Plastoquinol A (BioDeep_00000011352)

 

Secondary id: BioDeep_00000840754


代谢物信息卡片


Plastoquinol A

化学式: C53H82O2 (750.6314472)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 0.12%

分子结构信息

SMILES: CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCc1cc(O)c(C)c(C)c1O
InChI: InChI=1S/C53H82O2/c1-40(2)21-13-22-41(3)23-14-24-42(4)25-15-26-43(5)27-16-28-44(6)29-17-30-45(7)31-18-32-46(8)33-19-34-47(9)35-20-36-48(10)37-38-51-39-52(54)49(11)50(12)53(51)55/h21,23,25,27,29,31,33,35,37,39,54-55H,13-20,22,24,26,28,30,32,34,36,38H2,1-12H3/b41-23+,42-25+,43-27+,44-29+,45-31+,46-33+,47-35+,48-37+

描述信息

同义名列表

3 个代谢物同义名

Plastoquinol A; Plastoquinol-9; a plastoquinol



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(4)

代谢反应

719 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(5)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(713)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Alexander N Tikhonov. The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynthesis research. 2023 Jun; ?(?):. doi: 10.1007/s11120-023-01034-w. [PMID: 37369875]
  • Beatrycze Nowicka, Jan Walczak, Maja Kapsiak, Karolina Barnaś, Julia Dziuba, Aleksandra Suchoń. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol. Plant physiology and biochemistry : PPB. 2023 Apr; 197(?):107660. doi: 10.1016/j.plaphy.2023.107660. [PMID: 36996637]
  • Lianhong Gu, Bernard Grodzinski, Jimei Han, Telesphore Marie, Yong-Jiang Zhang, Yang C Song, Ying Sun. An exploratory steady-state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. Plant, cell & environment. 2023 Feb; ?(?):. doi: 10.1111/pce.14563. [PMID: 36760139]
  • Shin-Ichiro Ozawa, Felix Buchert, Ruby Reuys, Michael Hippler, Yuichiro Takahashi. Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions. Plant physiology. 2022 Dec; ?(?):. doi: 10.1093/plphys/kiac575. [PMID: 36516417]
  • Jerzy Kruk, Renata Szymańska. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. Journal of photochemistry and photobiology. B, Biology. 2021 Mar; 216(?):112148. doi: 10.1016/j.jphotobiol.2021.112148. [PMID: 33556703]
  • Beatrycze Nowicka, Tymofii Fesenko, Jan Walczak, Jerzy Kruk. The inhibitor-evoked shortage of tocopherol and plastoquinol is compensated by other antioxidant mechanisms in Chlamydomonas reinhardtii exposed to toxic concentrations of cadmium and chromium ions. Ecotoxicology and environmental safety. 2020 Mar; 191(?):110241. doi: 10.1016/j.ecoenv.2020.110241. [PMID: 32007925]
  • Rachel Alves Maia, Kátia Daniella da Cruz Saraiva, André Luiz Maia Roque, Karine Leitão Lima Thiers, Clesivan Pereira Dos Santos, João Hermínio Martins da Silva, Daniel Ferreira Feijó, Birgit Arnholdt-Schmitt, José Hélio Costa. Differential expression of recently duplicated PTOX genes in Glycine max during plant development and stress conditions. Journal of bioenergetics and biomembranes. 2019 10; 51(5):355-370. doi: 10.1007/s10863-019-09810-x. [PMID: 31506801]
  • Maria M Borisova-Mubarakshina, Daria V Vetoshkina, Boris N Ivanov. Antioxidant and signaling functions of the plastoquinone pool in higher plants. Physiologia plantarum. 2019 May; 166(1):181-198. doi: 10.1111/ppl.12936. [PMID: 30706486]
  • Karine Leitão Lima Thiers, João Hermínio Martins da Silva, Geraldo Rodrigues Sartori, Clesivan Pereira Dos Santos, Kátia Daniella da Cruz Saraiva, André Luiz Maia Roque, Birgit Arnholdt-Schmitt, José Hélio Costa. Polymorphisms in plastoquinol oxidase (PTOX) from Arabidopsis accessions indicate SNP-induced structural variants associated with altitude and rainfall. Journal of bioenergetics and biomembranes. 2019 04; 51(2):151-164. doi: 10.1007/s10863-018-9784-6. [PMID: 30617736]
  • Wojciech J Nawrocki, Felix Buchert, Pierre Joliot, Fabrice Rappaport, Benjamin Bailleul, Francis-André Wollman. Chlororespiration Controls Growth Under Intermittent Light. Plant physiology. 2019 02; 179(2):630-639. doi: 10.1104/pp.18.01213. [PMID: 30498023]
  • Alejandro Morales, Xinyou Yin, Jeremy Harbinson, Steven M Driever, Jaap Molenaar, David M Kramer, Paul C Struik. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants. Plant physiology. 2018 02; 176(2):1247-1261. doi: 10.1104/pp.17.00779. [PMID: 28924017]
  • Floris J Van Eerden, Manuel N Melo, Pim W J M Frederix, Xavier Periole, Siewert J Marrink. Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature communications. 2017 05; 8(?):15214. doi: 10.1038/ncomms15214. [PMID: 28489071]
  • Veranika Zobnina, Maya D Lambreva, Giuseppina Rea, Gaetano Campi, Amina Antonacci, Viviana Scognamiglio, Maria Teresa Giardi, Fabio Polticelli. The plastoquinol-plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations. Photosynthesis research. 2017 Jan; 131(1):15-30. doi: 10.1007/s11120-016-0292-4. [PMID: 27376842]
  • Tatyana I Rokitskaya, Michael P Murphy, Vladimir P Skulachev, Yuri N Antonenko. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. Bioelectrochemistry (Amsterdam, Netherlands). 2016 Oct; 111(?):23-30. doi: 10.1016/j.bioelechem.2016.04.009. [PMID: 27182824]
  • Sekhar Kambakam, Ujjal Bhattacharjee, Jacob Petrich, Steve Rodermel. PTOX Mediates Novel Pathways of Electron Transport in Etioplasts of Arabidopsis. Molecular plant. 2016 09; 9(9):1240-1259. doi: 10.1016/j.molp.2016.06.008. [PMID: 27353362]
  • Agu Laisk, Vello Oja, Hillar Eichelmann. Kinetics of plastoquinol oxidation by the Q-cycle in leaves. Biochimica et biophysica acta. 2016 Jun; 1857(6):819-30. doi: 10.1016/j.bbabio.2016.03.032. [PMID: 27056771]
  • Djurre H de Jong, Nicoletta Liguori, Tom van den Berg, Clement Arnarez, Xavier Periole, Siewert J Marrink. Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex. The journal of physical chemistry. B. 2015 Jun; 119(25):7791-803. doi: 10.1021/acs.jpcb.5b00809. [PMID: 26053327]
  • Agu Laisk, Hillar Eichelmann, Vello Oja. Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. Biochimica et biophysica acta. 2015 Jun; 1847(6-7):565-75. doi: 10.1016/j.bbabio.2015.03.003. [PMID: 25800682]
  • Floris J van Eerden, Djurre H de Jong, Alex H de Vries, Tsjerk A Wassenaar, Siewert J Marrink. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochimica et biophysica acta. 2015 Jun; 1848(6):1319-30. doi: 10.1016/j.bbamem.2015.02.025. [PMID: 25749153]
  • Sergey A Khorobrykh, Maarit Karonen, Esa Tyystjärvi. Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen. FEBS letters. 2015 Mar; 589(6):779-86. doi: 10.1016/j.febslet.2015.02.011. [PMID: 25701589]
  • Aarthi Putarjunan, Steve Rodermel. gigantea suppresses immutans variegation by interactions with cytokinin and gibberellin signaling pathways. Plant physiology. 2014 Dec; 166(4):2115-32. doi: 10.1104/pp.114.250647. [PMID: 25349324]
  • Alexander N Tikhonov. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant physiology and biochemistry : PPB. 2014 Aug; 81(?):163-83. doi: 10.1016/j.plaphy.2013.12.011. [PMID: 24485217]
  • Denise Galzerano, Kathleen Feilke, Patrick Schaub, Peter Beyer, Anja Krieger-Liszkay. Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana. Biochimica et biophysica acta. 2014 Mar; 1837(3):345-53. doi: 10.1016/j.bbabio.2013.12.010. [PMID: 24378845]
  • S Saif Hasan, Eiki Yamashita, William A Cramer. Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochimica et biophysica acta. 2013 Nov; 1827(11-12):1295-308. doi: 10.1016/j.bbabio.2013.03.002. [PMID: 23507619]
  • Olga P Kaminskaya, Vladimir A Shuvalov. Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria. Biochimica et biophysica acta. 2013 Apr; 1827(4):471-83. doi: 10.1016/j.bbabio.2013.01.007. [PMID: 23357332]
  • Kun Yan, Peng Chen, Hongbo Shao, Chuyang Shao, Shijie Zhao, Marian Brestic. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PloS one. 2013; 8(5):e62100. doi: 10.1371/journal.pone.0062100. [PMID: 23717388]
  • Martin Trouillard, Maryam Shahbazi, Lucas Moyet, Fabrice Rappaport, Pierre Joliot, Marcel Kuntz, Giovanni Finazzi. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochimica et biophysica acta. 2012 Dec; 1817(12):2140-8. doi: 10.1016/j.bbabio.2012.08.006. [PMID: 22982477]
  • Beatrycze Nowicka, Jerzy Kruk. Plastoquinol is more active than α-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. Biochimica et biophysica acta. 2012 Mar; 1817(3):389-94. doi: 10.1016/j.bbabio.2011.12.002. [PMID: 22192719]
  • Niaz Ahmad, Franck Michoux, Peter J Nixon. Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. PloS one. 2012; 7(7):e41722. doi: 10.1371/journal.pone.0041722. [PMID: 22848578]
  • Michael D McConnell, John B Cowgill, Patricia L Baker, Fabrice Rappaport, Kevin E Redding. Double reduction of plastoquinone to plastoquinol in photosystem 1. Biochemistry. 2011 Dec; 50(51):11034-46. doi: 10.1021/bi201131r. [PMID: 22103567]
  • Allison E McDonald, Alex G Ivanov, Rainer Bode, Denis P Maxwell, Steven R Rodermel, Norman P A Hüner. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochimica et biophysica acta. 2011 Aug; 1807(8):954-67. doi: 10.1016/j.bbabio.2010.10.024. [PMID: 21056542]
  • Sujith Puthiyaveetil. A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin. FEBS letters. 2011 Jun; 585(12):1717-21. doi: 10.1016/j.febslet.2011.04.076. [PMID: 21557941]
  • Anna Maria Zbierzak, Peter Dörmann, Georg Hölzl. Analysis of lipid content and quality in Arabidopsis plastids. Methods in molecular biology (Clifton, N.J.). 2011; 775(?):411-26. doi: 10.1007/978-1-61779-237-3_22. [PMID: 21863456]
  • Renata Szymańska, Jerzy Kruk. Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant & cell physiology. 2010 Apr; 51(4):537-45. doi: 10.1093/pcp/pcq017. [PMID: 20164151]
  • Natallia Bondarava, Christine M Gross, Maria Mubarakshina, Jochen R Golecki, Giles N Johnson, Anja Krieger-Liszkay. Putative function of cytochrome b559 as a plastoquinol oxidase. Physiologia plantarum. 2010 Apr; 138(4):463-73. doi: 10.1111/j.1399-3054.2009.01312.x. [PMID: 19947963]
  • Anna Maria Zbierzak, Marion Kanwischer, Christina Wille, Pierre-Alexandre Vidi, Patrick Giavalisco, Antje Lohmann, Isabel Briesen, Svetlana Porfirova, Claire Bréhélin, Felix Kessler, Peter Dörmann. Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. The Biochemical journal. 2009 Dec; 425(2):389-99. doi: 10.1042/bj20090704. [PMID: 19843012]
  • Jolanta Gruszka, Anna Pawlak, Jerzy Kruk. Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers-determination of singlet oxygen quenching rate constants and oxidation products. Free radical biology & medicine. 2008 Sep; 45(6):920-8. doi: 10.1016/j.freeradbiomed.2008.06.025. [PMID: 18634868]
  • Jerzy Kruk, Achim Trebst. Plastoquinol as a singlet oxygen scavenger in photosystem II. Biochimica et biophysica acta. 2008 Feb; 1777(2):154-62. doi: 10.1016/j.bbabio.2007.10.008. [PMID: 18005659]
  • Allison E McDonald, Greg C Vanlerberghe. Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene. 2005 Apr; 349(?):15-24. doi: 10.1016/j.gene.2004.12.049. [PMID: 15777727]
  • Itzhak Ohad, Cristina Dal Bosco, Reinhold G Herrmann, Jörg Meurer. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry. 2004 Mar; 43(8):2297-308. doi: 10.1021/bi0348260. [PMID: 14979726]
  • Jerzy Kruk, Małgorzata Jemioła-Rzemińska, Kazimierz Strzałka. Cytochrome c is reduced mainly by plastoquinol and not by superoxide in thylakoid membranes at low and medium light intensities: its specific interaction with thylakoid membrane lipids. The Biochemical journal. 2003 Oct; 375(Pt 1):215-20. doi: 10.1042/bj20021820. [PMID: 12837134]
  • Jerzy Kruk, Małgorzata Jemioła-Rzemińska, Kvetoslava Burda, Georg H Schmid, Kazimierz Strzałka. Scavenging of superoxide generated in photosystem I by plastoquinol and other prenyllipids in thylakoid membranes. Biochemistry. 2003 Jul; 42(28):8501-5. doi: 10.1021/bi034036q. [PMID: 12859196]
  • Małgorzata Jemioła-Rzemińska, Jerzy Kruk, Kazimierz Strzałka. Anisotropy measurements of intrinsic fluorescence of prenyllipids reveal much higher mobility of plastoquinol than alpha-tocopherol in model membranes. Chemistry and physics of lipids. 2003 Apr; 123(2):233-43. doi: 10.1016/s0009-3084(03)00018-5. [PMID: 12691855]
  • Peter Jahns, Maria Graf, Yuri Munekage, Toshiharu Shikanai. Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS letters. 2002 May; 519(1-3):99-102. doi: 10.1016/s0014-5793(02)02719-9. [PMID: 12023025]
  • G Finazzi, S Büschlen, C de Vitry, F Rappaport, P Joliot, F A Wollman. Function-directed mutagenesis of the cytochrome b6f complex in Chlamydomonas reinhardtii: involvement of the cd loop of cytochrome b6 in quinol binding to the Q(o) site. Biochemistry. 1997 Mar; 36(10):2867-74. doi: 10.1021/bi962717y. [PMID: 9062116]
  • J M Escoubas, M Lomas, J LaRoche, P G Falkowski. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proceedings of the National Academy of Sciences of the United States of America. 1995 Oct; 92(22):10237-41. doi: 10.1073/pnas.92.22.10237. [PMID: 7479759]
  • A V Vener, P J Van Kan, A Gal, B Andersson, I Ohad. Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. Role of plastoquinol bound to the reduced cytochrome bf complex. The Journal of biological chemistry. 1995 Oct; 270(42):25225-32. doi: 10.1074/jbc.270.42.25225. [PMID: 7559660]
  • J Kruk, G H Schmid, K Strzałka. Antioxidant properties of plastoquinol and other biological prenylquinols in liposomes and solution. Free radical research. 1994 Nov; 21(6):409-16. doi: 10.3109/10715769409056593. [PMID: 7834055]
  • H Zer, O Prasil, I Ohad. Role of plastoquinol oxidoreduction in regulation of photochemical reaction center IID1 protein turnover in vivo. The Journal of biological chemistry. 1994 Jul; 269(26):17670-6. doi: . [PMID: 8021278]
  • P M Wood, D S Bendall. The reduction of plastocyanin by plastoquinol-1 in the presence of chloroplasts. A dark electron transfer reaction involving components between the two photosystems. European journal of biochemistry. 1976 Jan; 61(2):337-44. doi: 10.1111/j.1432-1033.1976.tb10027.x. [PMID: 174911]