CoA 4:1;O2 (BioDeep_00000015527)

 

Secondary id: BioDeep_00000001670, BioDeep_00000014458, BioDeep_00000027806, BioDeep_00001869322


代谢物信息卡片


5-O-[hydroxy({hydroxy[(15-hydroxy-16,16-dimethyl-3,5,10,14-tetraoxo-2-oxa-6-thia-9,13-diazaheptadecan-17-yl)oxy]phosphoryl}oxy)phosphoryl]adenosine 3-(dihydrogen phosphate);malonyl-coenzyme A methyl ester

化学式: C25H40N7O19P3S (867.131248)
中文名称:
谱图信息: 最多检出来源 Macaca mulatta(otcml) 5.19%

分子结构信息

SMILES: CC(C(=O)O)C(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C25H40N7O19P3S/c1-25(2,20(37)23(38)28-5-4-14(33)27-6-7-55-16(35)8-15(34)46-3)10-48-54(44,45)51-53(42,43)47-9-13-19(50-52(39,40)41)18(36)24(49-13)32-12-31-17-21(26)29-11-30-22(17)32/h11-13,18-20,24,36-37H,4-10H2,1-3H3,(H,27,33)(H,28,38)(H,42,43)(H,44,45)(H2,26,29,30)(H2,39,40,41)/t13-,18-,19-,20+,24-/m1/s1



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(6)

BioCyc(0)

PlantCyc(0)

代谢反应

68 个相关的代谢反应过程信息。

Reactome(63)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(3)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Joseph P Dewulf, Stéphanie Paquay, Etienne Marbaix, Younès Achouri, Emile Van Schaftingen, Guido T Bommer. ECHDC1 knockout mice accumulate ethyl-branched lipids and excrete abnormal intermediates of branched-chain fatty acid metabolism. The Journal of biological chemistry. 2021 10; 297(4):101083. doi: 10.1016/j.jbc.2021.101083. [PMID: 34419447]
  • Joshua P Torres, Zhenjian Lin, Jaclyn M Winter, Patrick J Krug, Eric W Schmidt. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nature communications. 2020 06; 11(1):2882. doi: 10.1038/s41467-020-16376-5. [PMID: 32513940]
  • Joseph P Dewulf, Isabelle Gerin, Mark H Rider, Maria Veiga-da-Cunha, Emile Van Schaftingen, Guido T Bommer. The synthesis of branched-chain fatty acids is limited by enzymatic decarboxylation of ethyl- and methylmalonyl-CoA. The Biochemical journal. 2019 08; 476(16):2427-2447. doi: 10.1042/bcj20190500. [PMID: 31416829]
  • Carole L Linster, Gaëtane Noël, Vincent Stroobant, Didier Vertommen, Marie-Françoise Vincent, Guido T Bommer, Maria Veiga-da-Cunha, Emile Van Schaftingen. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. The Journal of biological chemistry. 2011 Dec; 286(50):42992-3003. doi: 10.1074/jbc.m111.281527. [PMID: 22016388]
  • Suzana Savvi, Digby F Warner, Bavesh D Kana, John D McKinney, Valerie Mizrahi, Stephanie S Dawes. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. Journal of bacteriology. 2008 Jun; 190(11):3886-95. doi: 10.1128/jb.01767-07. [PMID: 18375549]
  • Madhulika Jain, Christopher J Petzold, Michael W Schelle, Michael D Leavell, Joseph D Mougous, Carolyn R Bertozzi, Julie A Leary, Jeffery S Cox. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proceedings of the National Academy of Sciences of the United States of America. 2007 Mar; 104(12):5133-8. doi: 10.1073/pnas.0610634104. [PMID: 17360366]
  • Vinod S Dubey, Tatiana D Sirakova, Michael H Cynamon, Pappachan E Kolattukudy. Biochemical function of msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. Journal of bacteriology. 2003 Aug; 185(15):4620-5. doi: 10.1128/jb.185.15.4620-4625.2003. [PMID: 12867474]
  • Ikuro Abe, Yusuke Takahashi, Weiwei Lou, Hiroshi Noguchi. Enzymatic formation of unnatural novel polyketides from alternate starter and nonphysiological extension substrate by chalcone synthase. Organic letters. 2003 Apr; 5(8):1277-80. doi: 10.1021/ol0300165. [PMID: 12688738]
  • W Zhang, L Yang, W Jiang, G Zhao, Y Yang, J Chiao. Molecular analysis and heterologous expression of the gene encoding methylmalonyl-coenzyme A mutase from rifamycin SV-producing strain Amycolatopsis mediterranei U32. Applied biochemistry and biotechnology. 1999 Dec; 82(3):209-25. doi: 10.1385/abab:82:3:209. [PMID: 10813025]
  • J Schröder, S Raiber, T Berger, A Schmidt, J Schmidt, A M Soares-Sello, E Bardshiri, D Strack, T J Simpson, M Veit, G Schröder. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry. 1998 Jun; 37(23):8417-25. doi: 10.1021/bi980204g. [PMID: 9622493]
  • S P Stabler, J Lindenbaum, R H Allen. Vitamin B-12 deficiency in the elderly: current dilemmas. The American journal of clinical nutrition. 1997 Oct; 66(4):741-9. doi: 10.1093/ajcn/66.4.741. [PMID: 9322547]
  • E P Brass, R H Allen, L J Ruff, S P Stabler. Effect of hydroxycobalamin[c-lactam] on propionate and carnitine metabolism in the rat. The Biochemical journal. 1990 Mar; 266(3):809-15. doi: . [PMID: 2327967]
  • R J Kovachy, S D Copley, R H Allen. Recognition, isolation, and characterization of rat liver D-methylmalonyl coenzyme A hydrolase. The Journal of biological chemistry. 1983 Sep; 258(18):11415-21. doi: . [PMID: 6885824]
  • D L Rainwater, P E Kolattukudy. Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. The Journal of biological chemistry. 1983 Mar; 258(5):2979-85. doi: . [PMID: 6402506]
  • S Similä, A Ruokonen, A Palotie, J Ruostesuo, M Puukka. [Methylmalonic aciduria]. Duodecim; laaketieteellinen aikakauskirja. 1982; 98(18):1332-7. doi: NULL. [PMID: 7140596]