tropinone (BioDeep_00000001851)
natural product human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C8H13NO (139.0997)
中文名称: 托品酮
谱图信息:
最多检出来源 Homo sapiens(otcml) 26.25%
分子结构信息
SMILES: CN1C2CCC1CC(=O)C2
InChI: InChI=1/C8H13NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-7H,2-5H2,1H3
描述信息
Tropinone, also known as 3-tropanone, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Tropinone is soluble (in water) and an extremely weak acidic compound (based on its pKa). Tropinone can be found in a number of food items such as walnut, japanese persimmon, komatsuna, and chicory roots, which makes tropinone a potential biomarker for the consumption of these food products. Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone .
KEIO_ID T061
Tropinone, an alkaloid, acts as a synthetic intermediate to?Atropine[1].
同义名列表
数据库引用编号
31 个数据库交叉引用编号
- KEGG: C00783
- PubChem: 79038
- HMDB: HMDB0304521
- Metlin: METLIN64425
- MetaCyc: TROPINONE
- KNApSAcK: C00037960
- foodb: FDB031231
- chemspider: 71370
- CAS: 532-24-1
- MoNA: KO004208
- MoNA: PS063503
- MoNA: PS063506
- MoNA: KO004206
- MoNA: KO004209
- MoNA: PS063502
- MoNA: PS063501
- MoNA: PS063505
- MoNA: KO004210
- MoNA: PS063504
- MoNA: KO004207
- PMhub: MS000001296
- ChEBI: CHEBI:16656
- PubChem: 4042
- PDB-CCD: TNE
- 3DMET: B04722
- NIKKAJI: J11.723D
- RefMet: Tropinone
- medchemexpress: HY-Y0135
- KNApSAcK: 16656
- LOTUS: LTS0132723
- LOTUS: LTS0059326
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(1)
- Tropane, Piperidine, and Pyridine Alkaloid Biosynthesis:
Hydrogen Ion + N-Methylputrescine + Oxygen ⟶ 1-Methylpyrrolinium + Ammonia + Hydrogen peroxide
PharmGKB(0)
85 个相关的物种来源信息
- 357 - Agrobacterium: LTS0059326
- 357 - Agrobacterium: LTS0132723
- 359 - Agrobacterium rhizogenes: 10.1016/S0031-9422(00)98234-7
- 28211 - Alphaproteobacteria: LTS0059326
- 28211 - Alphaproteobacteria: LTS0132723
- 7458 - Apidae: LTS0132723
- 7459 - Apis: LTS0132723
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0132723
- 6656 - Arthropoda: LTS0132723
- 24609 - Atropa: LTS0059326
- 33113 - Atropa belladonna:
- 33113 - Atropa belladonna: 10.1055/S-2007-969194
- 33113 - Atropa belladonna: 10.3891/ACTA.CHEM.SCAND.43-0702
- 33113 - Atropa belladonna: LTS0059326
- 2 - Bacteria: LTS0059326
- 2 - Bacteria: LTS0132723
- 301914 - Brugmansia: LTS0059326
- 301914 - Brugmansia: LTS0132723
- 41689 - Brugmansia arborea: 10.1016/J.PHYTOCHEM.2016.03.008
- 41689 - Brugmansia arborea: 10.1055/S-2006-959725
- 41689 - Brugmansia arborea: LTS0059326
- 41689 - Brugmansia arborea: LTS0132723
- 512269 - Brugmansia × candida: 10.1016/J.PHYTOCHEM.2016.03.008
- 512269 - Brugmansia × candida: 10.1055/S-2006-959725
- 4118 - Convolvulaceae: LTS0059326
- 4122 - Convolvulus: LTS0059326
- 4123 - Convolvulus arvensis: 10.1016/0031-9422(94)00969-Z
- 4123 - Convolvulus arvensis: LTS0059326
- 4074 - Datura: LTS0059326
- 45451 - Datura quercifolia: 10.1055/S-2006-959441
- 45451 - Datura quercifolia: LTS0059326
- 4076 - Datura stramonium:
- 4076 - Datura stramonium: 10.1016/J.FITOTE.2006.01.002
- 4076 - Datura stramonium: 10.1016/J.FITOTE.2010.09.010
- 4076 - Datura stramonium: 10.1515/ZNC-2003-1-207
- 4076 - Datura stramonium: LTS0059326
- 195735 - Duboisia: LTS0059326
- 195737 - Duboisia myoporoides: 10.1271/BBB.58.1824
- 195737 - Duboisia myoporoides: LTS0059326
- 22118 - Erythroxylaceae: LTS0059326
- 22118 - Erythroxylaceae: LTS0132723
- 13511 - Erythroxylum: LTS0059326
- 13511 - Erythroxylum: LTS0132723
- 289672 - Erythroxylum coca: 10.1016/0031-9422(96)00864-3
- 289672 - Erythroxylum coca: LTS0059326
- 591145 - Erythroxylum monogynum: 10.1016/0031-9422(94)00777-Q
- 591145 - Erythroxylum monogynum: LTS0059326
- 1899187 - Erythroxylum zambesiacum: 10.1016/S0031-9422(00)90733-7
- 1899187 - Erythroxylum zambesiacum: LTS0059326
- 33682 - Euglenozoa: LTS0132723
- 2759 - Eukaryota: LTS0059326
- 2759 - Eukaryota: LTS0132723
- 9606 - Homo sapiens: -
- 4078 - Hyoscyamus: LTS0059326
- 4078 - Hyoscyamus: LTS0132723
- 310458 - Hyoscyamus albus:
- 310458 - Hyoscyamus albus: 10.1016/0031-9422(93)85227-I
- 310458 - Hyoscyamus albus: 10.1016/S0031-9422(00)98234-7
- 310458 - Hyoscyamus albus: 10.1515/ZNC-1991-7-803
- 310458 - Hyoscyamus albus: LTS0059326
- 310458 - Hyoscyamus albus: LTS0132723
- 50557 - Insecta: LTS0132723
- 5653 - Kinetoplastea: LTS0132723
- 3398 - Magnoliopsida: LTS0059326
- 3398 - Magnoliopsida: LTS0132723
- 33208 - Metazoa: LTS0132723
- 82115 - Rhizobiaceae: LTS0059326
- 82115 - Rhizobiaceae: LTS0132723
- 379 - Rhizobium: LTS0059326
- 379 - Rhizobium: LTS0132723
- 359 - Rhizobium rhizogenes: LTS0059326
- 359 - Rhizobium rhizogenes: LTS0132723
- 4070 - Solanaceae: LTS0059326
- 4070 - Solanaceae: LTS0132723
- 35493 - Streptophyta: LTS0059326
- 35493 - Streptophyta: LTS0132723
- 58023 - Tracheophyta: LTS0059326
- 58023 - Tracheophyta: LTS0132723
- 5690 - Trypanosoma: LTS0132723
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0132723
- 5654 - Trypanosomatidae: LTS0132723
- 33090 - Viridiplantae: LTS0059326
- 33090 - Viridiplantae: LTS0132723
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jesús Marín-Sáez, Roberto Romero-González, Antonia Garrido Frenich. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf.
Food chemistry.
2019 Jul; 287(?):265-272. doi:
10.1016/j.foodchem.2019.02.091
. [PMID: 30857698] - Matthew A Bedewitz, A Daniel Jones, John C D'Auria, Cornelius S Barry. Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization.
Nature communications.
2018 12; 9(1):5281. doi:
10.1038/s41467-018-07671-3
. [PMID: 30538251] - Nadine Küster, Sabine Rosahl, Birgit Dräger. Potato plants with genetically engineered tropane alkaloid precursors.
Planta.
2017 Feb; 245(2):355-365. doi:
10.1007/s00425-016-2610-7
. [PMID: 27783159] - Nicole Reinhardt, Juliane Fischer, Ralph Coppi, Elke Blum, Wolfgang Brandt, Birgit Dräger. Substrate flexibility and reaction specificity of tropinone reductase-like short-chain dehydrogenases.
Bioorganic chemistry.
2014 Apr; 53(?):37-49. doi:
10.1016/j.bioorg.2014.01.004
. [PMID: 24583623] - Andrea Brock, Wolfgang Brandt, Birgit Dräger. The functional divergence of short-chain dehydrogenases involved in tropinone reduction.
The Plant journal : for cell and molecular biology.
2008 May; 54(3):388-401. doi:
10.1111/j.1365-313x.2008.03422.x
. [PMID: 18221363] - Yvonne Scholl, Bernd Schneider, Birgit Dräger. Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium.
Phytochemistry.
2003 Feb; 62(3):325-32. doi:
10.1016/s0031-9422(02)00544-7
. [PMID: 12620344] - P C Schultheiss, A P Knight, J L Traub-Dargatz, F G Todd, F R Stermitz. Toxicity of field bindweed (Convolvulus arvensis) to mice.
Veterinary and human toxicology.
1995 Oct; 37(5):452-4. doi:
. [PMID: 8592835]