salim, C Filling, E Mårtensson, U C Oppermann. Lack of quinone reductase activity suggests that amyloid-beta peptide/ERAB induced lipid peroxidation is not directly related to production of reactive oxygen species by redoxcycling. Toxicology. 2000 Apr; 144(1-3):163-8. doi: 10.1016/s0300-483x(99)00203-6. [PMID: 10781884]
  • R Miura, Y Nishina, S Fuji, K Shiga. C-NMR study on the interaction of medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA. Journal of biochemistry. 1996 Mar; 119(3):512-9. doi: 10.1093/oxfordjournals.jbchem.a021271. [PMID: 8830047]
  • K L Peterson, E E Sergienko, Y Wu, N R Kumar, A W Strauss, A E Oleson, W W Muhonen, J B Shabb, D K Srivastava. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules. Biochemistry. 1995 Nov; 34(45):14942-53. doi: 10.1021/bi00045a039. [PMID: 7578106]
  • R Miura, Y Nishina, K Sato, S Fujii, K Kuroda, K Shiga. 13C- and 15N-NMR studies on medium-chain acyl-CoA dehydrogenase reconstituted with 13C- and 15N-enriched flavin adenine dinucleotide. Journal of biochemistry. 1993 Jan; 113(1):106-13. doi: 10.1093/oxfordjournals.jbchem.a123992. [PMID: 8454567]
  • Y Nishina, K Sato, K Shiga, S Fujii, K Kuroda, R Miura. Resonance Raman study on complexes of medium-chain acyl-CoA dehydrogenase. Journal of biochemistry. 1992 Jun; 111(6):699-706. doi: 10.1093/oxfordjournals.jbchem.a123822. [PMID: 1500413]
  • R Hovik, B Brodal, K Bartlett, H Osmundsen. Metabolism of acetyl-CoA by isolated peroxisomal fractions: formation of acetate and acetoacetyl-CoA. Journal of lipid research. 1991 Jun; 32(6):993-9. doi: . [PMID: 1682408]
  • B Boyer, R Odessey. Quantitative control analysis of branched-chain 2-oxo acid dehydrogenase complex activity by feedback inhibition. The Biochemical journal. 1990 Oct; 271(2):523-8. doi: 10.1042/bj2710523. [PMID: 2241928]
  • B Middleton, K Bartlett, A Romanos, J Gomez Vazquez, C Conde, R A Cannon, M Lipson, L Sweetman, W L Nyhan. 3-Ketothiolase deficiency. European journal of pediatrics. 1986 Apr; 144(6):586-9. doi: 10.1007/bf00496042. [PMID: 3709573]
  • V A Zammit. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Progress in lipid research. 1984; 23(1):39-67. doi: 10.1016/0163-7827(84)90005-5. [PMID: 6152703]
  • J A Sharp, M R Edwards. Initial-velocity kinetics of succinoyl-coenzyme A-3-oxo acid coenzyme A-transferase from sheep kidney. The Biochemical journal. 1983 Jul; 213(1):179-85. doi: 10.1042/bj2130179. [PMID: 6577858]
  • P S Brady, R F Scofield, S Ohgaku, W C Schumann, G E Bartsch, J M Margolis, K Kumaran, A Horvat, S Mann, B R Landau. Pathways of acetoacetate's formation in liver and kidney. The Journal of biological chemistry. 1982 Aug; 257(16):9290-3. doi: . [PMID: 6809735]
  • B M Goslings, R Djokomoeljanto, R Docter, C van Hardeveld, G Hennemann, D Smeenk, A Querido. Hypothyroidism in an area of endemic goiter and cretinism in Central Java, Indonesia. The Journal of clinical endocrinology and metabolism. 1977 Mar; 44(3):481-90. doi: 10.1210/jcem-44-3-481. [PMID: 65359]
  • A C Buck. Disorders of micturition in bacterial prostatitis. Proceedings of the Royal Society of Medicine. 1975 Aug; 68(8):508-11. doi: NULL. [PMID: 681]