Rhoifolin (BioDeep_00000017245)

Main id: BioDeep_00000002498

 

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

化学式: C27H30O14 (578.1635)
中文名称: 野漆树苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1C(C(C(C(O1)OC2C(C(C(OC2OC3=CC(=C4C(=C3)OC(=CC4=O)C5=CC=C(C=C5)O)O)CO)O)O)O)O)O
InChI: InChI=1S/C27H30O14/c1-10-20(32)22(34)24(36)26(37-10)41-25-23(35)21(33)18(9-28)40-27(25)38-13-6-14(30)19-15(31)8-16(39-17(19)7-13)11-2-4-12(29)5-3-11/h2-8,10,18,20-30,32-36H,9H2,1H3/t10-,18+,20-,21+,22+,23-,24+,25+,26-,27+/m0/s1

描述信息

Apigenin 7-O-neohesperidoside is an apigenin derivative having an alpha-(1->2)-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as a metabolite. It is a neohesperidoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin.
Rhoifolin is a natural product found in Ligustrum robustum, Lonicera japonica, and other organisms with data available.
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].
Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

同义名列表

36 个代谢物同义名

7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 4H-1-Benzopyran-4-one, 7-[[2-O-(6-deoxy-.alpha.-L-mannopyranosyl)-.beta.-D-glucopyranosyl]-oxy]-5-hydroxy-2-(4-hydroxyphenyl)-; 4H-1-BENZOPYRAN-4-ONE, 7-((2-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-5-HYDROXY-2-(4-HYDROXYPHENYL)-; 4H-1-Benzopyran-4-one, 7-((2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-; 7-[[2-O-(6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 7-((2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one; 7-[[2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside; Apigenin 7-O-neohesperidoside, >=99.0\\% (HPLC); 4,5,7-trihydroxyflavone-7-rhamnoglucoside; APIGENIN 7-O-.BETA.-D-NEOHESPERIDOSIDE; Apigenin 7-O-beta-D-rutinoside; Apigenin 7-O-neohesperidoside; apigenin-7-O-neohesperidoside; apigenin-7-O-rhamnoglucoside; Apigenin-7-Neohesperidoside; RHOIFOLIN [USP-RS]; Spectrum2_001641; Spectrum5_000638; Spectrum4_001919; Spectrum3_001920; Rhoifolin, 90\\%; UNII-K86F9AKS2A; DivK1c_006601; KBio2_007163; KBio3_003025; KBio1_001545; Rhoifoloside; KBio2_002027; KBio2_004595; K86F9AKS2A; RHIOFOLEN; Rhoifolin; Apigenin 7-O-neohesperidoside



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

179 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AKT1, BCL2, CASP3, MAPK8, MTOR, MYD88, PIK3CA, PTGS2, TLR4, TYR
Peripheral membrane protein 4 GBA1, GORASP1, MTOR, PTGS2
Endosome membrane 2 MYD88, TLR4
Endoplasmic reticulum membrane 3 BCL2, MTOR, PTGS2
Nucleus 7 AKT1, BCL2, CASP3, GABPA, MAPK8, MTOR, MYD88
cytosol 7 AKT1, BCL2, CASP3, MAPK8, MTOR, MYD88, PIK3CA
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
trans-Golgi network 1 GBA1
nucleoplasm 5 AKT1, CASP3, GABPA, MAPK8, MTOR
Cell membrane 3 AKT1, TLR4, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 3 MYD88, TLR4, TNF
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 2 GBA1, GORASP1
Golgi membrane 3 GORASP1, INS, MTOR
lysosomal membrane 2 GBA1, MTOR
neuronal cell body 3 CASP3, TGFB2, TNF
postsynapse 1 AKT1
Lysosome 3 GBA1, MTOR, TYR
plasma membrane 6 AKT1, BCHE, MYD88, PIK3CA, TLR4, TNF
Membrane 4 AKT1, BCL2, MTOR, TLR4
axon 2 MAPK8, TGFB2
caveola 1 PTGS2
extracellular exosome 1 GBA1
Lysosome membrane 2 GBA1, MTOR
Lumenal side 1 GBA1
endoplasmic reticulum 3 BCL2, GBA1, PTGS2
extracellular space 7 BCHE, CCL2, CXCL8, IL6, INS, TGFB2, TNF
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 3 PIK3CA, TLR4, TYR
intercalated disc 1 PIK3CA
mitochondrion 1 BCL2
protein-containing complex 4 AKT1, BCL2, MYD88, PTGS2
intracellular membrane-bounded organelle 1 TYR
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 TLR4, TYR
Secreted 5 BCHE, CCL2, CXCL8, IL6, INS
extracellular region 7 BCHE, CCL2, CXCL8, IL6, INS, TGFB2, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
Early endosome 1 TLR4
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 TGFB2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 1 GABPA
phagocytic cup 2 TLR4, TNF
blood microparticle 1 BCHE
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
Melanosome 1 TYR
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 BCHE, IL6, INS, PTGS2
platelet alpha granule lumen 1 TGFB2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
nuclear envelope lumen 1 BCHE
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 MYD88
[Latency-associated peptide]: Secreted, extracellular space, extracellular matrix 1 TGFB2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Transforming growth factor beta-2]: Secreted 1 TGFB2
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Gokhan Zengin, Nada M Mostafa, Yasmin M Abdelkhalek, Omayma A Eldahshan. Antioxidant and Enzyme Inhibitory Activities of Rhoifolin Flavonoid: In Vitro and in Silico Studies. Chemistry & biodiversity. 2023 Jul; ?(?):e202300117. doi: 10.1002/cbdv.202300117. [PMID: 37498319]
  • Eveen Al-Shalabi, Samah Abusulieh, Alaa M Hammad, Suhair Sunoqrot. Rhoifolin loaded in PLGA nanoparticles alleviates oxidative stress and inflammation in vitro and in vivo. Biomaterials science. 2022 Sep; 10(19):5504-5519. doi: 10.1039/d2bm00309k. [PMID: 35920694]
  • Ling Xiong, Hong Lu, Ying Hu, Wei Wang, Rong Liu, Xinpeng Wan, Jianjiang Fu. In vitro anti-motile effects of Rhoifolin, a flavonoid extracted from Callicarpa nudiflora on breast cancer cells via downregulating Podocalyxin-Ezrin interaction during Epithelial Mesenchymal Transition. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Dec; 93(?):153486. doi: 10.1016/j.phymed.2021.153486. [PMID: 34649211]
  • Jiaqi Fang, Zelin Cao, Xiaoxin Song, Xiaoying Zhang, Baoyu Mai, Tingfang Wen, Jingran Lin, Jialan Chen, Yuguang Chi, Taojunfeng Su, Fengxia Xiao. Rhoifolin Alleviates Inflammation of Acute Inflammation Animal Models and LPS-Induced RAW264.7 Cells via IKKβ/NF-κB Signaling Pathway. Inflammation. 2020 Dec; 43(6):2191-2201. doi: 10.1007/s10753-020-01286-x. [PMID: 32617861]
  • Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of medicinal chemistry. 2020 11; 63(22):13205-13227. doi: 10.1021/acs.jmedchem.0c00626. [PMID: 32845145]
  • Gopalsamy Rajiv Gandhi, Alan Bruno Silva Vasconcelos, Ding-Tao Wu, Hua-Bin Li, Poovathumkal James Antony, Hang Li, Fang Geng, Ricardo Queiroz Gurgel, Narendra Narain, Ren-You Gan. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients. 2020 Sep; 12(10):. doi: 10.3390/nu12102907. [PMID: 32977511]
  • Shanqin Peng, Congqi Hu, Xi Liu, Lei Lei, Guodong He, Chenming Xiong, Wenqian Wu. Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund's adjuvant-induced rheumatoid arthritis via inhibition of NF-κB. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2020; 53(6):e9489. doi: 10.1590/1414-431x20209489. [PMID: 32401927]
  • Hong Liu, Cheng Xu, Wei Wang, Yue Zhao. Development and Validation of an LC-ESI-MS/MS Method for Simultaneous Determination of Ligustroflavone and Rhoifolin in Rat Plasma and Its Application to a Pharmacokinetic Study. Journal of chromatographic science. 2017 03; 55(3):267-274. doi: 10.1093/chromsci/bmw181. [PMID: 27884870]
  • Michael Plioukas, Chrysi Gabrieli, Diamanto Lazari, Eugene Kokkalou. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts. Natural product research. 2016 Jun; 30(12):1366-72. doi: 10.1080/14786419.2015.1057729. [PMID: 26209262]
  • Shyi-Neng Lou, Yi-Chun Lai, Ya-Siou Hsu, Chi-Tang Ho. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food chemistry. 2016 Apr; 197(Pt A):1-6. doi: 10.1016/j.foodchem.2015.10.096. [PMID: 26616917]
  • Zhen-Dan He, Kit-Man Lau, Paul Pui-Hay But, Ren-Wang Jiang, Hui Dong, Shuang-Cheng Ma, Kwok-Pui Fung, Wen-Cai Ye, Han-Dong Sun. Antioxidative glycosides from the leaves of Ligustrum robustum. Journal of natural products. 2003 Jun; 66(6):851-4. doi: 10.1021/np020568g. [PMID: 12828473]
  • K Ishii, S Urano, T Furuta, Y Kasuya. Determination of rhoifolin and daidzin in human plasma by high-performance liquid chromatography. Journal of chromatography. B, Biomedical applications. 1994 May; 655(2):300-4. doi: 10.1016/0378-4347(94)00115-4. [PMID: 8081478]