Dihydromethysticin (BioDeep_00001867460)

Main id: BioDeep_00000000050

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

化学式: C15H16O5 (276.0998)
中文名称: 二氢麻醉椒苫素, 二氢麻醉椒苦素, 二氢麻醉椒素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=CC(=O)OC(C1)CCC2=CC3=C(C=C2)OCO3
InChI: InChI=1S/C15H16O5/c1-17-12-7-11(20-15(16)8-12)4-2-10-3-5-13-14(6-10)19-9-18-13/h3,5-6,8,11H,2,4,7,9H2,1H3/t11-/m0/s1

描述信息

Dihydromethysticin is a member of 2-pyranones and an aromatic ether.
Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available.
Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.
Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

同义名列表

25 个代谢物同义名

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-; 2H-Pyran-2-one, 6-(2-(1,3-benzodioxol-5-yl)ethyl)-5,6-dihydro-4-methoxy-, (S)-; 2H-Pyran-2-one, 5,6-dihydro-4-methoxy-6-(3,4-(methylenedioxy)phenethyl)-, (S)-; (S)-6-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-4-methoxy-5,6-dihydro-2H-pyran-2-one; 2H-Pyran-2-one,6-dihydro-4-methoxy-6-[3,4-(methylenedioxy)phenethyl]-, (S)-; (6S)-6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-2H-pyran-2-one; (2S)-2-[2-(1,3-benzodioxol-5-yl)ethyl]-4-methoxy-2,3-dihydropyran-6-one; (2S)-2-(2-(1,3-BENZODIOXOL-5-YL)ETHYL)-4-METHOXY-2,3-DIHYDROPYRAN-6-ONE; 2H-Pyran-2-one,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (S)-; (+)-Dihydromethysticin(+)-Dihydromethysticin; (+)-Dihydromethysticin, analytical standard; Methysticin, 7,8-dihydro-; Dihydromethysticin (VAN); 7,8-dihydromethysticin; (+)-Dihydromethysticin; Methysticin,8-dihydro-; Dihydromethysticin; Pseudomethysticin; UNII-FZ66MQ73GS; |x-Methysticin; MEGxp0_001718; ACon0_000957; ACon1_001371; FZ66MQ73GS; Dihydromethysticin



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AHR, ANXA5, CA1, CA3, CCNB1, CCND1, CES1, CYP1A1, CYP2A6, CYP2B6, CYP2C9, CYP3A4, NLRC3, PIK3CA
Peripheral membrane protein 5 ANXA5, CYP1A1, CYP1B1, CYP2B6, GBA1
Endoplasmic reticulum membrane 7 CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C9, CYP3A4
Nucleus 5 AHR, CCNB1, CCND1, CES1, NR1I2
cytosol 9 AHR, ANXA5, CA1, CA3, CCNB1, CCND1, CES1, NLRC3, PIK3CA
nuclear body 1 NR1I2
trans-Golgi network 1 GBA1
centrosome 2 CCNB1, CCND1
nucleoplasm 4 AHR, CCNB1, CCND1, NR1I2
Cell membrane 1 ADRB3
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 ADRB3
Golgi apparatus 1 GBA1
lysosomal membrane 1 GBA1
mitochondrial inner membrane 1 CYP1A1
sarcolemma 1 ANXA5
Lysosome 2 GBA1, SGSH
plasma membrane 3 ADRB3, CYP2C9, PIK3CA
Membrane 5 ANXA5, CCNB1, CYP1B1, CYP2A6, CYP3A4
extracellular exosome 4 ANXA5, CA1, GBA1, SGSH
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 2 CES1, GBA1
lysosomal lumen 2 GBA1, SGSH
perinuclear region of cytoplasm 2 NLRC3, PIK3CA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 2 CYP1A1, CYP1B1
protein-containing complex 1 AHR
intracellular membrane-bounded organelle 8 CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C9, CYP3A4, NLRC3
Microsome membrane 6 CYP1A1, CYP1A2, CYP1B1, CYP2B6, CYP2C9, CYP3A4
extracellular region 1 ANXA5
mitochondrial matrix 1 CCNB1
transcription regulator complex 2 AHR, NR1I2
centriolar satellite 1 NLRC3
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 1 ANXA5
Mitochondrion inner membrane 1 CYP1A1
focal adhesion 1 ANXA5
collagen-containing extracellular matrix 1 ANXA5
receptor complex 1 ADRB3
Zymogen granule membrane 1 ANXA5
chromatin 2 AHR, NR1I2
spindle pole 1 CCNB1
Lipid droplet 1 CES1
aryl hydrocarbon receptor complex 1 AHR
intermediate filament cytoskeleton 1 NR1I2
endoplasmic reticulum lumen 1 CES1
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
outer kinetochore 1 CCNB1
vesicle membrane 1 ANXA5
cytoplasmic microtubule 1 CYP2A6
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
cyclin B1-CDK1 complex 1 CCNB1
endothelial microparticle 1 ANXA5
cyclin D1-CDK4 complex 1 CCND1
cyclin D1-CDK6 complex 1 CCND1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Cong Cheng, Shanshan Zhao, Yong-Li Gu, Jie Pang, Yanyun Zhao. Characterization and identification of the metabolites of dihydromethysticin by ultra-high-performance liquid chromatography orbitrap high-resolution mass spectrometry. Journal of separation science. 2022 Aug; 45(15):2914-2923. doi: 10.1002/jssc.202200250. [PMID: 35689602]
  • Philip W Melchert, Yuli Qian, Qingchen Zhang, Brandon O Klee, Chengguo Xing, John S Markowitz. In vitro inhibition of carboxylesterase 1 by Kava (Piper methysticum) Kavalactones. Chemico-biological interactions. 2022 Apr; 357(?):109883. doi: 10.1016/j.cbi.2022.109883. [PMID: 35278473]
  • Yasmin Cunha da Silva, Emily Marcele Soares Silva, Nilma de Souza Fernandes, Nathália Lamenha Lopes, Patrícia Puccinelli Orlandi, Celso Vataru Nakamura, Emmanoel Vilaça Costa, Valdir Florêncio da Veiga Júnior. Antimicrobial substances from Amazonian Aniba (Lauraceae) species. Natural product research. 2021 Mar; 35(5):849-852. doi: 10.1080/14786419.2019.1603225. [PMID: 30990331]
  • Ying Liu, Jensen A Lund, Susan J Murch, Paula N Brown. Single-Lab Validation for Determination of Kavalactones and Flavokavains in Piper methysticum (Kava). Planta medica. 2018 Nov; 84(16):1213-1218. doi: 10.1055/a-0637-2400. [PMID: 29940660]
  • Adele Murauer, Markus Ganzera. Quantitative Determination of Lactones in Piper methysticum (Kava-Kava) by Supercritical Fluid Chromatography. Planta medica. 2017 Aug; 83(12-13):1053-1057. doi: 10.1055/s-0043-100632. [PMID: 28095587]
  • Atul Upadhyay, Emmy Tuenter, Rizwan Ahmad, Adnan Amin, Vasiliki Exarchou, Sandra Apers, Nina Hermans, Luc Pieters. Kavalactones, a novel class of protein glycation and lipid peroxidation inhibitors. Planta medica. 2014 Aug; 80(12):1001-8. doi: 10.1055/s-0034-1382949. [PMID: 25098935]
  • Yan Li, Hu Mei, Qiangen Wu, Suhui Zhang, Jia-Long Fang, Leming Shi, Lei Guo. Methysticin and 7,8-dihydromethysticin are two major kavalactones in kava extract to induce CYP1A1. Toxicological sciences : an official journal of the Society of Toxicology. 2011 Dec; 124(2):388-99. doi: 10.1093/toxsci/kfr235. [PMID: 21908763]
  • A Matthias, J T Blanchfield, K G Penman, K M Bone, I Toth, R P Lehmann. Permeability studies of Kavalactones using a Caco-2 cell monolayer model. Journal of clinical pharmacy and therapeutics. 2007 Jun; 32(3):233-9. doi: 10.1111/j.1365-2710.2007.00810.x. [PMID: 17489874]
  • T D Xuan, A A Elzaawely, M Fukuta, S Tawata. Herbicidal and Fungicidal Activities of Lactones in Kava (Piper methysticum). Journal of agricultural and food chemistry. 2006 Feb; 54(3):720-5. doi: 10.1021/jf0519461. [PMID: 16448174]
  • James M Mathews, Amy S Etheridge, John L Valentine, Sherry R Black, Donna P Coleman, Purvi Patel, James So, Leo T Burka. Pharmacokinetics and disposition of the kavalactone kawain: interaction with kava extract and kavalactones in vivo and in vitro. Drug metabolism and disposition: the biological fate of chemicals. 2005 Oct; 33(10):1555-63. doi: 10.1124/dmd.105.004317. [PMID: 16033948]
  • Lihong Hu, Jin-Woo Jhoo, Catharina Y W Ang, Michael Dinovi, Antonia Mattia. Determination of six kavalactones in dietary supplements and selected functional foods containing Piper methysticum by isocratic liquid chromatography with internal standard. Journal of AOAC International. 2005 Jan; 88(1):16-25. doi: . [PMID: 15759721]
  • Pratibha V Nerurkar, Klaus Dragull, Chung-Shih Tang. In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones. Toxicological sciences : an official journal of the Society of Toxicology. 2004 May; 79(1):106-11. doi: 10.1093/toxsci/kfh067. [PMID: 14737001]
  • Matthias Unger, Ulrike Holzgrabe, Wolfgang Jacobsen, Carolyn Cummins, Leslie Z Benet. Inhibition of cytochrome P450 3A4 by extracts and kavalactones of Piper methysticum (Kava-Kava). Planta medica. 2002 Dec; 68(12):1055-8. doi: 10.1055/s-2002-36360. [PMID: 12494328]
  • L D Dinh, U Simmen, K B Bueter, B Bueter, K Lundstrom, W Schaffner. Interaction of various Piper methysticum cultivars with CNS receptors in vitro. Planta medica. 2001 Jun; 67(4):306-11. doi: 10.1055/s-2001-14334. [PMID: 11458444]
  • G Boonen, M A Beck, H Häberlein. Contribution to the quantitative and enantioselective determination of kavapyrones by high-performance liquid chromatography on ChiraSpher NT material. Journal of chromatography. B, Biomedical sciences and applications. 1997 Nov; 702(1-2):240-4. doi: 10.1016/s0378-4347(97)00389-7. [PMID: 9449578]