Alphitolsaure (BioDeep_00000000897)

 

Secondary id: BioDeep_00001104012

PANOMIX_OTCML-2023


代谢物信息卡片


(1R,3aS,5aR,5bR,7aR,9R,10R,11aR,11bR,13aR,13bR)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

化学式: C30H48O4 (472.3552)
中文名称: 麦珠子酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C=C(C)C1CCC2(C(=O)O)CCC3(C)C(CCC4C5(C)CC(O)C(O)C(C)(C)C5CCC43C)C12
InChI: InChI=1S/C30H48O4/c1-17(2)18-10-13-30(25(33)34)15-14-28(6)19(23(18)30)8-9-22-27(5)16-20(31)24(32)26(3,4)21(27)11-12-29(22,28)7/h18-24,31-32H,1,8-16H2,2-7H3,(H,33,34)/t18-,19+,20+,21-,22+,23+,24-,27-,28+,29+,30-/m0/s1

描述信息

2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid is a pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It is functionally related to a betulinic acid. It derives from a hydride of a lupane.
Alphitolic acid is a natural product found in Quercus aliena, Alphitonia petriei, and other organisms with data available.
A pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa.

同义名列表

11 个代谢物同义名

(1R,3aS,5aR,5bR,7aR,9R,10R,11aR,11bR,13aR,13bR)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid; Lup-20(29)-en-28-oic acid, 2,3-dihydroxy- (8CI); (2,3)-2,3-Dihydroxylup-20(29)-en-28-oic acid; 3aH-Cyclopenta[a]chrysene, lup-20(29)-en-28-oic acid deriv.; 2-Hydroxybetulinic acid; Alphitolic acid; Alphitolic acidScopoletin acetate29-Nor-20-oxolupeolTriptohypol CYadanzioside Ctrans-Communic acidCnidilin1-MethoxyallocryptopineKushenol WDihydromorinEvodol; 2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid; 2alpha,3beta-dihydroxylup-20(29)-en-28-oic acid; (2α,3β)-2,3-Dihydroxylup-20(29)-en-28-oic acid; 2alpha-Hydroxybetulinic acid; Alphitolic acid; Aophitolic acid; Alphitolsaure; Alphitolic acid



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

22 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ANXA5, BCL2, CASP3, CASP8, MAPK14, MCL1, MSMP, PIK3CA, PTGS1, PTGS2, TP53, VEGFA
Peripheral membrane protein 3 ANXA5, PTGS1, PTGS2
Endoplasmic reticulum membrane 5 BCL2, CD4, HSP90B1, PTGS1, PTGS2
Nucleus 9 BCL2, CASP3, CASP8, HSP90B1, MAPK14, MCL1, PARP1, TP53, VEGFA
cytosol 10 ANXA5, BCL2, CASP3, CASP8, HSP90B1, MAPK14, MCL1, PARP1, PIK3CA, TP53
nuclear body 1 PARP1
centrosome 1 TP53
nucleoplasm 6 CASP3, CASP8, MAPK14, MCL1, PARP1, TP53
Cell membrane 2 CD4, TNF
lamellipodium 2 CASP8, PIK3CA
cell surface 2 TNF, VEGFA
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 2 PTGS1, VEGFA
Golgi membrane 1 C1GALT1
neuronal cell body 2 CASP3, TNF
sarcolemma 1 ANXA5
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 PARP1
plasma membrane 3 CD4, PIK3CA, TNF
Membrane 8 ANXA5, BCL2, C1GALT1, HSP90B1, MCL1, PARP1, TP53, VEGFA
caveola 1 PTGS2
extracellular exosome 3 ANXA5, HSP90B1, PTGS1
endoplasmic reticulum 5 BCL2, HSP90B1, PTGS2, TP53, VEGFA
extracellular space 4 IFNG, MSMP, TNF, VEGFA
perinuclear region of cytoplasm 2 HSP90B1, PIK3CA
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 7 BCL2, CASP8, HMGCS2, MAPK14, MCL1, PARP1, TP53
protein-containing complex 6 BCL2, CASP8, HSP90B1, PARP1, PTGS2, TP53
intracellular membrane-bounded organelle 1 PTGS1
Microsome membrane 2 PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 CD4
Secreted 3 IFNG, MSMP, VEGFA
extracellular region 6 ANXA5, HSP90B1, IFNG, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, MCL1
mitochondrial outer membrane 3 BCL2, CASP8, MCL1
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 HMGCS2, TP53
transcription regulator complex 2 PARP1, TP53
photoreceptor outer segment 1 PTGS1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 2 BCL2, MCL1
nuclear membrane 1 BCL2
external side of plasma membrane 3 ANXA5, CD4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
nucleolus 2 PARP1, TP53
midbody 1 HSP90B1
Early endosome 1 CD4
recycling endosome 1 TNF
Single-pass type II membrane protein 2 C1GALT1, TNF
Cell projection, lamellipodium 1 CASP8
Membrane raft 2 CD4, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 ANXA5, HSP90B1
extracellular matrix 1 VEGFA
Nucleus, PML body 1 TP53
PML body 1 TP53
collagen-containing extracellular matrix 2 ANXA5, HSP90B1
secretory granule 1 VEGFA
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 2 PTGS1, PTGS2
chromatin 2 PARP1, TP53
phagocytic cup 1 TNF
Chromosome 1 PARP1
cytoskeleton 1 CASP8
Nucleus, nucleolus 1 PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 2 PARP1, TP53
nuclear envelope 1 PARP1
Endomembrane system 1 PTGS1
myosin complex 1 MCL1
Nucleus, nucleoplasm 1 MCL1
Melanosome 1 HSP90B1
cell body 1 CASP8
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 3 CD4, HSP90B1, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 CD4
Sarcoplasmic reticulum lumen 1 HSP90B1
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 PARP1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
site of DNA damage 1 PARP1
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
endoplasmic reticulum chaperone complex 1 HSP90B1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Su Jin Park, Jin Seok Lee, Yu Ran Nam, Ji Min Lee, Dae-Won Ki, Bong-Sik Yun, Seong Woo Choi, Nhung Thi Hong Van, Joo Hyun Nam, Hyun Jong Kim, Woo Kyung Kim. Anti-Inflammatory Effects of Alphitolic Acid Isolated from Agrimonia coreana Nakai Extracts Are Mediated via the Inhibition of ICRAC Activity in T Cells. International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417309. [PMID: 38139137]
  • Zhubo Dai, Yun Liu, Zhoutong Sun, Dong Wang, Ge Qu, Xiaolin Ma, Feiyu Fan, Lili Zhang, Shoulian Li, Xueli Zhang. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metabolic engineering. 2019 01; 51(?):70-78. doi: 10.1016/j.ymben.2018.10.001. [PMID: 30339834]
  • Qiang Jiang, Kai Li, Wen-Jing Lu, Shuang Li, Xin Chen, Xi-Juan Liu, Jie Yuan, Qiurong Ding, Feng Lan, Shi-Qing Cai. Identification of small-molecule ion channel modulators in C. elegans channelopathy models. Nature communications. 2018 09; 9(1):3941. doi: 10.1038/s41467-018-06514-5. [PMID: 30258187]
  • Yulin Ren, Gerardo D Anaya-Eugenio, Austin A Czarnecki, Tran Ngoc Ninh, Chunhua Yuan, Hee-Byung Chai, Djaja D Soejarto, Joanna E Burdette, Esperanza J Carcache de Blanco, A Douglas Kinghorn. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorganic & medicinal chemistry. 2018 08; 26(15):4452-4460. doi: 10.1016/j.bmc.2018.07.025. [PMID: 30057155]
  • Yao Li, Sheng Guo, Quanjin Ren, Dandan Wei, Ming Zhao, Shulan Su, Zhishu Tang, Jin-Ao Duan. Pharmacokinetic Comparisons of Multiple Triterpenic Acids from Jujubae Fructus Extract Following Oral Delivery in Normal and Acute Liver Injury Rats. International journal of molecular sciences. 2018 07; 19(7):. doi: 10.3390/ijms19072047. [PMID: 30011885]
  • Christina E Mair, Ulrike Grienke, Anke Wilhelm, Ernst Urban, Martin Zehl, Michaela Schmidtke, Judith M Rollinger. Anti-Influenza Triterpene Saponins from the Bark of Burkea africana. Journal of natural products. 2018 03; 81(3):515-523. doi: 10.1021/acs.jnatprod.7b00774. [PMID: 29394063]
  • Chung Sub Kim, Lalita Subedi, Joonseok Oh, Sun Yeou Kim, Sang Un Choi, Kang Ro Lee. Bioactive Triterpenoids from the Twigs of Chaenomeles sinensis. Journal of natural products. 2017 04; 80(4):1134-1140. doi: 10.1021/acs.jnatprod.7b00111. [PMID: 28358502]
  • Diane Patricia Apie Gossan, Abdulmagid Alabdul Magid, Philomène Akoua Yao-Kouassi, Antoine Ahibo Coffy, Jérome Josse, Sophie C Gangloff, Hamid Morjani, Laurence Voutquenne-Nazabadioko. Triterpene glycosides from the aerial parts of Gouania longipetala. Phytochemistry. 2017 Feb; 134(?):71-77. doi: 10.1016/j.phytochem.2016.11.004. [PMID: 27865442]
  • Kyo Bin Kang, Jung Wha Kim, Won Keun Oh, Jinwoong Kim, Sang Hyun Sung. Cytotoxic Ceanothane- and Lupane-Type Triterpenoids from the Roots of Ziziphus jujuba. Journal of natural products. 2016 09; 79(9):2364-75. doi: 10.1021/acs.jnatprod.6b00525. [PMID: 27617953]
  • Midori A Arai, Chikashi Tateno, Takahiro Hosoya, Takashi Koyano, Thaworn Kowithayakorn, Masami Ishibashi. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorganic & medicinal chemistry. 2008 Nov; 16(21):9420-4. doi: 10.1016/j.bmc.2008.09.053. [PMID: 18842418]
  • Nicolai Zederkopff Ballin, Maminata Traore, Halidou Tinto, Archibald Sittie, Per Mølgaard, Carl Erik Olsen, Arsalan Kharazmi, Søren Brøgger Christensen. Antiplasmodial compounds from Cochlospermum tinctorium. Journal of natural products. 2002 Sep; 65(9):1325-7. doi: 10.1021/np020008h. [PMID: 12350157]
  • Y Kashiwada, H K Wang, T Nagao, S Kitanaka, I Yasuda, T Fujioka, T Yamagishi, L M Cosentino, M Kozuka, H Okabe, Y Ikeshiro, C Q Hu, E Yeh, K H Lee. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. Journal of natural products. 1998 Sep; 61(9):1090-5. doi: 10.1021/np9800710. [PMID: 9748372]