Gene Association: MAL2

UniProt Search: MAL2 (PROTEIN_CODING)
Function Description: mal, T cell differentiation protein 2

found 19 associated metabolites with current gene based on the text mining result from the pubmed database.

beta-Lactose

(2R,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Beta-lactose is the beta-anomer of lactose. beta-Lactose contains a Lactosylceramide motif and is often attached to a Cer aglycon. beta-Lactose is a natural product found in Hypericum perforatum with data available. A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Beta-Lactose is the beta-pyranose form of the compound lactose [CCD]. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Beta-pyranose form of the compound lactose [CCD] The beta-anomer of lactose. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. Lactose, a major sugar in the milk of most species, could regulate human’s intestinal microflora. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2]. α-Lactose (α-D-Lactose) is the major sugar present in milk. Lactose exists in the form of two anomers, α and β. The α form normally crystallizes as a monohydrate[1][2].

   

Maltotetraose

(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

C24H42O21 (666.2218)


Maltotetraose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotetraose exists in all living organisms, ranging from bacteria to humans. Outside of the human body, maltotetraose has been detected, but not quantified in several different foods, such as welsh onions, kales, small-leaf lindens, other bread, and romaine lettuces. Maltotetraose is a normal human oligo saccharide present in plasma, but is elevated in cases of Pompe disease (PMID 15886040). Alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp is a maltotetraose tetrasaccharide consisting of three alpha-D-glucopyranose residues and a D-glucopyranose residue joined in sequence by (1->4) glycosidic bonds. Amylotetraose is a natural product found in Streptomyces with data available. Constituent of corn syrup. Product of action of a-amylase on starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Maltodextrin

(2S,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Alpha-maltose is a maltose that has alpha-configuration at the reducing end anomeric centre. alpha-Maltose is a natural product found in Cyperus esculentus, Phytelephas aequatorialis, and other organisms with data available. Maltodextrin is an oligosaccharide derived from starch that is used as a food additive and as a carbohydrate supplement. As a supplement, maltodextrin is used to provide and sustain energy levels during endurance-oriented workouts o sports, and to help build muscle mass and support weight gain. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Maltotriose

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H32O16 (504.169)


Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143). Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].

   

Cellobiose

4-O-(a-D-Galactopyranosyl)-D-glucopyranose

C12H22O11 (342.1162)


D-(+)-Cellobiose is an endogenous metabolite. D-(+)-Cellobiose is an endogenous metabolite. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Melibiose

(2S,3R,4S,5S,6R)-6-({[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C12H22O11 (342.1162)


Melibiose (CAS: 585-99-9) is a disaccharide consisting of one galactose and one glucose moiety in an alpha (1-6) glycosidic linkage. This sugar is produced and metabolized only by enteric and lactic acid bacteria and other microbes, such as Dickeya dadantii, Escherichia, Leuconostoc, and Saccharomyces (PMID: 19734309, 28453942). It is not an endogenous metabolite but may be obtained from the consumption of partially fermented molasses, brown sugar, or honey. Antibodies to melibiose will appear in individuals affected by Chagas disease (Trypanosoma cruzi infection). Melibiose is not metabolized by humans but can be broken down by gut microflora, such as E. coli. In fact, E. coli is able to utilize melibiose as a sole source of carbon. Melibiose is first imported by the melibiose permease, MelB and then converted into β-D-glucose and β-D-galactose by the α-galactosidase encoded by melA. Because of its poor digestibility, melibiose (along with rhamnose) can be used together for noninvasive intestinal mucosa barrier testing. This test can be used to assess malabsorption or impairment of intestinal permeability. Recent studies with dietary melibiose have shown that it can strongly affect the Th cell responses to an ingested antigen. It has been suggested that melibiose could be used to enhance the induction of oral tolerance (PMID: 17986780). Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.

   

Palatinose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Trehalose 6-phosphate

{[(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methoxy}phosphonic acid

C12H23O14P (422.0825)


Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. [HMDB]. Trehalose 6-phosphate is found in many foods, some of which are barley, cashew nut, kohlrabi, and american butterfish. Trehalose 6-phosphate is a substrate for Hexokinase (type I) and Tryptase beta-1. Trehalose 6-phosphate has been found to be a microbial metabolite in Escherichia, Mycobacterium and Saccharomyces (UniProt). KEIO_ID T065; [MS2] KO009301 D004791 - Enzyme Inhibitors KEIO_ID T065

   

ADP-glucose

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})phosphinic acid

C16H25N5O15P2 (589.0822)


ADP-glucose serves as the glycosyl donor for formation of bacterial glycogen, amylose in green algae, and amylopectin in higher plants. ADP-glucose has been found to be a metabolite of Escherichia (PMID: 25102309). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Maltose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3S,4R,5S,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


D-Maltose, also known as maltose, maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an alpha (1‚Üí4) bond. Its name comes from malt, combined with the suffix -ose which is used in names of sugars. Maltose is a key structural motif of starch. When alpha-amylase breaks down starch, it removes two glucose units at a time, producing maltose. Maltose can be further broken down to glucose by the maltase enzyme, which catalyses the hydrolysis of the glycosidic bond. D-maltose exists in all living species, ranging from bacteria to plants to humans. Within humans, D-maltose participates in a number of enzymatic reactions. In particular, maltose can be converted into glucose; which is mediated by the enzyme maltase-glucoamylase. In addition, maltose can be converted into glucose through its interaction with the enzyme glycogen debranching enzyme. Maltose is found in high concentrations in oriental wheats and in a lower concentrations in sweet potato, grape wines, yellow pond-lilies, sunflowers, and spinach. Maltose is a component of malt, a substance which is obtained in the process of allowing grain to soften in water and germinate. It is also present in highly variable quantities in partially hydrolysed starch products like maltodextrin, corn syrup and acid-thinned starch. Maltose has a sweet taste but is only about 30‚Äì60\\\\% as sweet as sucrose, depending on the concentration. Sweetening agent, dietary supplement. Occurs in some plants as hydrolytic dec. production of starch. Production in high yield (80\\\\%) by the action of diastase (a- and b-amylase) on starch, a process used in brewing D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Maltose

4-O-alpha-D-glucopyranosyl-L-glucopyranose

C12H22O11 (342.1162)


A glycosylglucose consisting of two D-glucopyranose units connected by an alpha-(1->4)-linkage. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents A maltose that has beta-configuration at the reducing end anomeric centre. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050 D-(+)-Cellobiose is an endogenous metabolite. D-(+)-Cellobiose is an endogenous metabolite. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

D-Glucose, 4-O-beta-D-galactopyranosyl-

2-(hydroxymethyl)-6-{[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


The most abundant organic material found in plants forming the principal constituent of their cell walls giving them structural strength. Anticaking agent, binding agent and other uses in food. D-(+)-Cellobiose is an endogenous metabolite. D-(+)-Cellobiose is an endogenous metabolite. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Maltotetraose

Maltotetraose

C24H42O21 (666.2218)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

ADP-glucose

Adenosine diphosphate glucose

C16H25N5O15P2 (589.0822)


   

Trehalose-6-phosphate

Trehalose-6-phosphate

C12H23O14P (422.0825)


D004791 - Enzyme Inhibitors

   

isomaltulose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


   

Maltodextrin

(2S,3R,4R,5S,6R)-6-(Hydroxymethyl)-5-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2,3,4-triol

C12H22O11 (342.1162)


Alpha-maltose is a maltose that has alpha-configuration at the reducing end anomeric centre. alpha-Maltose is a natural product found in Cyperus esculentus, Phytelephas aequatorialis, and other organisms with data available. Maltodextrin is an oligosaccharide derived from starch that is used as a food additive and as a carbohydrate supplement. As a supplement, maltodextrin is used to provide and sustain energy levels during endurance-oriented workouts o sports, and to help build muscle mass and support weight gain. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map A maltose that has alpha-configuration at the reducing end anomeric centre. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.

   

Amylotriose

Amylotriose

C18H32O16 (504.169)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].

   

Brachiose

ISOMALTOSE

C12H22O11 (342.1162)


Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions. Isomaltose is composed of two glucose units and suitable as a non-cariogenic sucrose replacement and is favorable in products for diabetics and prediabetic dispositions.