E160E (BioDeep_00000871071)

Main id: BioDeep_00000000975

 

PANOMIX_OTCML-2023


代谢物信息卡片


2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-

化学式: C30H40O (416.307899)
中文名称: 反式-beta-阿朴-8-胡萝卜醛
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C(C(CCC1)(C)C)C=CC(=CC=CC(=CC=CC=C(C)C=CC=C(C)C=O)C)C
InChI: InChI=1S/C30H40O/c1-24(13-8-9-14-25(2)16-11-18-27(4)23-31)15-10-17-26(3)20-21-29-28(5)19-12-22-30(29,6)7/h8-11,13-18,20-21,23H,12,19,22H2,1-7H3/b9-8+,15-10+,16-11+,21-20+,24-13+,25-14+,26-17+,27-18+

描述信息

D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].
β-Apo-8'-carotenal (Apocarotenal), a provitamin A carotenoid, is an inducer of CYPlA1 and CYPlA2 in rat. β-Apo-8'-carotenal is present in many fruits and vegetables[1].

同义名列表

35 个代谢物同义名

2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (2E,4E,6E,8E,10E,12E,14E,16E)-; (2E,4E,6E,8E,10E,12E,14E,16E)-2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexenyl)heptadeca-2,4,6,8,10,12,14,16-octaenal; 2,4,6,8,10,12,14,16-Heptadecaoctaenal, 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)-; 2,6,11,15-tetramethyl-17-(2,6,6-trimethyl-1-cyclohexenyl)heptadeca-2,4,6,8,10,12,14,16-octaenal; 4-07-00-01782 (Beilstein Handbook Reference); 8-Apo-beta-carotenal, all-trans-; all-trans-beta-Apo-8-carotenal; 8-APO-.BETA.,.PSI.-CAROTENAL; trans-beta-Apo-8′-carotenal; beta-Apo-8-carotenal (C30); 8-Apo-beta,psi-carotenal; 8Apo-beta,psi-carotenal; 8-Apo-beta-caroten-8-al; .beta.-apo-8-Carotenal; β-​Apo-​8-​carotenal; 8-Apo-beta-carotenal; C.I. Food Orange 6; beta-apo-Carotenal; EINECS 214-171-6; Food orange 6; Apocarotenal; C Orange 16; 10810_FLUKA; BRN 2064131; 10829_FLUKA; C.I. 40820; CCRIS 7933; 2756-57-2; 1107-26-2; 4172-46-7; NSC374897; CI 40820; E 160 e; E160E; β-?Apo-?8'-?carotenal



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Olivia Costantina Demurtas, Rita de Brito Francisco, Enrico Martinoia, Giovanni Giuliano. Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):89-99. doi: 10.1007/978-1-4939-9952-1_7. [PMID: 31745915]
  • José L Rambla, Antonio Granell. Determination of Plant Volatile Apocarotenoids. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):165-175. doi: 10.1007/978-1-4939-9952-1_12. [PMID: 31745920]
  • Juan M García, María J Pozo, Juan A López-Ráez. Histochemical and Molecular Quantification of Arbuscular Mycorrhiza Symbiosis. Methods in molecular biology (Clifton, N.J.). 2020; 2083(?):293-299. doi: 10.1007/978-1-4939-9952-1_22. [PMID: 31745930]
  • Mukesh Jain, Prabhakar Lal Srivastava, Mohit Verma, Rajesh Ghangal, Rohini Garg. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Scientific reports. 2016 Mar; 6(?):22456. doi: 10.1038/srep22456. [PMID: 26936416]
  • Kira Lätari, Florian Wüst, Michaela Hübner, Patrick Schaub, Kim Gabriele Beisel, Shizue Matsubara, Peter Beyer, Ralf Welsch. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves. Plant physiology. 2015 Aug; 168(4):1550-62. doi: 10.1104/pp.15.00243. [PMID: 26134165]
  • Danika Trautmann, Peter Beyer, Salim Al-Babili. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. The FEBS journal. 2013 Aug; 280(15):3685-96. doi: 10.1111/febs.12361. [PMID: 23734995]
  • Earl H Harrison, Carlo dela Sena, Abdulkerim Eroglu, Matthew K Fleshman. The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling. The American journal of clinical nutrition. 2012 Nov; 96(5):1189S-92S. doi: 10.3945/ajcn.112.034843. [PMID: 23053561]
  • Frederick Khachik, An-Ni Chang. Total synthesis of (3R,3'R,6'R)-lutein and its stereoisomers. The Journal of organic chemistry. 2009 May; 74(10):3875-85. doi: 10.1021/jo900432r. [PMID: 19391613]
  • Shu-Lan Yeh, Shu-Hsuan Wu. Effects of quercetin on beta-apo-8'-carotenal-induced DNA damage and cytochrome P1A2 expression in A549 cells. Chemico-biological interactions. 2006 Nov; 163(3):199-206. doi: 10.1016/j.cbi.2006.08.002. [PMID: 16970932]
  • A B Barua, J A Olson. beta-carotene is converted primarily to retinoids in rats in vivo. The Journal of nutrition. 2000 Aug; 130(8):1996-2001. doi: 10.1093/jn/130.8.1996. [PMID: 10917914]
  • X D Wang, G W Tang, J G Fox, N I Krinsky, R M Russell. Enzymatic conversion of beta-carotene into beta-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues. Archives of biochemistry and biophysics. 1991 Feb; 285(1):8-16. doi: 10.1016/0003-9861(91)90322-a. [PMID: 1899329]
  • H T Gordon, J C Bauernfeind. Carotenoids as food colorants. Critical reviews in food science and nutrition. 1982; 18(1):59-97. doi: 10.1080/10408398209527357. [PMID: 6817968]