S-Methyl GSH (BioDeep_00000004338)

   


代谢物信息卡片


2-Amino-5-((1-((carboxymethyl)amino)-3-(methylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid

化学式: C11H19N3O6S (321.0995)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CSCC(C(=O)NCC(=O)O)NC(=O)CCC(C(=O)O)N
InChI: InChI=1S/C11H19N3O6S/c1-21-5-7(10(18)13-4-9(16)17)14-8(15)3-2-6(12)11(19)20/h6-7H,2-5,12H2,1H3,(H,13,18)(H,14,15)(H,16,17)(H,19,20)

描述信息

S-Methylglutathione is an S-substitued?glutathione and a stronger nucleophile than GSH[1]. S-Methylglutathione has inhibitory effect on glyoxalase 1[2].

同义名列表

4 个代谢物同义名

S-Methylglutathione; S-Methyl GSH; 2-Amino-5-((1-((carboxymethyl)amino)-3-(methylthio)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid; S-Methyl GSH



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

21 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(21)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ABCB1, ADH5, ALB, BCAT1, GSTT2, HPGDS
Peripheral membrane protein 2 ACHE, CYP1B1
Endoplasmic reticulum membrane 1 CYP1B1
Mitochondrion membrane 1 ABCG2
Nucleus 3 ACHE, ALB, GSTT2
cytosol 8 ADH5, ALB, BCAT1, GCLM, GPT, GSS, GSTT2, HPGDS
mitochondrial membrane 1 ABCG2
centrosome 1 ALB
nucleoplasm 3 ABCG2, CD2, HPGDS
Cell membrane 7 ABCB1, ABCC1, ABCG2, ACHE, ADGRL3, CASR, CD2
Cell projection, axon 1 ADGRL3
Multi-pass membrane protein 6 ABCB1, ABCC1, ABCC4, ABCG2, ADGRL3, CASR
Synapse 1 ACHE
cell junction 1 ADGRL3
cell surface 4 ABCB1, ACHE, CASR, CD2
glutamatergic synapse 2 ADGRL3, CASR
Golgi apparatus 4 ABCC4, ACHE, ALB, CD2
mitochondrial inner membrane 1 ATP5ME
neuromuscular junction 1 ACHE
neuronal cell body 1 CASR
presynaptic membrane 1 CASR
Cytoplasm, cytosol 1 GSTT2
plasma membrane 8 ABCB1, ABCC1, ABCC4, ABCG2, ACHE, ADGRL3, CASR, CD2
Membrane 8 ABCB1, ABCC1, ABCC4, ABCG2, ACHE, ADGRL3, CASR, CYP1B1
apical plasma membrane 5 ABCB1, ABCC1, ABCC4, ABCG2, CASR
axon 1 ADGRL3
basolateral plasma membrane 3 ABCC1, ABCC4, CASR
extracellular exosome 7 ABCB1, ABCC1, ADH5, ALB, GPT, GSS, GSTT2
endoplasmic reticulum 1 ALB
extracellular space 4 ACHE, ALB, IL6, PTH
perinuclear region of cytoplasm 1 ACHE
mitochondrion 4 ADH5, ATP5ME, BCAT1, CYP1B1
protein-containing complex 2 ALB, CD2
intracellular membrane-bounded organelle 2 CYP1B1, HPGDS
Microsome membrane 1 CYP1B1
Single-pass type I membrane protein 1 CD2
Secreted 3 ACHE, ALB, IL6
extracellular region 5 ACHE, ALB, CD2, IL6, PTH
cytoplasmic side of plasma membrane 1 CD2
Extracellular side 1 ACHE
anchoring junction 1 ALB
external side of plasma membrane 1 CD2
nucleolus 1 ABCC4
cell-cell junction 2 ADGRL3, CD2
Apical cell membrane 3 ABCB1, ABCC4, ABCG2
Membrane raft 1 ABCG2
basement membrane 1 ACHE
lateral plasma membrane 1 ABCC1
ciliary basal body 1 ALB
centriole 1 ALB
brush border membrane 1 ABCG2
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 1 ABCC4
Lipid-anchor, GPI-anchor 1 ACHE
side of membrane 1 ACHE
basal plasma membrane 1 ABCC1
platelet dense granule membrane 1 ABCC4
endoplasmic reticulum lumen 2 ALB, IL6
platelet alpha granule lumen 1 ALB
axon terminus 1 CASR
synaptic cleft 1 ACHE
external side of apical plasma membrane 3 ABCB1, ABCC4, ABCG2
proton-transporting ATP synthase complex 1 ATP5ME
proton-transporting ATP synthase complex, coupling factor F(o) 1 ATP5ME
interleukin-6 receptor complex 1 IL6
[Isoform H]: Cell membrane 1 ACHE
glutamate-cysteine ligase complex 1 GCLM
ciliary transition fiber 1 ALB


文献列表

  • Mercè Garcia-Belinchón, María Sánchez-Osuna, Laura Martínez-Escardó, Carla Granados-Colomina, Sònia Pascual-Guiral, Victoria Iglesias-Guimarais, Elisenda Casanelles, Judit Ribas, Victor J Yuste. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death. The Journal of biological chemistry. 2015 Aug; 290(34):20841-20855. doi: 10.1074/jbc.m115.644179. [PMID: 26124276]
  • Barbara Roe, Elizabeth Kensicki, Robert Mohney, William W Hall. Metabolomic profile of hepatitis C virus-infected hepatocytes. PloS one. 2011; 6(8):e23641. doi: 10.1371/journal.pone.0023641. [PMID: 21853158]
  • Zhengyuan Wang, Sahar Abubucker, John Martin, Richard K Wilson, John Hawdon, Makedonka Mitreva. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation. BMC genomics. 2010 May; 11(?):307. doi: 10.1186/1471-2164-11-307. [PMID: 20470405]
  • Joshua E Kiss, Xin Gao, Joseph M Krepp, John M Hawdon. Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites. Parasites & vectors. 2009 Apr; 2(1):21. doi: 10.1186/1756-3305-2-21. [PMID: 19393088]
  • Beverly J Wolpert, Max G Beauvoir, Elizabeth Fortson Wells, John M Hawdon. Plant vermicides of Haitian Vodou show in vitro activity against larval hookworm. The Journal of parasitology. 2008 Oct; 94(5):1155-60. doi: 10.1645/ge-1446.1. [PMID: 18576795]
  • Naomi Mizuno, Tsuyoshi Takahashi, Hiroyuki Kusuhara, John D Schuetz, Takuro Niwa, Yuichi Sugiyama. Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug metabolism and disposition: the biological fate of chemicals. 2007 Nov; 35(11):2045-52. doi: 10.1124/dmd.107.016352. [PMID: 17682070]
  • Maki Hasegawa, Hiroyuki Kusuhara, Masashi Adachi, John D Schuetz, Kenji Takeuchi, Yuichi Sugiyama. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. Journal of the American Society of Nephrology : JASN. 2007 Jan; 18(1):37-45. doi: 10.1681/asn.2005090966. [PMID: 17135398]
  • Nataliya D Romanyuk, Daniel J Rigden, Olena K Vatamaniuk, Albert Lang, Rebecca E Cahoon, Joseph M Jez, Philip A Rea. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant physiology. 2006 Jul; 141(3):858-69. doi: 10.1104/pp.106.082131. [PMID: 16714405]
  • Maria Rius, Anne T Nies, Johanna Hummel-Eisenbeiss, Gabriele Jedlitschky, Dietrich Keppler. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology (Baltimore, Md.). 2003 Aug; 38(2):374-84. doi: 10.1053/jhep.2003.50331. [PMID: 12883481]
  • Maria Teresa Gatto, Omidreza Firuzi, Roberta Agostino, Eleonora Grippa, Angela Borsò, Francesca Spinelli, Lucia Pavan, Marzia Petrolati, Rita Petrucci, Giancarlo Marrosu, Luciano Saso. Development of a new assay for the screening of hypochlorous acid scavengers based on reversed-phase high-performance liquid chromatography. Biomedical chromatography : BMC. 2002 Sep; 16(6):404-11. doi: 10.1002/bmc.174. [PMID: 12228898]
  • N E Pettigrew, E J Brush, R F Colman. 3-Methyleneoxindole: an affinity label of glutathione S-transferase pi which targets tryptophan 38. Biochemistry. 2001 Jun; 40(25):7549-58. doi: 10.1021/bi002840w. [PMID: 11412109]
  • O K Vatamaniuk, S Mari, Y P Lu, P A Rea. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. The Journal of biological chemistry. 2000 Oct; 275(40):31451-9. doi: 10.1074/jbc.m002997200. [PMID: 10807919]
  • A M Cantin, P Larivée, R O Bégin. Extracellular glutathione suppresses human lung fibroblast proliferation. American journal of respiratory cell and molecular biology. 1990 Jul; 3(1):79-85. doi: 10.1165/ajrcmb/3.1.79. [PMID: 2363938]
  • K Hanai, H Kato, S Matsuhashi, H Morita, E W Raines, R Ross. Platelet proteins, including platelet-derived growth factor, specifically depress a subset of the multiple components of the response elicited by glutathione in Hydra. The Journal of cell biology. 1987 Jun; 104(6):1675-81. doi: 10.1083/jcb.104.6.1675. [PMID: 3584244]
  • G Loo, J T Smith. Glutathione: an endogenous substrate for thiopurine methyltransferase?. Biochemical and biophysical research communications. 1985 Feb; 126(3):1201-7. doi: 10.1016/0006-291x(85)90313-4. [PMID: 3977911]