Arecaidine (BioDeep_00000007892)

 

Secondary id: BioDeep_00000000874

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-

化学式: C7H11NO2 (141.079)
中文名称: 槟榔次碱, 1,2,5,6-四氫-1-甲菸鹼酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 77.59%

分子结构信息

SMILES: CN1CCC=C(C(=O)O)C1
InChI: InChI=1S/C7H11NO2/c1-8-4-2-3-6(5-8)7(9)10/h3H,2,4-5H2,1H3,(H,9,10)

描述信息

Arecaidine is found in nuts. Arecaidine is an alkaloid from nuts of Areca catechu (betel nuts
Arecaidine is a citraconoyl group.
Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].
Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].
Arecaidine, a pyridine alkaloid, is a potent GABA uptake inhibitor. Arecaidine is a substrate of H+-coupled amino acid transporter 1 (PAT1, SLC36A1) and competitively inhibits L-proline uptake[1][2].

同义名列表

24 个代谢物同义名

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-1-methyl-; 1-Methyl-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid #; 1-Methyl-1,2,5,6-tetrahydro-pyridine-3-carboxylic acid; 1,2,5,6-Tetrahydro-1-methyl-3-pyridinecarboxylic acid; 1-Methyl-1,2,5,6-tetrahydropyridine-3-carboxylic acid; 3-Pyridinecarboxylic acid,2,5,6-tetrahydro-1-methyl-; 1-methyl-3,6-dihydro-2H-pyridine-5-carboxylic acid; 1-methyl-5,6-dihydro-2H-pyridine-3-carboxylic acid; NICOTINIC ACID, 1,2,5,6-TETRAHYDRO-1-METHYL-; 1,2,5,6-Tetrahydro-1-methyl-Nicotinic acid; 1,2,5,6-Tetrahydro-1-methylnicotinic acid; Nicotinic acid,2,5,6-tetrahydro-1-methyl-; DNJFTXKSFAMXQF-UHFFFAOYSA-N; N-Methylguvacine; UNII-0S8YEV0D4O; ARECAIDINE [MI]; Methylguvacine; Methylguvacin; isoguvacine; Arecaidine; 0S8YEV0D4O; Arecaine; Arecaidine; Arecaidine



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

15 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CCNB1, CDK1, EGR2, S100A12, SIRT1, SOX10, TP53BP1
Peripheral membrane protein 3 ACHE, S100A12, SOX10
Endosome membrane 1 NOTCH1
Endoplasmic reticulum membrane 2 CDK1, NOTCH1
Nucleus 10 ACHE, CCNB1, CDK1, EGR2, JUN, NOTCH1, S100A12, SIRT1, SOX10, TP53BP1
cytosol 6 CCNB1, CDK1, NGF, NOTCH1, S100A12, SIRT1
dendrite 1 NGF
nuclear body 1 TP53BP1
centrosome 2 CCNB1, CDK1
nucleoplasm 8 CCNB1, CDK1, EGR2, JUN, NOTCH1, SIRT1, SOX10, TP53BP1
RNA polymerase II transcription regulator complex 1 JUN
Cell membrane 6 ACHE, JAG1, NOTCH1, S100A12, SLC3A1, TNF
Cytoplasmic side 1 SOX10
Synapse 1 ACHE
cell surface 3 ACHE, NOTCH1, TNF
glutamatergic synapse 1 NOTCH1
Golgi apparatus 1 ACHE
Golgi membrane 1 NOTCH1
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
synaptic vesicle 1 NGF
acrosomal vesicle 1 NOTCH1
plasma membrane 7 ACHE, BCHE, JAG1, NOTCH1, S100A12, SLC3A1, TNF
Membrane 6 ACHE, CCNB1, CDK1, JAG1, NOTCH1, SLC3A1
apical plasma membrane 3 JAG1, NOTCH1, SLC3A1
axon 1 NGF
extracellular exosome 3 CDK1, SLC3A1, SOD2
endoplasmic reticulum 1 NOTCH1
extracellular space 5 ACHE, BCHE, IL6, NGF, TNF
perinuclear region of cytoplasm 1 ACHE
Schaffer collateral - CA1 synapse 1 NOTCH1
adherens junction 2 JAG1, NOTCH1
mitochondrion 3 CDK1, SIRT1, SOD2
intracellular membrane-bounded organelle 1 EGR2
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 2 JAG1, NOTCH1
Secreted 5 ACHE, BCHE, IL6, NGF, S100A12
extracellular region 8 ACHE, BCHE, IL6, JAG1, NGF, NOTCH1, S100A12, TNF
Mitochondrion outer membrane 1 SOX10
mitochondrial outer membrane 1 SOX10
Mitochondrion matrix 1 SOD2
mitochondrial matrix 3 CCNB1, CDK1, SOD2
Extracellular side 1 ACHE
transcription regulator complex 1 JUN
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 CDK1
external side of plasma membrane 1 TNF
nucleolus 1 SIRT1
midbody 1 CDK1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 SLC3A1, TNF
Apical cell membrane 1 SLC3A1
heterochromatin 1 SIRT1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 S100A12
mitochondrial nucleoid 1 SOD2
basement membrane 1 ACHE
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
nuclear inner membrane 1 SIRT1
receptor complex 1 NOTCH1
chromatin 4 EGR2, JUN, SIRT1, SOX10
Late endosome membrane 1 NOTCH1
phagocytic cup 1 TNF
mitotic spindle 1 CDK1
Chromosome 1 TP53BP1
cytoskeleton 1 S100A12
brush border membrane 1 SLC3A1
spindle pole 1 CCNB1
chromosome, telomeric region 2 CDK1, TP53BP1
nuclear chromosome 1 JUN
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
site of double-strand break 1 TP53BP1
fibrillar center 1 SIRT1
nuclear envelope 1 SIRT1
endosome lumen 1 NGF
Chromosome, centromere, kinetochore 1 TP53BP1
euchromatin 2 JUN, SIRT1
side of membrane 1 ACHE
replication fork 1 TP53BP1
secretory granule lumen 1 S100A12
Golgi lumen 1 NGF
endoplasmic reticulum lumen 2 BCHE, IL6
kinetochore 1 TP53BP1
postsynaptic density membrane 1 NOTCH1
nuclear envelope lumen 1 BCHE
outer kinetochore 1 CCNB1
synaptic cleft 1 ACHE
spindle microtubule 1 CDK1
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
DNA repair complex 1 TP53BP1
cyclin-dependent protein kinase holoenzyme complex 1 CDK1
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
cyclin A1-CDK1 complex 1 CDK1
cyclin A2-CDK1 complex 1 CDK1
cyclin B1-CDK1 complex 2 CCNB1, CDK1
vacuolar membrane 1 SLC3A1
[Isoform H]: Cell membrane 1 ACHE
[Notch 1 intracellular domain]: Nucleus 1 NOTCH1
MAML1-RBP-Jkappa- ICN1 complex 1 NOTCH1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Mingyu Pan, Wenfeng Geng, Yuanxiao Wang, Makoto Tsunoda, Jiatong Liu, Yingxia Zhang, Haimei Yang, Lu-Shuang Li, Shiwen Song, Jinqiang Liang, Yanting Song. Simultaneous determination of five constituents of areca nut extract in rat plasma using UPLC-MS/MS and its application in a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2024 Aug; 245(?):116158. doi: 10.1016/j.jpba.2024.116158. [PMID: 38643703]
  • Pangzhen Zhang, Nathaniel Quan En Chua, Simon Dang, Ashleigh Davis, Kah Wee Chong, Stephen S Prime, Nicola Cirillo. Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role?. International journal of molecular sciences. 2022 Jan; 23(3):. doi: 10.3390/ijms23031637. [PMID: 35163557]
  • Jiao Wu, He Zhang, Shijie Wang, Langxing Yuan, Paul Grünhofer, Lukas Schreiber, Yinglang Wan. Tissue-specific and maturity-dependent distribution of pyridine alkaloids in Areca triandra. Journal of plant research. 2019 Jul; 132(4):531-540. doi: 10.1007/s10265-019-01115-9. [PMID: 31127431]
  • Hong Pan, Yi Li, Linyan Huang, Xumei Zhou, Yuanfu Lu, Fuguo Shi. Development and validation of a rapid LC-MS/MS method for simultaneous quantification of arecoline and its two active metabolites in rat plasma and its application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2018 May; 154(?):397-403. doi: 10.1016/j.jpba.2018.03.033. [PMID: 29573735]
  • Adrian A Franke, Xingnan Li, Jennifer F Lai. Pilot study of the pharmacokinetics of betel nut and betel quid biomarkers in saliva, urine, and hair of betel consumers. Drug testing and analysis. 2016 Oct; 8(10):1095-1099. doi: 10.1002/dta.1912. [PMID: 26619803]
  • Hongli Yu, Lijuan Tang, Hao Wu, Kuilong Wang, Baochang Cai, Xingde Zhang, Chengchao Zhang, Yunzhi Yin. Determination of contents of four alkaloids in Pericarpium arecae by quantitative analysis of multi-components by single-marker. Pakistan journal of pharmaceutical sciences. 2016 Jul; 29(4):1269-74. doi: ". [PMID: 27393441]
  • Federica De Angelis, Sara Marinelli, Bernard Fioretti, Luigi Catacuzzeno, Fabio Franciolini, Flaminia Pavone, Ada Maria Tata. M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity. Journal of cellular physiology. 2014 Jun; 229(6):783-90. doi: 10.1002/jcp.24499. [PMID: 24166293]
  • Mei-Chi Chang, Li-Deh Lin, Hui-Lin Wu, Yuan-Soon Ho, Hsiang-Chi Hsien, Tong-Mei Wang, Po-Yuan Jeng, Ru-Hsiu Cheng, Liang-Jiunn Hahn, Jiiang-Huei Jeng. Areca nut-induced buccal mucosa fibroblast contraction and its signaling: a potential role in oral submucous fibrosis--a precancer condition. Carcinogenesis. 2013 May; 34(5):1096-104. doi: 10.1093/carcin/bgt012. [PMID: 23349021]
  • Maurizio Coppola, Raffaella Mondola. Potential action of betel alkaloids on positive and negative symptoms of schizophrenia: a review. Nordic journal of psychiatry. 2012 Apr; 66(2):73-8. doi: 10.3109/08039488.2011.605172. [PMID: 21859398]
  • Jingsong Yuan, Dajian Yang, Yonghong Liang, Wenping Gao, Zhipeng Ren, Wei Zeng, Baorong Wang, Jian Han, Dean Guo. Alkaloids from areca (betel) nuts and their effects on human sperm motility in vitro. Journal of food science. 2012 Apr; 77(4):T70-8. doi: 10.1111/j.1750-3841.2012.02653.x. [PMID: 22515256]
  • Imran Khan, Neeraj Kumar, Ila Pant, Sivakrishna Narra, Paturu Kondaiah. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PloS one. 2012; 7(12):e51806. doi: 10.1371/journal.pone.0051806. [PMID: 23284772]
  • David T Thwaites, Catriona M H Anderson. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. British journal of pharmacology. 2011 Dec; 164(7):1802-16. doi: 10.1111/j.1476-5381.2011.01438.x. [PMID: 21501141]
  • Chiung-Wen Hu, Yan-Zin Chang, Hsiao-Wen Wang, Mu-Rong Chao. High-throughput simultaneous analysis of five urinary metabolites of areca nut and tobacco alkaloids by isotope-dilution liquid chromatography-tandem mass spectrometry with on-line solid-phase extraction. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010 Oct; 19(10):2570-81. doi: 10.1158/1055-9965.epi-10-0483. [PMID: 20713654]
  • I-Chen Wu, Ping-Ho Chen, Chien-Jen Wang, Deng-Chyang Wu, Shih-Meng Tsai, Mu-Rong Chao, Bai-Hsiun Chen, Hei-Hwa Lee, Chien-Hung Lee, Ying-Chin Ko. Quantification of blood betel quid alkaloids and urinary 8-hydroxydeoxyguanosine in humans and their association with betel chewing habits. Journal of analytical toxicology. 2010 Jul; 34(6):325-31. doi: 10.1093/jat/34.6.325. [PMID: 20663285]
  • Chia-Hsien Feng, Chi-Yu Lu. A new matrix for analyzing low molecular mass compounds and its application for determination of carcinogenic areca alkaloids by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Analytica chimica acta. 2009 Sep; 649(2):230-5. doi: 10.1016/j.aca.2009.07.039. [PMID: 19699399]
  • I-Min Liu, Cheng Kuei Chang, Shiow-Wen Juang, Dai-Huang Kou, Yat-Ching Tong, Kai-Chun Cheng, Juei-Tang Cheng. Role of hyperglycaemia in the pathogenesis of hypotension observed in type-1 diabetic rats. International journal of experimental pathology. 2008 Aug; 89(4):292-300. doi: 10.1111/j.1365-2613.2008.00595.x. [PMID: 18715473]
  • Sarbani Giri, Kristopher W Krausz, Jeffrey R Idle, Frank J Gonzalez. The metabolomics of (+/-)-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases. Biochemical pharmacology. 2007 Feb; 73(4):561-73. doi: 10.1016/j.bcp.2006.10.017. [PMID: 17123469]
  • Kuo-Chu Lai, Te-Chang Lee. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutation research. 2006 Jul; 599(1-2):66-75. doi: 10.1016/j.mrfmmm.2006.01.005. [PMID: 16488451]
  • Sarbani Giri, Jeffrey R Idle, Chi Chen, T Mark Zabriskie, Kristopher W Krausz, Frank J Gonzalez. A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chemical research in toxicology. 2006 Jun; 19(6):818-27. doi: 10.1021/tx0600402. [PMID: 16780361]
  • P van der Bijl, A D van Eyk. Areca nut extract lowers the permeability of vaginal mucosa to reduced arecoline and arecaidine. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2001 Oct; 30(9):537-41. doi: 10.1034/j.1600-0714.2001.300905.x. [PMID: 11555156]
  • C K Wang, C H Peng. The mutagenicities of alkaloids and N-nitrosoguvacoline from betel quid. Mutation research. 1996 Aug; 360(3):165-71. doi: 10.1016/s0165-1161(96)90013-8. [PMID: 8692215]
  • C C Chen, J F Huang, C C Tsai. In vitro production of interleukin-6 by human gingival, normal buccal mucosa, and oral submucous fibrosis fibroblasts treated with betel-nut alkaloids. Gaoxiong yi xue ke xue za zhi = The Kaohsiung journal of medical sciences. 1995 Nov; 11(11):604-14. doi: . [PMID: 7490793]
  • C W van Wyk, A Olivier, C M de Miranda, P van der Bijl, A F Grobler-Rabie. Observations on the effect of areca nut extracts on oral fibroblast proliferation. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 1994 Apr; 23(4):145-8. doi: 10.1111/j.1600-0714.1994.tb01103.x. [PMID: 8046651]
  • D Lodge, G A Johnston, D R Curtis, S J Brand. Effects of the Areca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain research. 1977 Nov; 136(3):513-22. doi: 10.1016/0006-8993(77)90075-0. [PMID: 922499]