Genistin
Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin is found in fruits. Genistin is present in soy foods. Potential nutriceutical. It is isolated from Prunus avium (wild cherry) Genistin is one of several known isoflavones. Genistin is found in a number of plants and herbs like soy Present in soy foods. Potential nutriceutical. Isolated from Prunus avium (wild cherry) Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=529-59-9 (retrieved 2024-11-05) (CAS RN: 529-59-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cynaropicrin
Constituent of Cynara scolymus (artichoke). Cynaropicrin is found in cardoon, globe artichoke, and root vegetables. Cynaropicrin is found in cardoon. Cynaropicrin is a constituent of Cynara scolymus (artichoke). Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one
5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
L-Valine
L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion.
Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04)
Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ...
Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ...
L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr...
L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine (Valine) is a new nonlinear semiorganic material[1].
L-Valine (Valine) is a new nonlinear semiorganic material[1].
Hesperetin 7-neohesperidoside
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
Marmesin galactoside
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is found in herbs and spices. Marmesin galactoside is a constituent of Murraya koenigii (curry leaf tree). Constituent of Murraya koenigii (curry leaf tree). Marmesin galactoside is found in herbs and spices. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Sudan_IV
Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents
Nicotine
Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
Isopimpinellin
Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].
Amarogentin
Amarogentin is a secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor and a metabolite. It is a secoiridoid glycoside and a monosaccharide derivative. Amarogentin is a natural product found in Swertia japonica, Gentianella nitida, and other organisms with data available. A secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3]. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3]. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3].
Reserpine
Reserpine appears as white or cream to slightly yellow crystals or crystalline powder. Odorless with a bitter taste. (NTP, 1992) Reserpine is an alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. It has a role as an antihypertensive agent, a first generation antipsychotic, an adrenergic uptake inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an environmental contaminant, a xenobiotic and a plant metabolite. It is an alkaloid ester, a methyl ester and a yohimban alkaloid. It is functionally related to a reserpic acid. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. The FDA withdrew its approval for the use of all oral dosage form drug products containing more than 1 mg of reserpine. Reserpine is a Catecholamine-depleting Sympatholytic. The physiologic effect of reserpine is by means of Decreased Sympathetic Activity. Reserpine is an oral antihypertensive medication that acts through inhibitor of alpha-adrenergic transmission and was one of the first antihypertensive agents introduced into clinical practice. Despite widescale use for many years, reserpine has not been shown to cause clinically apparent liver injury. Reserpine is a natural product found in Rauvolfia yunnanensis, Alstonia constricta, and other organisms with data available. Reserpine is an alkaloid, derived from the roots of Rauwolfia serpentine and vomitoria, and an adrenergic uptake inhibitor with antihypertensive effects. Reserpine is lipid soluble and can penetrate blood-brain barrier. This agent binds and inhibits catecholamine pump on the storage vesicles in central and peripheral adrenergic neurons, thereby inhibiting the uptake of norepinephrine, dopamine serotonin into presynaptic storage vesicles. This results in catecholamines and serotonin lingering in the cytoplasm where they are destroyed by intraneuronal monoamine oxidase, thereby causing the depletion of catecholamine and serotonin stores in central and peripheral nerve terminals. Depletion results in a lack of active transmitter discharge from nerve endings upon nerve depolarization, and consequently leads to a decreased heart rate and decreased arterial blood pressure as well as sedative effects. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. See also: Hydroflumethiazide; reserpine (component of); Polythiazide; reserpine (component of); Chlorthalidone; reserpine (component of) ... View More ... An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; EAWAG_UCHEM_ID 2682 [Raw Data] CBA02_Reserpine_pos_30eV.txt [Raw Data] CBA02_Reserpine_pos_10eV.txt [Raw Data] CBA02_Reserpine_pos_20eV.txt [Raw Data] CBA02_Reserpine_pos_40eV.txt [Raw Data] CBA02_Reserpine_pos_50eV.txt Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).
Artemisinic
(+)-artemisinic acid is a monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. It has a role as a metabolite. It is a monocarboxylic acid, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. It is functionally related to a (+)-artemisinic alcohol. It is a conjugate acid of a (+)-artemisinate. Artemisinic acid is a natural product found in Artemisia apiacea, Artemisia annua, and other organisms with data available. A monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1]. Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].
Curcumenol
Curcumenol is a sesquiterpenoid. (3S,3aS,6R,8aS)-3,8-Dimethyl-5-(propan-2-ylidene)-2,3,4,5,6,8a-hexahydro-1H-3a,6-epoxyazulen-6-ol is a natural product found in Curcuma longa and Curcuma phaeocaulis with data available. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors 4-Epicurcumenol is a constituent of rhizomes of Curcuma zedoaria (zedoary). Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2]. Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Bergapten
Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Astragaloside
Astragaloside III is a triterpenoid saponin that is cycloastragenol with a 2-O-beta-D-glucopyranosyl-beta-D-xylopyranosyl moiety attached at position 3 via a glycosidic linkage. It is a triterpenoid saponin and a disaccharide derivative. It is functionally related to a cycloastragenol. Astragaloside III is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol with a 2-O-beta-D-glucopyranosyl-beta-D-xylopyranosyl moiety attached at position 3 via a glycosidic linkage. Astragaloside III is a natural product isolated from Astragalus. Astragaloside III is a natural product isolated from Astragalus.
Quillaic
Quillaic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 3 and 16, an oxo group at position 23 and a carboxy group at position 28 (the 3beta,16alpha stereoisomer). It has a role as an anti-inflammatory agent and a metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and an aldehyde. It is a conjugate acid of a quillate. It derives from a hydride of an oleanane. Quillaic acid is a natural product found in Silene firma, Gypsophila oldhamiana, and other organisms with data available. A pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 3 and 16, an oxo group at position 23 and a carboxy group at position 28 (the 3beta,16alpha stereoisomer). Quillaic acid (Quillaja sapogenin) is a natural product used in pain relief research. Quillaic acid (Quillaja sapogenin) is a natural product used in pain relief research.
Senecionine
Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].
galbelgin
Galgravin is a member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. It has a role as a bone density conservation agent, a neuroprotective agent, a platelet aggregation inhibitor and a plant metabolite. It is an aryltetrahydrofuran, a dimethoxybenzene, a ring assembly and a lignan. Galgravin is a natural product found in Schisandra propinqua, Piper mullesua, and other organisms with data available. A member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. Veraguensin is a lignan. It has a role as a metabolite. Veraguensin is a natural product found in Ocotea foetens, Illicium floridanum, and other organisms with data available. A natural product found in Acorus gramineus. Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1] Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1]
D-Pinitol
Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Furanodienone
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isofuranodienone is a constituent of Curcuma zedoaria (zedoary). Constituent of Curcuma zedoaria (zedoary) Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
(S)-[8]-Gingerol
(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[8]-Gingerol is found in ginger. (S)-[8]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[8]-Gingerol is found in herbs and spices and ginger. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].
Ajmalicine
Ajmalicine is a monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. It has a role as an antihypertensive agent, an alpha-adrenergic antagonist and a vasodilator agent. It is a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of an ajmalicine(1+). Ajmalicine is a natural product found in Crossosoma bigelovii, Rauvolfia yunnanensis, and other organisms with data available. A monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from several Rauvolfia and Catharanthus species. It is a selective alpha1-adrenoceptor antagonist used for the treatment of high blood pressure. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents INTERNAL_ID 2326; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2326 [Raw Data] CB001_Ajmalicine_pos_40eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_10eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_50eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_20eV_CB000004.txt [Raw Data] CB001_Ajmalicine_pos_30eV_CB000004.txt Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2]. Ajmalicine (Raubasine) is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor. Ajmalicine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM. Ajmalicine also can be used as anti-hypertensive, and serpentine, with sedative activity[1][2].
Yamogenin
Yamogenin is a triterpenoid. Yamogenin is a natural product found in Cordyline australis, Solanum spirale, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].
Ajugasterone C
Ajugasterone C is a steroid. Ajugasterone C is a natural product found in Zoanthus, Cyanotis arachnoidea, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Isoeriocitrin
Isoeriocitrin, also known as eriodictyol 7-O-neohesperidoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Isoeriocitrin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoeriocitrin can be found in lemon, which makes isoeriocitrin a potential biomarker for the consumption of this food product. Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2]. Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2].
Gossypetin
Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.
Anagyrine
Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].
1,4-Dimethyl-7-ethylazulene
Chamazulene is a sesquiterpenoid. Chamazulene is a natural product found in Artemisia macrocephala, Otanthus maritimus, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Isol. as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia subspecies 1,4-Dimethyl-7-ethylazulene is found in roman camomile, german camomile, and anise. 1,4-Dimethyl-7-ethylazulene is found in anise. 1,4-Dimethyl-7-ethylazulene is isolated as artifact from various sesquiterpene oils, e.g. from Achillea and Artemisia species.
Chrysoeriol
Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Ricinine
Ricinine belongs to the family of Alkyl Aryl Ethers. These are organic compounds containing the alkyl aryl ether functional group with formula R-O-R , where R is an alkyl group and R is an aryl group. Ricinine is a pyridine alkaloid, a pyridone and a nitrile. Ricinine is a natural product found in Ricinus communis with data available.
Linamarin
Linamarin is a beta-D-glucoside. It is functionally related to a 2-hydroxy-2-methylpropanenitrile. Linamarin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isol in 1830. Linamarin is found in many foods, some of which are gooseberry, chinese broccoli, cascade huckleberry, and leek. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Linamarin, a natural compound, possesses anticancer activity[1]. Linamarin, a natural compound, possesses anticancer activity[1].
2-Hydroxyadenine
2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50) [HMDB] 2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50). Isoguanine is an oxopurine that is 3,7-dihydro-purin-2-one in which the hydrogen at position 6 is substituted by an amino group.
Dimethyl trisulfide
Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Epinepetalactone
Cis-trans-nepetalactone is a cyclopentapyran that is (4aS,7aR)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran substituted at position 1 by an oxo group and at positions 4 and 7 by methyl groups, respectively (the 4aS,7S,7aR-diastereomer). An iridoid monoterpenoid isolated from several Nepeta plant species. It is an aphid sex pheromone and cat attractant, and exhibits antibacterial, antifungal, and analgesic properties. It has a role as a pheromone, a plant metabolite, an insect attractant, an analgesic, an insect repellent, an antibacterial agent and an antifungal agent. It is an iridoid monoterpenoid and a cyclopentapyran. Nepetalactone cis-trans-form is a natural product found in Nepeta cataria, Nepeta tuberosa, and Nepeta racemosa with data available. (5S,8S,9R)-Nepetalactone is found in herbs and spices. (5S,8S,9R)-Nepetalactone is a constituent of catnip from the catmint plant Nepeta cataria Constituent of catnip from the catmint plant Nepeta cataria. (5S,8S,9R)-Nepetalactone is found in tea and herbs and spices. 4aα,7α,7aα-Nepetalactone exhibits antibacterial activity, and inhibits Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Enterococcus faecalis.
Tramiprosate
3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].
Zingiberene
Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available. Constituent of ginger oiland is) also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria). Zingiberene is found in many foods, some of which are cloves, pepper (spice), ginger, and turmeric. Zingiberene is found in anise. Zingiberene is a constituent of ginger oil. Also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria)
L-Ascorbic acid
L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(+)-Epicatechin
(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.
Hexahydrocurcumin
Hexahydrocurcumin is a member of the class of compounds known as curcuminoids. Curcuminoids are aromatic compounds containing a curcumin moiety, which is composed of two aryl buten-2-one (feruloyl) chromophores joined by a methylene group. Hexahydrocurcumin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Hexahydrocurcumin can be found in ginger, which makes hexahydrocurcumin a potential biomarker for the consumption of this food product. Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. [Raw Data] CBA88_Hexahydrocurcum_pos_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_30eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_30eV.txt Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].
3,4-Dimethoxybenzaldehyde
Veratraldehyde appears as needles or chunky light peach powder. Has an odor of vanilla beans. (NTP, 1992) Veratraldehyde is a dimethoxybenzene that is benzaldehyde substituted by methoxy groups at positions 3 and 4. It is found in peppermint, ginger, raspberry, and other fruits. It has a role as an antifungal agent. It is a member of benzaldehydes and a dimethoxybenzene. 3,4-Dimethoxybenzaldehyde is a natural product found in Polygala senega, Pluchea sagittalis, and other organisms with data available. 3,4-Dimethoxybenzaldehyde is found in fruits. 3,4-Dimethoxybenzaldehyde is isolated from peppermint, raspberry, ginger and Bourbon vanilla. 3,4-Dimethoxybenzaldehyde is used in vanilla flavour Isolated from peppermint, raspberry, ginger and Bourbon vanilla. It is used in vanilla flavours. 3,4-Dimethoxybenzaldehyde is found in peppermint, herbs and spices, and fruits. CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3940; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3930; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3941; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961 CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3961; ORIGINAL_PRECURSOR_SCAN_NO 3960 Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries. Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.
sulfurein
Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].
4-Hydroxy-3-methoxybenzenemethanol
4-Hydroxy-3-methoxybenzenemethanol, also known as 4-hydroxy-3-methoxybenzyl alcohol or 3-methoxy-4-hydroxybenzyl alcohol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-Hydroxy-3-methoxybenzenemethanol is a drug. 4-Hydroxy-3-methoxybenzenemethanol is a sweet, anise, and balsam tasting compound. 4-hydroxy-3-methoxybenzenemethanol has been detected, but not quantified, in fruits and herbs and spices. This could make 4-hydroxy-3-methoxybenzenemethanol a potential biomarker for the consumption of these foods. Vanillyl alcohol is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols. Vanillyl alcohol has been used in trials studying the treatment of Smoking. Vanillyl alcohol is a natural product found in Artemisia rutifolia, Euglena gracilis, and other organisms with data available. Constituent of Capsicum subspecies; flavouring ingredient. 4-Hydroxy-3-methoxybenzenemethanol is found in herbs and spices and fruits. A monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].
Afzelechin
Afzelechin is a tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively. It has a role as a plant metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a tetrahydroxyflavan and a catechin. It derives from a hydride of a (2S)-flavan. Afzelechin is a natural product found in Cassipourea gummiflua, Bergenia ligulata, and other organisms with data available. A tetrahydroxyflavan that is (2S)-flavan substituted by hydroxy groups at positions 3, 5, 7 and 4 respectively.
Alphitolsaure
2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid is a pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It is functionally related to a betulinic acid. It derives from a hydride of a lupane. Alphitolic acid is a natural product found in Quercus aliena, Alphitonia petriei, and other organisms with data available. A pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa.
Licoricidin
Licoricidin is a member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity. It has a role as an antibacterial agent and a plant metabolite. It is a member of hydroxyisoflavans, an aromatic ether and a methoxyisoflavan. Licoricidin is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). Licoricidin is found in herbs and spices. Licoricidin is a constituent of Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice). Constituent of Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice). Licoricidin is found in tea and herbs and spices.
Curzerenone
Constituent of Curcuma zedoaria (zedoary). Curzerenone is found in turmeric. 5-Epicurzerenone is from Curcuma zedoaria (zedoary Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Ferruginol
Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one is found in citrus. (Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia).Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a cyclic ketone. Jasmone is a natural product found in Lonicera japonica, Pulicaria arabica, and other organisms with data available. Occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia) Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Geraniol
Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
Geranyl acetate
Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].
Mezerein
Crystals or white powder. (NTP, 1992) Mezerein is a diterpenoid. D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents
Fustin
Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].
Retronecine
Retronecine is a member of pyrrolizines. Retronecine is a natural product found in Senecio nebrodensis, Lappula spinocarpos, and other organisms with data available. Retronecine is a pyrrolizidine alkaloid found in a variety of plants in the genera Senecio and Crotalaria, and the family Boraginaceae. It is the most common central core for other pyrrolizidine alkaloids. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids
9,10-Dihydroxystearic acid
9,10-dihydroxystearic acid, also known as 9,10-dhsa or 9,10-dioh 18:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 9,10-dihydroxystearic acid is considered to be an octadecanoid lipid molecule. 9,10-dihydroxystearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-dihydroxystearic acid can be found in peanut, which makes 9,10-dihydroxystearic acid a potential biomarker for the consumption of this food product. 9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available.
Cernuine
Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. Cernuine is found in citrus. Cernuine is isolated from Citrus medica (citron). Isolated from Citrus medica (citron). Cernuine is found in lemon and citrus. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].
gamma-Terpinene
Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].
Cuminaldehyde
Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
1-Methylxanthine
1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
Beta-Tyrosine
The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176
Dehydroepiandrosterone
Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue and the brain. DHEA is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate- DEHAS) before secretion. DHEAS is the sulfated version of DHEA; - this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEAS with levels that are about 300 times higher than free DHEA. Blood measurements of DHEAS/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEAS. [HMDB]. Dehydroepiandrosterone is found in many foods, some of which are summer grape, quinoa, calabash, and chinese chives. Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue, and the brain. DHEA is structurally similar to and is a precursor of, androstenedione, testosterone, estradiol, estrone, and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate or DHEA-S) before secretion. DHEA-S is the sulfated version of DHEA; this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than free DHEA. Blood measurements of DHEA-S/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEA-S. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3085 D007155 - Immunologic Factors
3-Methylxanthine
3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550) 3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.
7a-Hydroxytestosterone
4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430) [HMDB] 4-Hydroxytestosterone is the 17-hydroxylated analog to formestane. It is commercially available on the internet as anabolic steroid for oral self-administration and does not have any therapeutic indication. Hence, only little information is available about its metabolism. So far, most studies dealt with 4-hydroxytestosterone as metabolite of formestane while one study investigated the glucuronic acid conjugates of metabolic products of 4-hydroxytestosterone. This substance is prohibited in sports by the World Anti-Doping Agency; there is to a considerable increase of structurally related steroids with anabolic effects offered via the internet. 4-Hydroxytestosterone is a metabolite of the steroidal aromatase inhibitor 4-hydroxyandrost-4-ene-3,17-dione (4OHA). (PMID: 17724580, 17610244, 17207827, 1284430).
N-Acetylhistamine
N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
L-Threoneopterin
L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
2'-Deoxyguanosine 5'-monophosphate
2-Deoxyguanosine 5-monophosphate, also known as deoxyguanylic acid or 2-deoxy-GMP, belongs to the class of organic compounds known as purine 2-deoxyribonucleoside monophosphates. These are purine nucleotides with monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 2-Deoxyguanosine 5-monophosphate is a purine 2-deoxyribonucleoside 5-monophosphate having guanine as the nucleobase. It exists in all living species, ranging from bacteria to humans. Within humans, 2-deoxyguanosine 5-monophosphate participates in a number of enzymatic reactions. In particular, 2-deoxyguanosine 5-monophosphate can be converted into dGDP which is mediated by the enzyme guanylate kinase. In addition, 2-deoxyguanosine 5-monophosphate can be converted into deoxyguanosine through its interaction with the enzyme cytosolic purine 5-nucleotidase. In humans, 2-deoxyguanosine 5-monophosphate is involved in the metabolic disorder called the gout or kelley-seegmiller syndrome pathway. 2-Deoxyguanosine 5-monophosphate is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
5,6-Dihydrothymine
Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Glycitein
Glycitein is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. It has a role as a plant metabolite, a phytoestrogen and a fungal metabolite. It is a methoxyisoflavone and a 7-hydroxyisoflavone. It is functionally related to an isoflavone. Glycitein is a natural product found in Psidium guajava, Ammopiptanthus mongolicus, and other organisms with data available. Glycitein is a soy isoflavone. It is a minor component in most soy products. Its role of reducing low-density lipoprotein cholesterol is not clear. Glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones (PMID: 12011578; 16248547). Glycitein is a biomarker for the consumption of soy beans and other soy products. Isoflavone present in soya foods (inc. tofu, miso); potential nutriceutical [DFC]. Glycitein is a biomarker for the consumption of soy beans and other soy products. Glycitein is found in many foods, some of which are miso, soy bean, soy milk, and soy sauce. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.
Prostaglandin B1
Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).
Etomidate
Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Ketorolac
Ketorolac is only found in individuals that have used or taken this drug. It is a pyrrolizine carboxylic acid derivative structurally related to indomethacin. It is an NSAID and is used principally for its analgesic activity (from Martindale The Extra Pharmacopoeia, 31st ed). Ketorolac is a nonsteroidal anti-inflammatory drug (NSAID) chemically related to indomethacin and tolmetin. Ketorolac tromethamine is a racemic mixture of [-]S- and [+]R-enantiomeric forms, with the S-form having analgesic activity. Its antiinflammatory effects are believed to be due to inhibition of both cylooxygenase-1 (COX-1) and cylooxygenase-2 (COX-2) which leads to the inhibition of prostaglandin synthesis leading to decreased formation of precursors of prostaglandins and thromboxanes from arachidonic acid. The resultant reduction in prostaglandin synthesis and activity may be at least partially responsible for many of the adverse, as well as the therapeutic, effects of these medications. Analgesia is probably produced via a peripheral action in which blockade of pain impulse generation results from decreased prostaglandin activity. However, inhibition of the synthesis or actions of other substances that sensitize pain receptors to mechanical or chemical stimulation may also contribute to the analgesic effect. In terms of the ophthalmic applications of ketorolac - ocular administration of ketorolac reduces prostaglandin E2 levels in aqueous humor, secondary to inhibition of prostaglandin biosynthesis. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
2'-Deoxyadenosine 5'-phosphate
Deoxyadenosine monophosphate (dAMP), also known as deoxyadenylic acid or deoxyadenylate in its conjugate acid and conjugate base forms, respectively, is a derivative of the common nucleic acid AMP, or adenosine monophosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been reduced to just a hydrogen atom (hence the "deoxy-" part of the name). Additionally, the monophosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis. It is a monomer used in DNA. Adenosine is a nucleoside comprised of adenine attached to a ribose (ribofuranose) moiety via a -N9-glycosidic bond. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].
Medroxyprogesterone
Medroxyprogesterone, or MP is a progestin (synthetic progestogen). MP is not used medically, as it is over two orders of magnitude less potent than medroxyprogesterone acetate (MPA); a derivative of MP (PMID: 16784762). MP may be formed via the metabolism of MPA. Medroxyprogesterone acetate is used to treat conditions such as absent or irregular menstrual periods, or abnormal uterine bleeding. Synthetic progestogens are widely used to simulate the effects of progesterone; a natural female sex hormone. Progesterone is essential for endometrial receptivity, embryo implantation, and the successful establishment of pregnancy. A low progesterone concentration or an insufficient response to progesterone can cause infertility and pregnancy loss (PMID: 20104424). In addition to progestagenic activity, MP is also a weak antiandrogen in vitro (PMID: 29990947). Medroxyprogesterone is only found in individuals that have used or taken MPA. A synthetic progesterone (steroid hormone) involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
Aminosalicylic Acid
Aminosalicylic Acid is only found in individuals that have used or taken this drug. It is an antitubercular agent often administered in association with isoniazid. The sodium salt of the drug is better tolerated than the free acid. [PubChem]There are two mechanisms responsible for aminosalicylic acids bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slows. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank KEIO_ID A129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Naproxen
Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. Naproxen was first marketed as the prescription drug Naprosyn in 1976 and naproxen sodium was first marketed under the trade name Anaprox in 1980. It remains a prescription-only drug in much of the world. The U.S. Food and Drug Administration (FDA) approved the use of naproxen sodium as an over-the-counter (OTC) drug in 1991, where OTC preparations are sold under the trade name Aleve. In Australia, small packets of lower-strength preparations of naproxen sodium are Schedule 2 Pharmacy Medicines; Naproxen is a member of the 2-arylpropionic acid (profen) family of NSAIDs. It is an odorless, white to off-white crystalline substance. It is lipid-soluble, practically insoluble in water with a low pH (below pH 4), while freely soluble in water at 6 pH and above. Naproxen has a melting point of 153 degree centigrade. Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents KEIO_ID N018; [MS2] KO009075 D004791 - Enzyme Inhibitors KEIO_ID N018 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
fleroxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
Zoxazolamine
D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant C26170 - Protective Agent > C921 - Uricosuric Agent D002491 - Central Nervous System Agents
Fumonisin B2
Fumonisin B2 is from Fusarium moniliforme Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Fusarium moniliforme. It is a structural analog of fumonisin B1. Fumonisin B2 is more cytotoxic than fumonisin B1. Fumonisin B2 inhibits sphingosine acyltransferase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens From Fusarium moniliforme
Astemizole
Astemizole is a long-acting, non-sedating second generation antihistamine used in the treatment of allergy symptoms. It was withdrawn from market by the manufacturer in 1999 due to the potential to cause arrhythmias at high doses, especially when when taken with CYP inhibitors or grapefruit juice. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
Carteolol
Carteolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent. [PubChem]The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Triazophos
CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9355; ORIGINAL_PRECURSOR_SCAN_NO 9354 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9217; ORIGINAL_PRECURSOR_SCAN_NO 9214 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9286; ORIGINAL_PRECURSOR_SCAN_NO 9281 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9227; ORIGINAL_PRECURSOR_SCAN_NO 9226 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9231; ORIGINAL_PRECURSOR_SCAN_NO 9228 CONFIDENCE standard compound; INTERNAL_ID 1193; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9272; ORIGINAL_PRECURSOR_SCAN_NO 9270 C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor
Testosterone cypionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Testosterone enanthate
testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150) [HMDB] Testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Sparteine
Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.
Dimethyltryptamine
An N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others.; DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat.; DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it.; DMT is classified in the United States as a Schedule I drug. In December of 2004, the Supreme Court lifted a stay thereby allowing the Brazil-based Uniaeo do Vegetal (UDV) church to use a decoction containing DMT in their Christmas services that year. This decoction is a tea made from boiled leaves and vines, known as hoasca within the UDV, and ayahuasca in different cultures. In Gonzales v. O Centro EspArita Beneficente Uniaeo do Vegetal, the Supreme Court heard arguments on November 1, 2005 and unanimously ruled in February 2006 that the U.S. federal government must allow the UDV to import and consume the tea for religious ceremonies under the 1993 Religious Freedom Restoration Act. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT.; Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca.; Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they... Dimethyltryptamine is an N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others. DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat. DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it. DMT is classified in the United States as a Schedule I drug. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT. Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca. Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they can have lethal complications with some prescription drugs, such as SSRI antidepressants, and some over-the-counter drugs. Smoked: If DMT is smoked, the maximal effects last for a short period of time (5-30 minutes dose dependent). The onset after inhalation is very fast (less than 45 seconds) and maximal effects are reached within about a minute. The Business Mans lunch trip is a common name due to the relatively short duration of vaporized, insufflated, or injected DMT. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
Nafcillin
Nafcillin is only found in individuals that have used or taken this drug. It is a semi-synthetic antibiotic related to penicillin. [PubChem]Penicillinase-resistant penicillins exert a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3206
2,4-Toluenediamine
2,4-toluenediamine belongs to the family of Toluenes. These are compounds containing a benzene ring which bears a methane group. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
4,4'-Methylenedianiline
4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens
Diethylstilbestrol
Diethylstilbestrol is a synthetic estrogen that was developed to supplement a womans natural estrogen production. In 1971, the Food and Drug Administration (FDA) issued a Drug Bulletin advising physicians to stop prescribing DES to pregnant women because it was linked to a rare vaginal cancer in female offspring. Diethylstilbesterol is found in gram bean. Diethylstilbestrol is a synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens
Tolclofos-methyl
CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9291; ORIGINAL_PRECURSOR_SCAN_NO 9287 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9271; ORIGINAL_PRECURSOR_SCAN_NO 9267 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9337; ORIGINAL_PRECURSOR_SCAN_NO 9333 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9322; ORIGINAL_PRECURSOR_SCAN_NO 9318 CONFIDENCE standard compound; INTERNAL_ID 461; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9241; ORIGINAL_PRECURSOR_SCAN_NO 9237
Benzatropine
Benzotropine is a centrally-acting, antimuscarinic agent used as an adjunct in the treatment of Parkinsons disease. It may also be used to treat extrapyramidal reactions, such as dystonia and Parkinsonism, caused by antipsychotics (e.g. phenothiazines). Symptoms of Parkinsons disease and extrapyramidal reactions arise from decreases in dopaminergic activity which creates an imbalance between dopaminergic and cholinergic activity. Anticholinergic therapy is thought to aid in restoring this balance leading to relief of symptoms. In addition to its anticholinergic effects, benztropine also inhibits the reuptake of dopamine at nerve terminals via the dopamine transporter. Benzotropine also produces antagonistic effects at the histamine H1 receptor. N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Trihexyphenidyl
Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
N-Nitrosodibutylamine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3460 D009676 - Noxae > D002273 - Carcinogens
Penciclovir
Penciclovir is only found in individuals that have used or taken this drug. It is a guanine analogue antiviral drug used for the treatment of various herpesvirus infections. It is a nucleoside analogue which exhibits low toxicity and good selectivity. [Wikipedia]Penciclovir has in vitro activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). In cells infected with HSV-1 or HSV-2, viral thymidine kinase phosphorylates penciclovir to a monophosphate form. The monophosphate form of the drug is then converted to penciclovir triphosphate by cellular kinases. The intracellular triphosphate of penciclovir is retained in vitro inside HSV-infected cells for 10-20 hours, compared with 0.7-1 hour for acyclovir. in vitro studies show that penciclovir triphosphate selectively inhibits viral DNA polymerase by competing with deoxyguanosine triphosphate. Inhibition of DNA synthesis of virus-infected cells inhibits viral replication. In cells not infected with HSV, DNA synthesis is unaltered. Resistant mutants of HSV can occur from qualitative changes in viral thymidine kinase or DNA polymerase. The most commonly encountered acyclovir-resistant mutants that are deficient in viral thymidine kinase are also resistant to penciclovir. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3288 KEIO_ID P157; [MS2] KO009149 KEIO_ID P157 Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].
pramoxine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3273
Morin
Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Rimantadine
Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149
Apigenin 7-O-beta-D-rutinoside
Apigenin 7-o-beta-d-rutinoside, also known as rhoifolin or apigenin-7-O-rhamnoglucoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 7-o-beta-d-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-rutinoside can be found in carrot, orange mint, and wild carrot, which makes apigenin 7-o-beta-d-rutinoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB080_Rhoifolin_pos_30eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_10eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_20eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_50eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_40eV_CB000032.txt [Raw Data] CB080_Rhoifolin_neg_50eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_10eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_20eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_40eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_30eV_000023.txt Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Agroclavine
An ergot alkaloid that is ergoline which contains a double bond between positions 8 and 9, and which is substituted by methyl groups at positions 6 and 8.
12,13-DiHOME
12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]
Bovinic acid
Bovinic acid is a conjugated linoleic acid, present in human adipose tissue; the amount of bovinic acid in humans is significantly related to milk fat intake. Conjugated linoleic acids (CLAs) are a group of naturally occurring fatty acids present mainly in fats from ruminants. Milk contains over 20 isomers of CLA but the predominant one is cis-9,trans-11-CLA (bovinic acid). Biomedical studies with animal models have shown that this isomer has anticarcinogenic and anti-atherogenic activities. Bovinic acid is produced as an intermediate in the rumen biohydrogenation of linoleic acid but not of linolenic acid. However, it is only a transient intermediate, and the major source of milk fat CLA is from endogenous synthesis (PMID: 10393134, 15736916).
Boldione
Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993) [HMDB] Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993).
Epibatidine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Octadecanamide
Octadecanamide is a fatty amide of stearic acid. It has a role as a metabolite. It is functionally related to an octadecanoic acid. Stearamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=124-26-5 (retrieved 2024-07-12) (CAS RN: 124-26-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Stearamide is a primary fatty acid amide. Stearamide displays cytotoxic and ichthytoxic activity[1].
Metaraminol
Metaraminol is only found in individuals that have used or taken this drug. It is an adrenergic agonist that acts predominantly at alpha adrenergic receptors and also stimulates the release of norepinephrine. It has been used primarily as a vasoconstrictor in the treatment of hypotension. [PubChem]Metaraminol acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic & diastolic). Its effect is thought to be associated with the inhibition of adenyl cyclase which leads to an inhibition of the production of cAMP. Another effect of Metaraminol is that it releases norepinephrine from its storage sites indirectly. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
6-Hydroxyflavone
6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].
Chalepin acetate
Chalepin acetate is found in herbs and spices. Chalepin acetate is a constituent of Ruta graveolens (rue)
Phenylacetylglycine
Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Phenylacetylglycine or PAG is a glycine conjugate of phenylacetic acid. Phenylacetic acid may arise from exposure to styrene (plastic) or through the consumption of fruits and vegetables. Phenylacetic acid is used in some perfumes, possessing a honey-like odour in low concentrations, and is also used in penicillin G production. PAG is a putative biomarker of phospholipidosis. Urinary PAG is elevated in animals exhibiting abnormal phospholipid accumulation in many tissues and may thus be useful as a surrogate biomarker for phospholipidosis. (PMID: 15764292) The presence of phenylacetylglycine in urine has been confirmed for dogs, rats and mice. However, the presence of this compound in human urine is controversial. GC-MS studies have not found this compound (PMID: 7492634) while NMR studies claimed to have identified it (PMID: 21167146). It appears that phenylacetylglycine may sometimes be mistaken for phenylacetylglutamine via NMR. Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
Punicic acid
alpha-Eleostearic acid is found in bitter gourd. alpha-Eleostearic acid is isolated from seed oil of Momordica charantia (bitter melon Isolated from seed oil of Momordica charantia (bitter melon). alpha-Eleostearic acid is found in bitter gourd and fruits.
Diguanosine tetraphosphate
P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).
Dihomolinoleate (20:2n6)
Eicosadienoic acid is an omega-6 fatty acid found in human milk (PMID: 15256803). Omega-6 fatty acids are a family of unsaturated fatty acids which have in common a carbon-carbon double bond in the n−6 position; that is, the sixth bond from the end of the fatty acid. The biological effects of the omega−6 fatty acids are largely mediated by their conversion to n-6 eicosanoids that bind to diverse receptors found in every tissue of the body. Eicosadienoic acid has been identified in the human placenta (PMID: 32033212). Isolated from lipids of Ginkgo biloba (ginkgo) Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2]. Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2].
D-Glucurono-6,3-lactone
D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis. D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB] D-Glucuronic acid lactone is an endogenous metabolite.
Phenylacetylglutamine
Phenylacetylglutamine is a product formed from the conjugation of phenylacetate and glutamine. Technically, it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals such as the dog, cat, rat, monkey, sheep, and horse do not excrete this compound. Phenylacetyl-CoA and L-glutamine react to form phenylacetylglutamine and coenzyme A. The enzyme (glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a polypeptide species distinct from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia (PMID: 2791363, 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430). Phenylacetylglutamine is a microbial metabolite found in Christensenellaceae, Lachnospiraceae and Ruminococcaceae (PMID: 26241311). Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. Technically it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals including the dog, cat, rat, monkey, sheep and horse do not excrete this compound. Phenylacetyl CoA and glutamine react to form phenylacetyl glutamine and Coenzyme A. The enzyme (Glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a distinct polypeptide species from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia. (PMID: 2791363; PMID: 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430) Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.
N-Nitrosopiperidine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3453 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
1-Methylnicotinamide
1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). [HMDB] 1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). 1-Methylnicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3106-60-3 (retrieved 2024-08-06) (CAS RN: 3106-60-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
N2-acetyllysine
N-alpha-Acetyl-L-lysine also known as Nalpha-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-lysine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-alpha-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-alpha-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-alpha-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free lysine can also occur. In particular, N-alpha-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Individuals with hyperlysinaemia due to L-lysine alpha-ketoglutarate reductase deficiency will excrete high levels of N-alpha-Acetyl-L-lysine in their urine (PMID: 116084). L-lysine alpha-ketoglutarate reductase deficiency, if untreated, can lead to neurological and behavioral deficits (PMID: 116084). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Acetyl-L-lysine is an endogenous metabolite.
Chelidonine
Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic. Chelidonine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity. See also: Chelidonium majus flowering top (part of). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2255 Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].
2,4,6-Trichlorphenol
CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5132; ORIGINAL_PRECURSOR_SCAN_NO 5129 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5120; ORIGINAL_PRECURSOR_SCAN_NO 5119 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5177; ORIGINAL_PRECURSOR_SCAN_NO 5173 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5142 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5143 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8137 D009676 - Noxae > D009153 - Mutagens
Ribothymidine
Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
Oxymetholone
A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
2,2',5,5'-Tetrachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
(2-Naphthalenyloxy)acetic acid
Plant growth regulator. (2-Naphthalenyloxy)acetic acid is used for control of preharvest fruit drop especially on grapes, pineapples, strawberries and tomatoe CONFIDENCE standard compound; EAWAG_UCHEM_ID 3716
Myricitrin
Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].
Nicotianamine
The (S,S,S)-stereoisomer of nicotianamine. IPB_RECORD: 2921; CONFIDENCE confident structure
Isoguvacine
Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists
Beta-Leucine
Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples:. Circulating levels of beta-leucine are elevated in the cobalamin-deficient state of pernicious anemia. Levels of leucine, on the other hand, are much lower. It is proposed that leucine 2,3-aminomutase, the cobalamin-dependent enzyme that catalyzes the interconversion of leucine and beta-leucine, is the affected enzyme in pernicious anemia and causes these results by preventing the synthesis of leucine from beta-leucine. The synthesis of leucine by human leukocytes and hair roots and by rat liver extracts has been shown to occur when either branched chain fatty acids or valine metabolites are the substances. The synthesis is dependent upon adenosylcobalamin and is inhibited by intrinsic factor (PMID:7430116). Using forms of beta-leucine and leucine that contain several deuterium atoms in place of several hydrogen atoms as internal standards, techniques have been developed which make it possible to detect and quantitate as little as 0.1 mumol/liter of beta-leucine or leucine in human serum and in incubations containing rat liver supernatant. beta-Leucine was not detectable, i.e. less than 0.1 mumol/liter, in any sera from 50 normal human subjects or in any sera from 50 cobalamin-deficient patients. Experiments in which beta-leucine, leucine, isostearic acid, or isocaproic acid were incubated with rat liver supernatant in the presence or absence of adenosylcobalamin or cobalamin-binding protein failed to demonstrate the formation of leucine or beta-leucine or their interconversion under any of the conditions studied. We conclude that beta-leucine is not present in human blood and that the existence of leucine 2,3-aminomutase in mammalian tissues remains to be established (PMID 3356699). Beta-leucine is found to be associated with cobalamin deficiency, which is an inborn error of metabolism. Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples: Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L057 3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.
Xanthylic acid
Xanthylic acid, also known as xmp or (9-D-ribosylxanthine)-5-phosphate, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Xanthylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Xanthylic acid can be found in a number of food items such as common grape, black-eyed pea, java plum, and wild rice, which makes xanthylic acid a potential biomarker for the consumption of these food products. Xanthylic acid exists in all living species, ranging from bacteria to humans. In humans, xanthylic acid is involved in several metabolic pathways, some of which include azathioprine action pathway, glutamate metabolism, mercaptopurine action pathway, and purine metabolism. Xanthylic acid is also involved in several metabolic disorders, some of which include purine nucleoside phosphorylase deficiency, succinic semialdehyde dehydrogenase deficiency, xanthine dehydrogenase deficiency (xanthinuria), and molybdenum cofactor deficiency. Xanthosine monophosphate is an intermediate in purine metabolism. It is a ribonucleoside monophosphate. It is formed from IMP via the action of IMP dehydrogenase, and it forms GMP via the action of GMP synthaseand is) also, XMP can be released from XTP by enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase containing (d)XTPase activity . Xanthylic acid is an important metabolic intermediate in the Purine Metabolism, and is a product or substrate of the enzymes Inosine monophosphate dehydrogenase (EC 1.1.1.205), Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), Xanthine phosphoribosyltransferase (EC 2.4.2.22), 5-Ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), Nucleoside-triphosphate diphosphatase (EC 3.6.1.19), Phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG) Xanthylic acid can also be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism. This measurement is important for optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Peonidin-3-glucoside
Peonidin-3-glucoside has been proposed by Wu et al. [PMID: 12097661] to be a secondary metabolite of cyanidin-3-glucoside which may be methylated by liver enzymes during phase II metabolism. Peonidin 3-glucoside is isolated from grapes and many other plant spp. It is found in red wine, common wheat, and lowbush blueberry. Acquisition and generation of the data is financially supported in part by CREST/JST.
Glucotropaeolin
Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.
Mesna
Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175) [HMDB] Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175). Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents
L-Gulonolactone
L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Lithospermic acid
Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].
alpha-Tocopherol acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Vitamin E supplement and antioxidant for foodstuffs Vitamin E supplement and antioxidant for foodstuff D018977 - Micronutrients > D014815 - Vitamins Same as: D01735 D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1]. D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1].
Chalepensin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
Phyllanthin
Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
Roridin A
CONFIDENCE isolated standard D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Senkirkin
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 178 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 168 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 158 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 148 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 138 INTERNAL_ID 138; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 128 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 118 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 108 INTERNAL_ID 2283; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2283
14,15-DiHETrE
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).
Wighteone
A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].
Echimidine
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2304 INTERNAL_ID 2304; CONFIDENCE Reference Standard (Level 1)
Dicyclohexylamine
INTERNAL_ID 2356; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2356 D004791 - Enzyme Inhibitors
Heptanal
Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent
Naphthalene-1,2-diol
This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.
N1-Methyl-4-pyridone-3-carboxamide
N1-Methyl-4-pyridone-3-carboxamide is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). Its concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300). N1-Methyl-4-pyridone-3-carboxamide has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N1-Methyl-4-pyridone-5-carboxamide (4PY ) is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). 4PY concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300) [HMDB]
2-Butenal
(e)-2-butenal, also known as (cis)-crotonaldehyde or (E)-crotonaldehyde (iupac), is a member of the class of compounds known as enals. Enals are an alpha,beta-unsaturated aldehyde of general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position (e)-2-butenal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-2-butenal is a flower tasting compound found in fruits, garden tomato, and potato, which makes (e)-2-butenal a potential biomarker for the consumption of these food products (e)-2-butenal can be found primarily in feces and saliva. 2-Butenal (CAS: 4170-30-3), also known as crotonaldehyde, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. The (E)-form of 2-butenal predominates (>95\\%). 2-Butenal can undergo polycondensation with phenols to synthesize phenolic resins. It is an eye, skin, and mucous membrane irritant. (E)-2-Butenal is found in fruits and vegetables (e.g. tomato juice, strawberry aroma).
N-Dodecane
N-Dodecane is found in black walnut. Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. (Wikipedia). Dodecane is a volatile organic compound found in feces of patients with Clostridium difficile infection, and considered as a potential fecal biomarker of Clostridium difficile infection (PMID: 30986230). Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. N-Dodecane is found in papaya, black walnut, and garden tomato (variety). D009676 - Noxae > D002273 - Carcinogens
Linalool (8-hydroxydihydro-)
Dimethylsulfide
Dimethylsulfide is the predominant volatile sulfur compound (VSC) in breadth malodor, a metabolite of suplatast tosilate (a dimethylsulphonium compound for the treatment of asthma) in patients that regularly take that medication. (PMID 14628896). Dimethylsulfide is a sulfur containing organic chemical compound with a disagreeable odor. In vapor form it is produced by cooking of certain vegetables, notably corn and cabbage, and seafood. It is also an indication of bacterial infection in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate, and is also produced by the bacterial metabolism of methanethiol. Dimethylsulfide in concentrated liquid form is insoluble and a flammable. This is a microbial metabolite that can be found in Bradyrhizobium, Cyanothece, Escherichia, Pseudomonas and Rhizobiaceae (PMID:25807229). Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a water-insoluble flammable liquid that boils at 37 °C (99 °F) and has a characteristic disagreeable odor. It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot and seafoods. It is also an indication of bacterial infection in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol. Dimethyl sulfide is found in many foods, some of which are soft-necked garlic, chives, spearmint, and potato.
Vibriobactin
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
3-Hydroxy-3-methylglutaryl-CoA
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582). (s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.
Sedoheptulose 1,7-bisphosphate
This compound belongs to the family of Monosaccharide Phosphates. These are monosaccharides comprising a phosphated group linked tot he carbohydrate unit.
N1-Acetylspermidine
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259). N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.
Phosphoglycolic acid
Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.
Queuine
Queuine is a highly modified derivative of guanine found in the first position of the anticodon of the transfer RNAs for asp, asn, his and tyr. The original transcripts of these tRNAs contain guanine in this position. All organisms with the exception of yeast and mycoplasma contain queuine. Bacteria synthesize queuine but it cannot be synthesized by higher mammals. Significant amounts of free queuine are present in common plant and animal food products. (PMID 9016755) [HMDB] Queuine is a highly modified derivative of guanine found in the first position of the anticodon of the transfer RNAs for asp, asn, his and tyr. The original transcripts of these tRNAs contain guanine in this position. All organisms with the exception of yeast and mycoplasma contain queuine. Bacteria synthesize queuine but it cannot be synthesized by higher mammals. Significant amounts of free queuine are present in common plant and animal food products. (PMID 9016755).
Ethanethioic acid
Ethanethioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
ZOPOLRESTAT
C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D007004 - Hypoglycemic Agents D004791 - Enzyme Inhibitors
Aminoacetone
Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA, but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces aminoacetone (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001). Aminoacetone is thought to be a substrate for SSAO (semicarbazide-sensitive amine oxidase), leading to the production of the toxic product methylglyoxal (Journal of Chromatography B. Volume 824, Issues 1-2 , 25 September 2005, Pages 116-122 ). Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA (5), but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces AA. (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001);
streptonigrin
Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
4-Chlorocatechol
4-chlorocatechol belongs to the family of Catechols. These are compounds containing a 1,2-benzenediol moeity.
Phosphoribosyl-AMP
Phosphoribosyl-AMP belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Phosphoribosyl-AMP is a very strong basic compound (based on its pKa). Phosphoribosyl-AMP is a nucleic acid component and is an intermediate in histidine biosynthesis. It is converted from phosphoribosyl-ATP via the enzyme phosphoribosyl-ATP diphosphatase (EC 3.6.1.31). It is then converted to phosphoribosylformiminoAICAR-phosphate via the enzyme phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19). Phosphoribosyl-AMP is a nucleic acid component, a purine-related compound. It is an intermediate in histidine biosynthesis. It is converted from Phosphoribosyl-ATP via the enzyme phosphoribosyl-ATP diphosphatase (EC 3.6.1.31). It is then converted to phosphoribosylformiminoAICAR-phosphate via the enzyme phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19). [HMDB]
5a-Androstan-3b-ol
5a-Androstan-3b-ol is a steroidal compound belonging to the group of odorous 16-androstenes, first isolated from boar testes and also found in humans. 5a-Androstan-3b-ol has pheromone-like properties in both animals and humans, but the molecular targets of its pheromonal activity are unknown. 5a-Androstan-3b-ol as a pheromone is well suited because of high volatility and lipophilicity. (PMID: 1419890, 8142319, 16415088) [HMDB] 5a-Androstan-3b-ol is a steroidal compound belonging to the group of odorous 16-androstenes, first isolated from boar testes and also found in humans. 5a-Androstan-3b-ol has pheromone-like properties in both animals and humans, but the molecular targets of its pheromonal activity are unknown. 5a-Androstan-3b-ol as a pheromone is well suited because of high volatility and lipophilicity. (PMID: 1419890, 8142319, 16415088).
Ethyl acetoacetate
Ethyl acetoacetate (EAA) is found in coffee and coffee products as well as in strawberry and yellow passion fruit juice. Ethyl acetoacetate is a flavouring agent. The organic compound ethyl acetoacetate is the ethyl ester of acetoacetic acid. It is mainly used as a chemical intermediate in the production of a wide variety of compounds, such as amino acids, analgesics, antibiotics, antimalarial agents, antipyrine, aminopyrine, and vitamin B1, as well as in the manufacture of dyes, inks, lacquers, perfumes, plastics, and yellow paint pigments (Wikipedia). The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is mainly used as a chemical intermediate in the production of a wide variety of compounds, such as amino acids, analgesics, antibiotics, antimalarial agents, antipyrine and aminopyrine, and vitamin B1; as well as the manufacture of dyes, inks, lacquers, perfumes, plastics, and yellow paint pigments. Alone, it is used as a flavoring for food.
4-Hydroxyaminoquinoline N-oxide
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
5-Fluorodeoxyuridine monophosphate
5-Fluorodeoxyuridine monophosphate is a metabolite of floxuridine. Floxuridine (also 5-fluorodeoxyuridine) is an oncology drug that belongs to the class known as antimetabolites. The drug is most often used in the treatment of colorectal cancer. (Wikipedia)
N1-(5-Phospho-a-D-ribosyl)-5,6-dimethylbenzimidazole
N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole (or alpha-ribazole-5-Phosphate) is an intermediate in Riboflavin metabolism. In particular, alpha-Ribazole 5-phosphate is converted from Dimethylbenzimidazole via the enzyme nicotinate-nucleotide-dimethylbenzimidazole. phosphoribosyltransferase (EC 2.4.2.21). It is then converted to alpha-Ribazole via the enzyme (EC 3.1.3.-). N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole (or alpha-ribazole-5-Phosphate) is an intermediate in Riboflavin metabolism. In particular, alpha-Ribazole 5-phosphate is converted from Dimethylbenzimidazole via the enzyme nicotinate-nucleotide-dimethylbenzimidazole
NSC100044
O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole
N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements. [HMDB] N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements.
Biotinyl-5'-AMP
5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2). Carboxylase biotinylation is catalyzed by the enzyme holocarboxylase synthetase (HCS) through a reaction that involves the transformation of biotin into B-AMP and its subsequent attachment to a specific lysine residue in the carboxylases. B-AMP is also required to activate a signal transduction cascade that includes a soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG). The regulatory role of biotin in the biotin cycle seems to be limited to the expression of proteins involved in the transport and utilization of exogenous vitamin while having no effect on biotinidase mRNA levels, enzyme responsible for biotin recycling during carboxylase turnover. Multiple carboxylase deficiency (MCD) is a life-threatening disease characterized by the lack of carboxylase activities because of deficiency of HCS activity. (PMID: 15905112, 11959985). 5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2).
Delta-12-Prostaglandin J2
Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Nitroferricyanide
D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Acetylhydrazine
The acetylhydrazine metabolite was found to be much less cytotoxic than hydrazine in this hepatocyte inflammation model. (PMID: 18295292) In the pathogenesis of isoniazid-induced hepatic injury, cytochrome P450-dependent metabolic activation of the metabolite, acetylhydrazine (AcHz), is the crucial step. (PMID: 8852701) The mechanism of action of acetylphosphabenzide is likely to involve the formation of acetylhydrazine, capable of producing active electrophiles attacking DNA. (PMID: 9589859) D009676 - Noxae > D002273 - Carcinogens
(R)-Methylphosphonofluoridic acid 1,2,2-trimethylpropyl ester
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
4-Hydroxycyclophosphamide
4-Hydroxycyclophosphamide is a primary activation metabolite of cyclophosphamide and of mafosfamide (an experimental drug) after they partially metabolized by cytochrome P450 (PMID: 12021633). Cyclophosphamide is a chemotherapeutic used to suppress the immune system and to treat several cancers including lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer and small cell lung cancer. After cyclphosphamide is converted to 4-hydroxycyclophosphamide it is then partially tautomerized into aldophosphamide, which easily enters live cells whereupon it is partially detoxified into inactive carboxycyclophosphamide by the enzyme ALDH. 4-Hydroxycyclophosphamide is also an intermediate metabolite in the formation of phosphoramide mustard, the active metabolite, and acrolein, the metabolite responsible for much of the toxicity associated with cyclophosphamides (PMID: 7059981). 4-Hydroxycyclophosphamide is not cytotoxic at physiologic pH, readily diffuses into cells and spontaneously decomposes into the active phosphoramide mustard. In human liver microsomes, 4-Hydroxycyclophosphamide formation correlates with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. In addition, it is reported that the CYP2B6 genotype is not consistently related to 4-Hydroxycyclophosphamide formation in vitro or in vivo (PMID: 21976622). 4-Hydroxycyclophosphamide is only found in individuals who have consumed the drug cyclophosphamide. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
Buclizine
Buclizine is only found in individuals that have used or taken this drug. It is an antihistamine of the piperazine derivative family. [Wikipedia]Vomiting (emesis) is essentially a protective mechanism for removing irritant or otherwise harmful substances from the upper GI tract. Emesis or vomiting is controlled by the vomiting centre in the medulla region of the brain, an important part of which is the chemotrigger zone (CTZ). The vomiting centre possesses neurons which are rich in muscarinic cholinergic and histamine containing synapses. These types of neurons are especially involved in transmission from the vestibular apparatus to the vomiting centre. Motion sickness principally involves overstimulation of these pathways due to various sensory stimuli. Hence the action of buclizine which acts to block the histamine receptors in the vomiting centre and thus reduce activity along these pathways. Furthermore since buclizine possesses anti-cholinergic properties as well, the muscarinic receptors are similarly blocked. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist
Metipranolol
Metipranolol is only found in individuals that have used or taken this drug. It is a beta-adrenergic antagonist effective for both beta-1 and beta-2 receptors. It is used as an antiarrhythmic, antihypertensive, and antiglaucoma agent. [PubChem]Although it is known that metipranolol binds the beta1 and beta2 adrenergic receptors, the mechanism of metipranolols action is not known. It has no significant intrinsic sympathomimetic activity, and has only weak local anesthetic (membrane-stabilizing) and myocardial depressant activity. It appears that the ophthalmic beta-adrenergic blocking agents reduce aqueous humor production, as demonstrated by tonography and fluorophotometry. A slight increase in aqueous humor outflow may be an additional mechanism. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].
Zanamivir
Zanamivir is only found in individuals that have used or taken this drug. It is a guanido-neuraminic acid that is used to inhibit neuraminidase. [PubChem]The proposed mechanism of action of zanamivir is via inhibition of influenza virus neuraminidase with the possibility of alteration of virus particle aggregation and release. By binding and inhibiting the neuraminidase protein, the drug renders the influenza virus unable to escape its host cell and infect others. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
Potassium iodide
Nutrient supplement; added to food as a source of iodine [DFC]. Potassium iodide is an inorganic compound with the chemical formula KI. The major uses of KI include use as a nutritional supplement in animal feeds and also the human diet. For the latter, it is the most common additive used to iodize" table salt (a public health measure to prevent iodine deficiency in populations which get little seafood). Kelp is a natural KI source. The iodide content can range from 89 ug/g to 8165 ug/g in Asian varieties R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes Nutrient supplement; added to food as a source of iodine [DFC] C26170 - Protective Agent > C797 - Radioprotective Agent S - Sensory organs > S01 - Ophthalmologicals
Methoxybrassinin
Isolated from Brassica campestris sspecies pekinensis (Cruciferae) inoculated with Pseudomonas cichorii. Methoxybrassinin is found in many foods, some of which are turnip, chinese cabbage, brassicas, and swede. Methoxybrassinin is found in brassicas. Methoxybrassinin is isolated from Brassica campestris ssp. pekinensis (Cruciferae) inoculated with Pseudomonas cichorii.
Withanolide
Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827).
Inulicin
Britannilactone 1-O-acetate is a natural product found in Pentanema britannicum and Inula japonica with data available. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation.
fumagillin
A meroterpenoid resulting from the formal condensation of the hydroxy group of fumagillol with the carboxylic acid group of (all-E)-deca-2,4,6,8-tetraenedioic acid. Originally isolated from the fungus Aspergillus fumigatus, it is used for the control of Nosema infection in honey bees. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D006133 - Growth Substances > D006131 - Growth Inhibitors Fumagillin(NSC9168) is an antimicrobial compound first isolated in 1949 from the fungus Aspergillus fumigatu. Fumagillin can inhibits HIV‐1 infection through the inhibition of HIV-1 viral protein R (Vpr) activity.
beta-Selinene
Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)
alpha-Terpineol
alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].
Xanthochymol
Xanthochymol is found in fruits. Xanthochymol is a constituent of the famine food Garcinia xanthochymus
Perlolyrine
Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc
Hypolaetin
A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.
Casuarinin
Casuarinin is found in feijoa. Casuarinin is isolated from Corylus heterophylla (Siberian filbert
Tellimagrandin II
Isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II is found in many foods, some of which are nance, kelp, komatsuna, and narrowleaf cattail. Tellimagrandin II is found in acorn. Tellimagrandin II is isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2]. Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2].
1'-Acetoxyeugenol acetate
1-Acetoxyeugenol acetate is found in herbs and spices. 1-Acetoxyeugenol acetate is a constituent of Alpinia galanga (greater galangal). Constituent of Alpinia galanga (greater galangal). 1-Acetoxyeugenol acetate is found in herbs and spices.
Anthricin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3]. Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3].
Diphyllin
Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].
Arborinine
Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue
Graveoline
Graveoline is found in herbs and spices. Graveoline is an alkaloid from Ruta graveolens (rue). Alkaloid from Ruta graveolens (rue). Graveoline is found in herbs and spices. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].
Caulophylline
N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2].
Peimine
Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.
Sulbenicillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A penicillin antibiotic having a 6beta-[phenyl(sulfo)acetamido] side-chain. Same as: D08534 C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Valspodar
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D003524 - Cyclosporins C1744 - Multidrug Resistance Modulator Same as: D06277
Oligomycin B
An oligomycin with formula C45H72O12 that is oligomycin A in which the spirocyclic ring bearing the 2-hydroxypropyl substituent has been substituted by an oxo group at the carbon which is directly attached to the spirocentre. It is a nonselective inhibitor of the mitochondrial F1F0 ATP synthase. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D009840 - Oligomycins
Calicheamicin
A calcheamicin in which contains 3-O-methyl-alpha-L-rhamnosyl, 2,6-dideoxy-4-thio-beta-D-ribo-hexopyranosyl, and 4-amino-4,6-dideoxy-2-O-[2,4-dideoxy-4-(ethylamino)-3-O-methyl-alpha-L-threo-pentopyranosyl]-alpha-L-idopyranose units and in which the aromatic ring contains an iodo substituent. D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents
1,2-dihydrovomilenine
An indole alkaloid obtained by selective hydrogenation of the 1,2-position of vomilenine.
Telomestatin
Telomestatin is a naturally occurring organic compound classified as a cyclic phenolphthioceramide derivative. It is isolated from the fermentation broth of microorganisms and is known for its antitumor properties. The name "telomestatin" reflects its primary mode of action, which is the inhibition of telomerase, an enzyme crucial for the maintenance of chromosome stability and cell proliferation, particularly in cancer cells where telomerase activity is often elevated. Telomerase is responsible for adding repetitive DNA sequences called telomeres to the ends of chromosomes, which prevents the loss of genetic material during DNA replication and cell division. By inhibiting telomerase, telomestatin interferes with the ability of cancer cells to divide and proliferate, making it a potential candidate for antitumor therapy. The compound's unique chemical structure allows it to bind specifically to the telomerase RNA component, thereby blocking the enzyme's activity. The discovery and study of telomestatin have contributed to the understanding of telomerase biology and the development of potential therapeutic strategies for cancer treatment.
2-Aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Quercetin 7-glucoside
Quercetin 7-glucoside, also known as quercimeritrin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 7-glucoside can be found in a number of food items such as roman camomile, okra, dandelion, and cottonseed, which makes quercetin 7-glucoside a potential biomarker for the consumption of these food products. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
Eryped
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.
Proxigermanium
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-NONOate
D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors
3,4-Dimethoxy-N-(4-(3-nitrophenyl)thiazol-2-yl)benzenesulfonamide
(1,2-diphenylethenyl)benzene
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists
(-)-1-Chloro-2-(2,2,2-trichloro-1-(4-chlorophenyl)ethyl)benzene
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
Norethynodrel
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D05207
Metribolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
Benzyl 4-hydroxybenzoate
CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 780; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4338; ORIGINAL_PRECURSOR_SCAN_NO 4336 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 780; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4357; ORIGINAL_PRECURSOR_SCAN_NO 4355 D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Same as: D07518
3-Amino-1-methyl-5H-pyrido[4,3-b]indole
3-Amino-1-methyl-5H-pyrido[4,3-b]indole is isolated from protein pyrolysates contg. tryptophan. Mutagenic potential food contaminant. Isolated from protein pyrolysates contg. tryptophan. Mutagenic potential food contaminant. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Mesitylene
Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents symmetrically placed on the ring. Isomeric trimethylbenzenes include hemimellitene (1,2,3-trimethylbenzene) and pseudocumene (1,2,4-trimethylbenzene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colourless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H3Me3.
Dibromochloromethane
Dibromochloromethane belongs to the family of Organochlorides. These are organic compounds containing a chlorine atom
Bromoform
Bromoform, also known as Tribromomethane or Methyl tribromide, is classified as a member of the Trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Trace amounts of 1,2-dibromoethane occur naturally in the ocean, where it is formed probably by algae and kelp. Bromoform is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Exposure to bromoform may occur from the consumption of chlorinated drinking water. The acute (short-term) effects from inhalation or ingestion of high levels of bromoform in humans and animals consist of nervous system effects such as the slowing down of brain functions, and injury to the liver and kidney. Chronic (long-term) animal studies indicate effects on the liver, kidney, and central nervous system (CNS) from oral exposure to bromoform. Human data are considered inadequate in providing evidence of cancer by exposure to bromoform, while animal data indicate that long-term oral exposure can cause liver and intestinal tumors. Bromoform has been classified as a Group B2, probable human carcinogen. Most of the bromoform that enters the environment is formed as disinfection byproducts known as the trihalomethanes when chlorine is added to drinking water or swimming pools to kill bacteria. In the past, it was used as a solvent, sedative and flame retardant, but now it is mainly used as a laboratory reagent. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock. Bromoform is a pale yellow liquid at room temperature, with a high refractive index, very high density, and sweet odor is similar to that of chloroform. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens
Cis-stilbene oxide
Cis-stilbene oxide is part of the Bile secretion pathway. It is a substrate for: Epoxide hydrolase 1.
Germacrene D
Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.
benzenecarbothioamide
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents
5-Formyluracil
A pyrimidone resulting from the formal oxidation of the alcoholic hydroxy group of 5-hydroxymethyluracil to the corresponding aldehyde. It is a major one-electron photooxidation product of thymine in oligodeoxynucleotides. D009676 - Noxae > D009153 - Mutagens
(+)-Nicotine
Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.
Graveoline
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1]. Graveoline (Rutamine) is an anti-cancer agent that can trigger apoptosis and autophagy in skin melanoma cells. Graveoline also exhibits antifungal activity[1].
3-amino-3-(4-hydroxyphenyl)propanoic acid
A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.
metaraminol
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M167
Thermopsine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.155 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].
ST 19:2;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 17beta-hydroxy steroid that is testosterone bearing an additional hydroxy substituent at the 6beta-position. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist
Rhoifolin
Apigenin 7-O-neohesperidoside is an apigenin derivative having an alpha-(1->2)-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as a metabolite. It is a neohesperidoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. Rhoifolin is a natural product found in Ligustrum robustum, Lonicera japonica, and other organisms with data available. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Pinitol
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Neoeriocitrin
Neoeriocitrin is a flavanone glycoside that is eriodictyol substituted by a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a trihydroxyflavanone, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to an eriodictyol. Neoeriocitrin is a natural product found in Citrus latipes, Citrus hystrix, and other organisms with data available. A flavanone glycoside that is eriodictyol substituted by a 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2]. Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2].
trans-Jasmone
trans-Jasmone is found in spearmint. Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. trans-Jasmone is found in spearmint. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Quercimeritrin
Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
Neopterin
Neopterin, also known as monapterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative and are mainly synthesized in several parts of the body, including the pineal gland. Neopterin is a solid that is soluble in water. Neopterin is a catabolic product of guanosine triphosphate (GTP). In humans, it is involved in pterine biosynthesis and it also serves as a precursor in the biosynthesis of biopterin, which is an essential cofactor in neurotransmitter synthesis. Neopterin has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic toxins can cause kidney, liver and heart damage. They can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Uremic toxins such as neopterin are actively transported into the kidneys via organic ion transporters (especially OAT3). Elevated levels of neopterin result from immune system activation, including from malignant cancer, allograft rejection, viral infection, and autoimmune disorders (PMID: 19500901). Measurement of neopterin concentration allows estimation of the extent of oxidative stress elicited by the immune system. Neopterin concentrations usually correlate with the extent and activity of a given disease, and are also used to monitor the course of the disease. Elevated neopterin concentrations are among the best predictors of adverse outcome in patients with HIV infection, in cardiovascular disease, and in various types of cancer. Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
(-)-Deoxypodophyllotoxin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins
(+)-Epibatidine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
(+)-Lithospermic acid
beta,beta-Dimethylacrylshikonin
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
3-Amino-4-methylpentanoic acid
3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.
Rifapentina
Scarlet red
D004396 - Coloring Agents
Curzerenone C
Curzerenone c is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Curzerenone c is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Curzerenone c can be found in turmeric, which makes curzerenone c a potential biomarker for the consumption of this food product. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Anthemoside
Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.
5,6-dihydrothymine
Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Naproxen
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 202 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Gentisin
Gentisin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. It has a role as a plant metabolite. It is a member of xanthones, a polyphenol and an aromatic ether. Gentisin is a natural product found in Pterocarpus santalinus, Gentiana orbicularis, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. Gentisin is found in alcoholic beverages. Gentisin is a pigment from root of Gentiana lutea (yellow gentian
Bellidin
Bellidin is a member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris. It has a role as a metabolite, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a mutagen, an antioxidant and a radical scavenger. It is a member of xanthones and a tetrol. It is functionally related to a xanthone. 1,3,5,8-Tetrahydroxyxanthone is a natural product found in Gentiana orbicularis, Swertia teres, and other organisms with data available. A member of the class of xanthones that is xanthone which is substituted by hydroxy groups at positions 1, 3, 5, and 8. A natural product found particularly in Iris nigricans and Gentiana campestris.
Myricitrin
Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-). Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available. A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].
Quercimeritrin
Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
OXAMIC ACID
A dicarboxylic acid monoamide resulting from the formal condensation of one of the carboxy groups of oxalic acid with ammonia.
Isoflavanone
Isoflavone in which the double bond between positions 2 and 3 has been reduced to a single bond.
Furanodienon
Furanodienone is a germacrane sesquiterpenoid. (5E,9E)-3,6,10-trimethyl-8,11-dihydro-7H-cyclodeca[b]furan-4-one is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1]. Furanodienone is one of the major bioactive constituents derived from Rhizoma Curcumae. Furanodienone induced apoptosis[1].
afzelechin
Afzelechin is a flavan-3ol, a type of flavonoids. It can be found in Bergenia ligulata (aka Paashaanbhed in Ayurveda traditional Indian medicine).; Afzelechin-(4alpha?8)-afzelechin (molecular formula : C30H26O10, molar mass : 546.52 g/mol, exact mass : 546.152597, CAS number : 101339-37-1, Pubchem CID : 12395) is a B type proanthocyanidin. Ent-epiafzelechin-3-O-p-hydroxybenzoate-(4??8,2??O?7)-epiafzelechin) is an A-type proanthocyanidin found in apricots (Prunus armeniaca).
Licoricidin
Licoricidin is a member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity. It has a role as an antibacterial agent and a plant metabolite. It is a member of hydroxyisoflavans, an aromatic ether and a methoxyisoflavan. Licoricidin is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity.
Pinoquercetin
A pentahydroxyflavone that is quercetin substituted by a methyl group at position 6.
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
sulfurein
Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].
Genistin
Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3].
Cynaropicrin
Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
Chelidonin
Annotation level-1 http://casmi-contest.org/examples.shtml; CASMI2012 Example 1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.627 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.621 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2461; CONFIDENCE confident structure IPB_RECORD: 921; CONFIDENCE confident structure Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].
Glycitein
A natural product found in Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.
Renardin
Senkirkine is a macrolide. Senkirkine is a natural product found in Tussilago farfara, Senecio gallicus, and other organisms with data available. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of).
75O1TFF47Z
Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
Terpenol
Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].
6-Hydroxyflavone
6-Hydroxyflavone is a hydroxyflavonoid. 6-Hydroxyflavone is a natural product found in Scutellaria baicalensis with data available. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].
Vestitol
The S-enantiomer of vestitol. Vestitol is a member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent, a plant metabolite and a phytoalexin. It is an aromatic ether, a member of hydroxyisoflavans and a methoxyisoflavan. Vestitol is a natural product found in Lotus japonicus, Medicago rugosa, and other organisms with data available. A member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity.
Tellimagrandin II
Isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II is found in many foods, some of which are nance, kelp, komatsuna, and narrowleaf cattail. Tellimagrandin II is found in acorn. Tellimagrandin II is isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II is a natural product found in Syzygium aromaticum, Tellima grandiflora, and other organisms with data available. Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2]. Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2].
Bergapten
D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Naproxen
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2651 CONFIDENCE standard compound; INTERNAL_ID 8544 CONFIDENCE standard compound; INTERNAL_ID 4066
ketorolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors This spectrum was obtained at The Multidisciplinary Research Laboratory at Antenor Orrego Private University, Trujillo, La Libertad, Peru.The sample was obtained from a pharmacy.; The sample was dissolved in 1:1 acetonitrile:water and passed through a ACQUITY UPLC BEH C18 1.7um column at 0.6 mL/min in ramp of MPA: 0.1\\% Formic Acid in water; MPB: 0.1\\% Formic Acid in Acetonitrile; Contact us: http://www.upao.edu.pe/labinm/
Nodakenin
Nodakenin is a furanocoumarin. Nodakenin is a natural product found in Hansenia forbesii, Rhodiola rosea, and other organisms with data available. Marmesin galactoside is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Marmesin galactoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Marmesin galactoside can be found in herbs and spices, which makes marmesin galactoside a potential biomarker for the consumption of this food product. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2]. Nodakenin is a major coumarin glucoside in the root of Angelica decusiva. Nodakenin inhibits acetylcholinesterase (AChE) activity with an IC50 of 84.7 μM[1][2].
Morin
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Rhoifolin
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Chryseriol
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Deoxyadenosine monophosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].
2-Deoxy-5-Guanylic Acid
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
Ergocornine
Ergotaman bearing a hydroxy group at the 12 position, isopropyl groups at the 2 and 5alpha positions, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.024 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.017
Erythromycin Ethylsuccinate
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic D005765 - Gastrointestinal Agents Same as: D01361 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.195 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.192 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.193 Erythromycin Ethylsuccinate is an antibiotic useful for the treatment of a number of bacterial infections, has an antimicrobial spectrum similar to or slightly wider than that of penicillin. Erythromycin Ethylsuccinate has antiviral activity against HIV-1.
rimantadine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
fleroxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors
3-Methylxanthine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMSNIKWWOQHZGF-UHFFFAOYSA-N_STSL_0034_3-Methylxanthine_0500fmol_180410_S2_LC02_MS02_57; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.
Neoeriocitrin
Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2]. Neoeriocitrin, isolated from Drynaria Rhizome,?shows activity on proliferation and osteogenic differentiation in MC3T3-E1. Neoeriocitrin is a potent acetylcholinesterase (AChE) inhibitor[1][2].
Neohesperidin
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
Rumenic acid
Bovinic acid is a conjugated linoleic acid, present in human adipose tissue; the amount of bovinic acid in humans is significantly related to milk fat intake. Conjugated linoleic acids (CLAs) are a group of naturally occurring fatty acids present mainly in fats from ruminants. Milk contains over 20 isomers of CLA but the predominant one is cis-9,trans-11-CLA (bovinic acid). Biomedical studies with animal models have shown that this isomer has anticarcinogenic and anti-atherogenic activities. Bovinic acid is produced as an intermediate in the rumen biohydrogenation of linoleic acid but not of linolenic acid. However, it is only a transient intermediate, and the major source of milk fat CLA is from endogenous synthesis. (PMID 10393134, 15736916) [HMDB]
medroxyprogesterone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents CONFIDENCE standard compound; INTERNAL_ID 8739
Phenylacetylglutamine
Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.
Dihydrothymine
A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Phenylacetylglycine
A N-acylglycine that is glycine substituted on nitrogen with a phenylacetyl group. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
Ribothymidine
A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
nerol
Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
1-Methylnicotinamide
A pyridinium ion comprising nicotinamide having a methyl group at the 1-position. It is a metabolite of nicotinamide which was initially considered to be biologically inactive but has emerged as an anti-thrombotic and anti-inflammatory agent. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
5-Methyluridine
CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
penciclovir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].
N-Acetylhistamine
A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
1-Methylxanthine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
fumonisin B2
A fumonisin that is (2S,3S,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,14,15-triol in which the hydroxy groups at positions 14 and 15 have each been esterified by condensation with the 1-carboxy group of 3-carboxyglutaric acid (giving a 3-carboxyglutarate ester group with R configuration in each case). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 5969 CONFIDENCE Reference Standard (Level 1)
CARTEOLOL
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
Buclizine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist
Isoreserpin
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-1
4-Aminosalicylic acid
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WUBBRNOQWQTFEX-UHFFFAOYSA-N_STSL_0188_4-Aminosalicylic Acid_0125fmol_180831_S2_L02M02_81; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
L-Gulonolactone
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Veraguensin
Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1] Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1]
7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene
Catechin C
C26170 - Protective Agent > C275 - Antioxidant
FA 18:2
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
FA 20:5;O2
An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
n-Dodecane
A straight-chain alkane with 12 carbon atoms. It has been isolated from the essential oils of various plants including Zingiber officinale (ginger). D009676 - Noxae > D002273 - Carcinogens
ST 27:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Withanolide
A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 22 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Tubocapsicum anomalum and Withania somnifera, it exhibits cytotoxic activity. Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827) [HMDB]
Withanolide
ST 26:3;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
beta-selinene
An optically active form of beta-selinene having (+)-(4aR,7R,8aS)-configuration.
Aureusidin
Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. A hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].
carthamidin
A tetrahydroxyflavanone that is (S)-naringenin substituted by an additional hydroxy group at position 6.
1-[4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione
1-(2-Deoxy-β-D-threo-pentofuranosyl)thymine is a thymidine analog. Analogs of this series have insertional activity towards replicated DNA. They can be used to label cells and track DNA synthesis[1].
Propagermanium
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate
Methyltrienolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
2,4-Diaminotoluene
An aminotoluene that is para-toluidine with an additional amino group at position 2. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
alpha-terpineol
α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].
Benzylparaben
D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Same as: D07518
17066-67-0
AIDS-026330
C26170 - Protective Agent > C275 - Antioxidant
Geranyl acetate
Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate has been reported in Cymbopogon martinii, Cymbopogon distans
Moslene
γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].
AIDS-224739
Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
Curzerenone
Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
cuminal
Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
5-Mop
D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Perlolyrine
23513-08-8
8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].
c0588
Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].
Isopimpinellin
Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].
AI3-26172
Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Jasmone
Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
4-Hydroxyaminoquinoline-1-oxide
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
3-Deoxyestrone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
1,1-Diethyl-2-hydroxy-2-nitrosohydrazine
D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors
8-GINGEROL
(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].
Homotaurine
3-aminopropanesulfonic acid is an amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. It has a role as an algal metabolite, a nootropic agent, an anticonvulsant, a GABA agonist and an anti-inflammatory agent. It is a tautomer of a 3-aminopropanesulfonic acid zwitterion. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists An amino sulfonic acid that is the 3-amino derivative of propanesulfonic acid. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C26170 - Protective Agent > C1509 - Neuroprotective Agent Tramiprosate (Homotaurine), an orally active and brain-penetrant natural amino acid found in various species of red marine algae. Tramiprosate binds to soluble Aβ and maintains Aβ in a non-fibrillar form. Tramiprosate is also a GABA analog and possess neuroprotection, anticonvulsion and antihypertension effects[1][2][3].
Hexahydrocurcumin
Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].
DHSA
9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available. A hydroxy-fatty acid formally derived from stearic acid by hydroxy substitution at positions 9 and 10.
dimethyl sulfide
A methyl sulfide in which the sulfur atom is substituted by two methyl groups. It is produced naturally by some marine algae.
astemizole
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
Potassium iodide
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C797 - Radioprotective Agent S - Sensory organs > S01 - Ophthalmologicals
Caprolactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Dimethyltryptamine
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A tryptamine derivative having two N-methyl substituents on the side-chain.
ethyl acetoacetate
An ethyl ester resulting from the formal condensation of the carboxy group of acetoacetic acid with ethanol.
nafcillin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
trihexyphenidyl
D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent
Testosterone Enanthate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Cogentin
N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AC - Ethers of tropine or tropine derivatives D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
1-Nitrosopiperidine
A nitrosamine that is piperidine in which the hydrogen attached to the nitrogen is replaced by a nitroso group. One of the many carcinogens detected in cigarette smoke, it is found in meat, cheese and spices that have been treated with the preservative sodium nitrite. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
SOMAN
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents D004791 - Enzyme Inhibitors
Metipranolol
3-(Propan-2-ylamino)propane-1,2-diol in which the hydrogen of the primary hydroxy group is substituted by a 4-acetoxy-2,3,5-trimethylphenoxy group. A non-cardioselective beta-blocker, it is used to lower intra-ocular pressure in the management of open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metipranolol is a nonselective and orally active β-adrenergic receptor antagonist. Metipranolol can be used for hypertension and glaucoma research[1][2].
Zanamivir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
bruneomycin
Complex cytotoxic antibiotic obtained from Streptomyces flocculus or S. rufochronmogenus. It is used in advanced carcinoma and causes leukopenia. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
4-Chlorocatechol
A chlorocatechol that is catechol substituted by a chloro group at position 4.
5-xanthylic acid
A purine ribonucleoside 5-monophosphate having xanthine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
delta-12-Prostaglandin J2
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
aminoacetone
A propanone consisting of acetone having an amino group at the 1-position.
4-Hydroxycyclophosphamide
A phosphorodiamide that consists of 2-amino-1,3,2-oxazaphosphinan-4-ol 2-oxide having two 2-chloroethyl groups attached to the exocyclic nitrogen. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
O(6)-Methyl-2-deoxyguanosine
O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
CID 5281302
Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].
(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
THIOBENZAMIDE
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents
Octadecanamide
A fatty amide of stearic acid. Stearamide is a primary fatty acid amide. Stearamide displays cytotoxic and ichthytoxic activity[1].
(±)-nicotine
An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2.
Zoxazolamine
D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant C26170 - Protective Agent > C921 - Uricosuric Agent D002491 - Central Nervous System Agents
Tocopheryl acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins
TRIPHENYLETHYLENE
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists
isoguvacine
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists
2-aminoacridone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate
1-Naphthylacetylspermine
Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.