Taurocyamine (BioDeep_00000002598)

 

Secondary id: BioDeep_00001868591

human metabolite Endogenous blood metabolite


代谢物信息卡片


2-[(diaminomethylidene)amino]ethane-1-sulfonic acid

化学式: C3H9N3O3S (167.0365)
中文名称: 胍基磺酸乙酯
谱图信息: 最多检出来源 Homo sapiens(blood) 32.24%

分子结构信息

SMILES: C(CS(=O)(=O)O)N=C(N)N
InChI: InChI=1S/C3H9N3O3S/c4-3(5)6-1-2-10(7,8)9/h1-2H2,(H4,4,5,6)(H,7,8,9)

描述信息

Taurocyamine is a guanidino-taurine analogue derived from taurine. It is an intermediate of taurine and hypotaurine metabolism. The concentration of taurocyamine present in the human urine and serum could be as low as 8-78 pmol/ml. (PMID: 6520173) Plasma levels of taurocyamine are significantly increased in patients with chronic renal failure with or without hemodialysis. (PMID: 10516995). Taurocyamine is an endogenous alkaline "shifter". It effectively reduces the extent of brain intracellular lactic acidosis brought about by anoxic insult. A pH alkaline shift may protect the brain against the deleterious effects of lactic acidosis. (PMID: 8241459). Taurocyamine is an inhibitor of taurine transport and a glycine receptor antagonist in the brain (PMID: 12411417). [HMDB]
Taurocyamine is a guanidino-taurine analogue derived from taurine. It is an intermediate of taurine and hypotaurine metabolism. The concentration of taurocyamine present in the human urine and serum could be as low as 8-78 pmol/ml. (PMID: 6520173) Plasma levels of taurocyamine are significantly increased in patients with chronic renal failure with or without hemodialysis. (PMID: 10516995). Taurocyamine is an endogenous alkaline "shifter". It effectively reduces the extent of brain intracellular lactic acidosis brought about by anoxic insult. A pH alkaline shift may protect the brain against the deleterious effects of lactic acidosis. (PMID: 8241459). Taurocyamine is an inhibitor of taurine transport and a glycine receptor antagonist in the brain (PMID: 12411417).

同义名列表

19 个代谢物同义名

2-[(diaminomethylidene)amino]ethane-1-sulfonic acid; 2-{[amino(imino)methyl]amino}ethanesulphonic acid; 2-{[amino(imino)methyl]amino}ethanesulfonic acid; 2-[(diaminomethylidene)amino]ethanesulfonic acid; 2-{[amino(imino)methyl]amino}ethanesulphonate; 2-{[amino(imino)methyl]amino}ethanesulfonate; 2-{Carbamimidamido}ethanesulfonic acid; 2-{Carbamimidamido}ethanesulfonate; Guanidinoethane sulphonic acid; Guanidinoethane sulfonic acid; Guanidinoethanesulfonic acid; N-(Aminoiminomethyl) taurine; Guanidinoethane sulphonate; Guanidinoethane sulfonate; Guanodinoethane sulfonate; Guanidinoethyl sulfonate; Guanidinoethanesulfonate; Taurocyamine; Taurocyamine



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ARG1, CA1, CILK1, ENO2, GAD1, GAMT, GFAP, PFDN5
Peripheral membrane protein 1 CTSB
Endosome membrane 2 CLCN5, CTSD
Nucleus 4 ARG1, CILK1, GAMT, PFDN5
cytosol 9 ARG1, CA1, CILK1, CLCN5, ENO2, GAMT, GFAP, PFDN5, PRKCQ
dendrite 1 SLC6A6
Cell membrane 7 CLCN5, ENO2, GLRA2, KIAA0319, OPRL1, SLC6A6, SLC6A8
Cytoplasmic granule 1 ARG1
Early endosome membrane 1 KIAA0319
Multi-pass membrane protein 6 ABCA4, CLCN5, GLRA2, OPRL1, SLC6A6, SLC6A8
Golgi apparatus membrane 1 CLCN5
Synapse 1 GLRA2
cell cortex 1 GAD1
Golgi apparatus 1 CLCN5
Golgi membrane 1 CLCN5
lysosomal membrane 2 CLCN5, CTSD
mitochondrial inner membrane 1 GATM
neuronal cell body 1 SLC6A6
synaptic vesicle 1 CLCN5
Cytoplasm, cytosol 1 CILK1
Lysosome 2 CTSB, CTSD
plasma membrane 10 ABCA4, CLCN5, ENO2, GAD1, GLRA2, KIAA0319, OPRL1, PRKCQ, SLC6A6, SLC6A8
presynaptic active zone 1 GAD1
Membrane 7 ABCA4, CLCN5, ENO2, GLRA2, KIAA0319, SLC6A6, SLC6A8
apical plasma membrane 3 CTSB, SLC6A6, SLC6A8
basolateral plasma membrane 1 SLC6A6
extracellular exosome 5 CA1, CTSB, CTSD, ENO2, GATM
endoplasmic reticulum 1 ABCA4
extracellular space 4 ARG1, CTSB, CTSD, ENO2
lysosomal lumen 1 CTSD
perinuclear region of cytoplasm 2 CTSB, GAD1
mitochondrion 2 ABAT, GATM
intracellular membrane-bounded organelle 3 ABCA4, GLRA2, KIAA0319
Single-pass type I membrane protein 1 KIAA0319
extracellular region 3 ARG1, CTSB, CTSD
astrocyte end-foot 1 GFAP
mitochondrial matrix 1 ABAT
Extracellular side 1 CTSB
Cell projection, cilium 1 CILK1
centriolar satellite 1 PRKCQ
photoreceptor inner segment 1 ENO2
photoreceptor outer segment 1 ABCA4
external side of plasma membrane 1 CTSB
perikaryon 1 ENO2
cytoplasmic vesicle 3 ABCA4, KIAA0319, OPRL1
Early endosome 2 CLCN5, KIAA0319
apical part of cell 1 CLCN5
postsynaptic membrane 1 SLC6A6
Apical cell membrane 2 CTSB, SLC6A8
Mitochondrion inner membrane 1 GATM
Membrane raft 1 CTSD
GABA-ergic synapse 3 GAD1, GLRA2, SLC6A6
mitochondrial intermembrane space 1 GATM
collagen-containing extracellular matrix 2 CTSB, CTSD
intermediate filament 1 GFAP
ciliary tip 1 CILK1
Postsynaptic cell membrane 1 GLRA2
neuron projection 2 GLRA2, OPRL1
ciliary basal body 1 CILK1
ciliary base 1 CILK1
cilium 1 CILK1
cell projection 3 GFAP, GLRA2, SLC6A6
Cytoplasm, cytoskeleton, cilium basal body 1 CILK1
Cell projection, cilium, photoreceptor outer segment 1 ABCA4
Secreted, extracellular space 1 CTSB
plasma membrane protein complex 1 SLC6A6
transmembrane transporter complex 1 GLRA2
microvillus membrane 1 SLC6A6
fibrillar center 1 CILK1
endosome lumen 1 CTSD
chloride channel complex 1 GLRA2
Melanosome 2 CTSB, CTSD
cell body 1 GFAP
intermediate filament cytoskeleton 2 GFAP, PFDN5
ficolin-1-rich granule lumen 2 CTSB, CTSD
axon terminus 1 GAD1
specific granule lumen 2 ARG1, CTSD
tertiary granule lumen 1 CTSD
azurophil granule lumen 1 ARG1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
[Isoform 2]: Cytoplasm 1 CILK1
vesicle membrane 1 GAD1
clathrin-coated endocytic vesicle membrane 1 KIAA0319
prefoldin complex 1 PFDN5
postsynaptic specialization membrane 1 GLRA2
inhibitory synapse 1 GAD1
cytoplasmic side of lysosomal membrane 1 GFAP
photoreceptor disc membrane 1 ABCA4
peptidase inhibitor complex 1 CTSB
glycinergic synapse 1 GLRA2
phosphopyruvate hydratase complex 1 ENO2
endolysosome lumen 1 CTSB
clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane 1 GAD1
rod photoreceptor disc membrane 1 ABCA4
4-aminobutyrate transaminase complex 1 ABAT


文献列表

  • Meenakshi S Kagda, Andrea L Vu, Audrey M V Ah-Fong, Howard S Judelson. Phosphagen kinase function in flagellated spores of the oomycete Phytophthora infestans integrates transcriptional regulation, metabolic dynamics and protein retargeting. Molecular microbiology. 2018 10; 110(2):296-308. doi: 10.1111/mmi.14108. [PMID: 30137656]
  • Luz M Suárez, María-Dolores Muñoz, José C González, Julián Bustamante, Rafael Martín Del Río, José M Solís. The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation. Amino acids. 2016 11; 48(11):2647-2656. doi: 10.1007/s00726-016-2298-9. [PMID: 27422547]
  • Nicolas Froger, Firas Jammoul, David Gaucher, Lucia Cadetti, Henri Lorach, Julie Degardin, Dorothée Pain, Elisabeth Dubus, Valérie Forster, Ivana Ivkovic, Manuel Simonutti, José-Alain Sahel, Serge Picaud. Taurine is a crucial factor to preserve retinal ganglion cell survival. Advances in experimental medicine and biology. 2013; 775(?):69-83. doi: 10.1007/978-1-4614-6130-2_6. [PMID: 23392925]
  • David Gaucher, Emilie Arnault, Zoé Husson, Nicolas Froger, Elisabeth Dubus, Pauline Gondouin, Diane Dherbécourt, Julie Degardin, Manuel Simonutti, Stéphane Fouquet, M A Benahmed, K Elbayed, Izzie-Jacques Namer, Pascale Massin, José-Alain Sahel, Serge Picaud. Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino acids. 2012 Nov; 43(5):1979-93. doi: 10.1007/s00726-012-1273-3. [PMID: 22476345]
  • Masanori Tachikawa, Saori Ikeda, Jun Fujinawa, Shirou Hirose, Shin-ichi Akanuma, Ken-ichi Hosoya. γ-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats. PloS one. 2012; 7(2):e32557. doi: 10.1371/journal.pone.0032557. [PMID: 22384273]
  • S Cubillos, L Lima. Taurine trophic modulation of goldfish retinal outgrowth and its interaction with the optic tectum. Amino acids. 2006 Oct; 31(3):325-31. doi: 10.1007/s00726-006-0389-8. [PMID: 16937318]
  • R O Law. Cerebrocellular swelling in the presence of uraemic guanidino compounds: ameliorative effects of taurine. Neurochemical research. 2005 Dec; 30(12):1465-70. doi: 10.1007/s11064-005-8823-y. [PMID: 16362765]
  • Wen Chen, Keiko Matuda, Naomichi Nishimura, Hidehiko Yokogoshi. The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet. Life sciences. 2004 Feb; 74(15):1889-98. doi: 10.1016/j.lfs.2003.08.041. [PMID: 14761670]
  • B Ciechanowska. [Taurine as a regulator of fluid-electrolyte balance and arterial pressure]. Annales Academiae Medicae Stetinensis. 1997; 43(?):129-42. doi: . [PMID: 9471912]
  • C C Yan, R J Huxtable. Effects of taurine and guanidinoethane sulfonate on toxicity of the pyrrolizidine alkaloid monocrotaline. Biochemical pharmacology. 1996 Feb; 51(3):321-9. doi: 10.1016/0006-2952(95)02185-x. [PMID: 8573199]
  • C Shimada, S Tanaka, M Hasegawa, S Kuroda, K Isaka, M Sano, H Araki. Beneficial effect of intravenous taurine infusion on electroretinographic disorder in taurine deficient rats. Japanese journal of pharmacology. 1992 May; 59(1):43-50. doi: 10.1254/jjp.59.43. [PMID: 1507656]
  • K Ejiri, S Akahori, K Kudo, K Sekiba, T Ubuka. Effect of guanidinoethyl sulfonate on taurine concentrations and fetal growth in pregnant rats. Biology of the neonate. 1987; 51(4):234-40. doi: 10.1159/000242658. [PMID: 3580427]
  • K M Marnela, P Kontro, S S Oja. Effects of prolonged guanidinoethanesulphonate administration on taurine and other amino acids in rat tissues. Medical biology. 1984; 62(4):239-44. doi: NULL. [PMID: 6513616]
  • R J Huxtable. Guanidinoethane sulfonate and the disposition of dietary taurine in the rat. The Journal of nutrition. 1982 Dec; 112(12):2293-300. doi: 10.1093/jn/112.12.2293. [PMID: 7143111]
  • J E Shaffer, J J Kocsis. Taurine mobilizing effects of beta alanine and other inhibitors of taurine transport. Life sciences. 1981 Jun; 28(24):2727-36. doi: 10.1016/0024-3205(81)90173-9. [PMID: 6790889]
  • N V THOAI, S ZAPPACOSTA, Y ROBIN. [BIOGENESIS OF 2 SULFURATED GUANIDINES: TAUROCYAMINE AND HYPOTAUROCYAMINE]. Comparative biochemistry and physiology. 1963 Nov; 10(?):209-25. doi: 10.1016/0010-406x(63)90035-5. [PMID: 14109748]
  • NGUYEN-VAN THOAI, J ROCHE, A OLUMUCKI. [The presence of taurocyamine (guanidotaurine) in the urine of the rat and its biochemical significance in nitrogen excretion]. Biochimica et biophysica acta. 1954 Jul; 14(3):448. doi: 10.1016/0006-3002(54)90213-9. [PMID: 13181911]