Subcellular Location: apical plasma membrane

Found 500 associated metabolites.

412 associated genes. ABCB1, ABCB11, ABCB4, ABCC1, ABCC11, ABCC2, ABCC4, ABCC5, ABCG2, ABCG5, ABCG8, ACE2, ACY3, ADAM17, ADCY10, ADCY8, ADGRG2, ADRB2, AGER, AHCYL1, AJAP1, AJM1, AKAP7, AKR1A1, AMN, ANK2, ANO1, ANXA1, ANXA13, AP2A1, AQP1, AQP10, AQP2, AQP5, AQP6, AQP8, ARHGEF18, ASPM, ATP12A, ATP1A1, ATP1B1, ATP1B2, ATP1B3, ATP2B2, ATP4A, ATP4B, ATP6V0A4, ATP6V0D1, ATP6V0D2, ATP6V1A, ATP6V1B1, ATP6V1B2, ATP6V1E1, ATP6V1G1, ATP7A, ATP8B1, BCRP1, BMPR2, BST2, C1QTNF5, CA12, CA14, CA4, CASR, CAV1, CBLIF, CD300LG, CD34, CD36, CD44, CDH2, CDHR2, CDHR5, CEACAM1, CEACAM20, CEACAM5, CEACAM6, CEACAM7, CFAP126, CFTR, CIB1, CLCA4, CLDN1, CLDN4, CLDND1, CLIC5, CNKSR3, CNTFR, CPO, CRB1, CRB2, CRB3, CRIPTO, CSPG4, CTSB, CTSK, CTSL, CTSO, CUBN, CYBRD1, CYP4A11, CYP4F12, CYP4F2, DDR2, DLG1, DLG3, DLL1, DPEP1, DPP4, DRAM2, DSG1, DSG2, DSTYK, DUOX1, DUOX2, ECRG4, EGFR, EMP2, ENPEP, ENPP3, EPCAM, EPS15, ERBB2, ERBB3, EZR, F2RL2, FAT1, FLOT1, FN1, FOLR1, FXYD1, FZD3, FZD6, GABRP, GJA1, GJB6, GM2A, GNAS, GNAT1, GNAT3, GP2, GPIHBP1, GPR143, HAX1, HBP1, HIP1R, HPN, HSP90AA1, HVCN1, HYAL2, IGFBP2, IGSF5, IL10RA, IL6R, IQGAP1, ITGB3, ITPK1, JAG1, KCNA1, KCNB1, KCNC2, KCNE1, KCNE2, KCNE4, KCNK1, KCNK2, KCNMA1, KCNQ1, KIAA1614, KISS1, KL, KNCN, LAT2, LHFPL5, LMO7, LRP2, LRRC15, MAGI1, MAL, MAL2, MARVELD2, MFRP, MFSD4B, MGA, MGAM, MIP, MPDZ, MPP3, MREG, MSN, MTCL1, MTDH, MUC1, MUC13, MUC17, MUC20, MYO1A, MYO7A, NAALADL1, NAT1, NHERF1, NHERF2, NHERF4, NHS, NOD1, NOTCH1, NPC1L1, NRG1, OATP1, OCEL1, OCLN, OSMR, OTOA, OTOG, OXTR, P2RX2, P2RY1, P2RY4, P2RY6, PALM2AKAP2, PALS1, PAPPA2, PARD3, PARD3B, PARD6A, PARD6B, PARD6G, PASK, PATJ, PDE4D, PDGFRB, PDPN, PDZK1, PDZK1P1, PFKM, PKHD1, PLB1, PLD1, PLET1, PLPP1, PODXL, PRKAA1, PRKCI, PRKCZ, PRKG2, PROM1, PROM2, PTEN, PTH1R, PTPRH, PTPRO, PTPRQ, RAB17, RAB18, RAB27A, RAB27B, RAPGEF2, RAPGEF6, RDX, RFC1, RHCG, RIPOR2, S100G, SAPCD2, SCNN1A, SCNN1B, SCNN1G, SHANK2, SHROOM1, SHROOM2, SHROOM3, SHROOM4, SI, SIPA1L3, SIT1, SLC10A2, SLC11A2, SLC12A1, SLC12A2, SLC12A3, SLC13A1, SLC13A2, SLC14A2, SLC15A1, SLC15A2, SLC16A1, SLC16A2, SLC16A3, SLC16A8, SLC17A1, SLC17A2, SLC17A3, SLC17A4, SLC19A1, SLC1A1, SLC20A2, SLC22A1, SLC22A11, SLC22A12, SLC22A13, SLC22A18, SLC22A2, SLC22A3, SLC22A4, SLC22A5, SLC22A7, SLC22A8, SLC23A1, SLC23A2, SLC24A4, SLC26A11, SLC26A2, SLC26A3, SLC26A4, SLC26A6, SLC26A7, SLC26A9, SLC28A1, SLC29A1, SLC29A2, SLC29A4, SLC2A1, SLC2A13, SLC2A2, SLC2A5, SLC2A7, SLC2A9, SLC30A5, SLC31A1, SLC34A1, SLC34A2, SLC34A3, SLC36A1, SLC38A3, SLC39A10, SLC39A14, SLC39A3, SLC39A4, SLC39A6, SLC39A8, SLC3A1, SLC3A2, SLC43A1, SLC44A4, SLC46A1, SLC47A1, SLC47A2, SLC4A10, SLC4A11, SLC4A2, SLC4A5, SLC4A7, SLC4A8, SLC52A3, SLC5A1, SLC5A10, SLC5A11, SLC5A12, SLC5A2, SLC5A3, SLC5A6, SLC5A8, SLC6A14, SLC6A18, SLC6A19, SLC6A20, SLC6A6, SLC6A8, SLC6A9, SLC7A1, SLC7A13, SLC7A5, SLC7A8, SLC7A9, SLC9A1, SLC9A2, SLC9A3, SLC9A4, SLC9A8, SLC9B2, SLCO1A2, SLCO2B1, SLCO3A1, SORBS2, SPEF1, SPTBN2, STC1, STK26, STK39, STX3, STXBP3, TCIRG1, TEK, TEP1, TF, THY1, TJP1, TKT, TLR9, TMEM114, TMEM174, TMEM235, TMEM30A, TNIK, TRPM6, TRPV4, TRPV5, UMOD, UPK2, USH2A, VANGL2, ZMYND10

(+)-4,11-Eudesmadien-3-one

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-1,4a-dimethyl-7-(1-methylethenyl)-, (4aS-cis)-

C15H22O (218.1671)


(+)-4,11-Eudesmadien-3-one is found in root vegetables. (+)-4,11-Eudesmadien-3-one is a constituent of Cyperus rotundus (nutgrass). alpha-Cyperone is a natural product found in Cyperus alopecuroides, Cyperus articulatus, and other organisms with data available. Constituent of Cyperus rotundus (nutgrass). (+)-4,11-Eudesmadien-3-one is found in root vegetables.

   

Fucitol

Rel-(2R,3S,4R,5S)-hexane-1,2,3,4,5-pentaol

C6H14O5 (166.0841)


L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].

   

Veratrole_alcohol

3,4-dimethoxy-benzenemethano;3,4-dimethoxy-Benzenemethanol;(3,4-Dimethoxyphenyl)methanol

C9H12O3 (168.0786)


(3,4-dimethoxyphenyl)methanol is a member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. It has a role as a fungal metabolite. It is a member of benzyl alcohols, a primary alcohol and a dimethoxybenzene. 3,4-Dimethoxybenzyl alcohol is a natural product found in Croton lechleri and Cucurbita pepo with data available. A member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2]. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2].

   

(S)-4',5,7-Trihydroxy-6-prenylflavanone

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. (S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops). Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

Euscaphic acid

(1R,2R,4aS,6aS,6bR,8aR,10S,11R,12aR,12bR,14bS)-1,10,11-trihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Euscaphic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a triol. It derives from a hydride of an ursane. Euscaphic acid is a natural product found in Ternstroemia gymnanthera, Rhaphiolepis deflexa, and other organisms with data available. A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. Euscaphic acid is found in herbs and spices. Euscaphic acid is a constituent of Coleus amboinicus (Cuban oregano). Constituent of Coleus amboinicus (Cuban oregano). Euscaphic acid is found in loquat and herbs and spices. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2]. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2].

   

Bruceantin

methyl (1R,2S,3R,6R,8R,13S,14R,15R,16S,17S)-3-[(E)-3,4-dimethylpent-2-enoyl]oxy-10,15,16-trihydroxy-9,13-dimethyl-4,11-dioxo-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-9-ene-17-carboxylate

C28H36O11 (548.2258)


Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.

   

Procyanidin C1

(2R,3R,4S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C45H38O18 (866.2058)


Procyanidin C1 is a proanthocyanidin consisting of three (-)-epicatechin units joined by two successive (4beta->8)-linkages. It has a role as a metabolite, an anti-inflammatory agent, an antioxidant, a lipoxygenase inhibitor, an EC 1.17.3.2 (xanthine oxidase) inhibitor and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a hydroxyflavan, a proanthocyanidin and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin C1 is a natural product found in Campylotropis hirtella, Cinnamomum verum, and other organisms with data available. See also: Maritime Pine (part of). Procyanidin C1 is found in apple. Proanthocyanidin C1 is a B type proanthocyanidin. It is an epicatechin trimer found in grape (Vitis vinifera). (Wikipedia). Proanthocyanidin C1 is a B type proanthocyanidin. It is an epicatechin trimer found in grape (Vitis vinifera). [Wikipedia] A proanthocyanidin consisting of three (-)-epicatechin units joined by two successive (4beta->8)-linkages. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2]. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2].

   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol, also known as 4,5-dihydroxy-3,6,7-trimethoxy-flavone or anisomelin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsilineol is considered to be a flavonoid lipid molecule. Cirsilineol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsilineol can be found in a number of food items such as common thyme, tarragon, common sage, and hyssop, which makes cirsilineol a potential biomarker for the consumption of these food products. Cirsilineol is a bioactive flavone isolated from Artemisia and from Teucrium gnaphalodes . Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of).

   

MOROL

(3S,4aR,6aR,6bR,8aR,12bR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12b,13,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Germanicol is a pentacyclic triterpenoid that is oleanane substituted by a hydroxy group at the 3beta-position and with a double bond between positioins 18 and 19. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. Germanicol is a natural product found in Barringtonia racemosa, Euphorbia nicaeensis, and other organisms with data available.

   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin belongs to the class of organic compounds known as furopyrans. These are organic polycyclic compounds containing a furan ring fused to a pyran ring. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Pyran a six-membered heterocyclic, non-aromatic ring, made up of five carbon atoms and one oxygen atom and containing two double bonds. Picrotoxinin is soluble (in water) and a very weakly acidic compound (based on its pKa). D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

Anabasine

1-[(tert-butyl)oxycarbonyl]-4-phenylpyrroline-3-carboxylicacid

C10H14N2 (162.1157)


Anabasine is a pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. It has a role as a plant metabolite, a teratogenic agent and a nicotinic acetylcholine receptor agonist. It is a piperidine alkaloid and a pyridine alkaloid. Anabasine is a natural product found in Nicotiana, Nicotiana tabacum, and Anabasis aphylla with data available. Anabasine is a nicotine analog that is an alkaloid found in tree tobacco (Nicotiana glauca) and is comprised of a pyridine substituted by a piperidin-2-yl group at position 3. Anabasine has been used as an industrial insecticide and, since it is present in trace amounts in tobacco smoke, its detection in urine can be used as an indicator of exposure to tobacco smoke. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a pyridine alkaloid found in the stem of the (Nicotiana glauca) plant, a close relative of (Nicotiana tabacum) the common tobacco plant. Anabasine is a metabolite of nicotine which can be used as an indicator of a persons exposure to tobbacco smoke. A piperidine botanical insecticide. A piperidine botanical insecticide. Anabasine is a pyridine and piperidine alkaloid found in the Tree Tobacco (Nicotiana glauca) plant, a close relative of the common tobacco plant (Nicotiana tabacum). It is a structural isomer of, and chemically similar to, nicotine. Its principal (historical) industrial use is as an insecticide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. A pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals (±) Anabasine is a biphasic muscle relaxant. (±) Anabasine is a biphasic muscle relaxant. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2]. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2].

   

Ayanin

4H-1-BENZOPYRAN-4-ONE, 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-3,7-DIMETHOXY-

C18H16O7 (344.0896)


3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.

   

Paeoniflorigenone

[(2S,3aR,5R,7aS,8S)-3a-hydroxy-7a-methyl-6-oxohexahydro-2H-2,5-methano-1,3-benzodioxol-8-yl]methyl benzoate

C17H18O6 (318.1103)


A natural product found in Paeonia rockii subspeciesrockii. Paeoniflorigenone is a terpenoid with formula C17H18O6, isolated from several species of Paeoniae. It has a role as a neuromuscular agent and a plant metabolite. It is a benzoate ester, a monoterpenoid, a cyclic acetal, an alicyclic ketone, a bridged compound and a lactol. [(1S,3S,6R,8R,10S)-8-hydroxy-3-methyl-5-oxo-2,9-dioxatricyclo[4.3.1.03,8]decan-10-yl]methyl benzoate is a natural product found in Paeonia lactiflora, Paeonia clusii, and other organisms with data available. A terpenoid with formula C17H18O6, isolated from several species of Paeoniae.

   

Trispherine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available.

   

Tropine

InChI=1/C8H15NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-8,10H,2-5H2,1H

C8H15NO (141.1154)


Pseudotropine is a natural product found in Atropa belladonna and Datura stramonium with data available. KEIO_ID T024 Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

Cuminyl alcohol

InChI=1/C10H14O/c1-8(2)10-5-3-9(7-11)4-6-10/h3-6,8,11H,7H2,1-2H3

C10H14O (150.1045)


Cuminol or Cuminyl alcohol, also known as p-cumin-7-ol or 4-Isopropylbenzyl alcohol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Cuminol is an extremely weak basic (essentially neutral) compound (based on its pKa). Cuminol is an alcohol derivative of p-Cymene. It exists as a clear, colorless liquid that is poorly soluble in water. Cuminol can be used as a food additive or as a cosmetic fragrance. It has a cumin, caraway or spicy, herbal aroma and a similar spicy, herbal or peppery taste. Cuminol is found naturally in a number of plants, spices and foods including cumin seed and cumin oils, caraway eucalyptus oils, thyme, sunflowers, tuermeric, guava fruit and other spices and essential oils. Cumin, a widely used spice, is known to have anti-diabetic properties and two of its phytochemicals: cuminol and cuminaldehyde appear to be among the most active components. Cuminol is a potent insulinotrophic molecule that can enhance insulin secretion by up to 4-fold (in rat islet cells) (PMID:23507295 ). It also exhibits strong beta-cell protective action (PMID:23507295 ). 4-isopropylbenzyl alcohol is a member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. It has a role as a fragrance, an insect repellent, a volatile oil component, a plant metabolite and a xenobiotic metabolite. It is a p-menthane monoterpenoid and a member of benzyl alcohols. It is functionally related to a p-cymene. 4-Isopropylbenzyl alcohol is a natural product found in Xylopia aromatica, Curcuma amada, and other organisms with data available. Flavouring ingredient. Isolated from oils of Cuminum cyminum (cumin). Cuminyl alcohol is found in many foods, some of which are sweet bay, sunflower, cumin, and herbs and spices. A member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

Retronecine

InChI=1/C8H13NO2/c10-5-6-1-3-9-4-2-7(11)8(6)9/h1,7-8,10-11H,2-5H2/t7-,8-/m1/s

C8H13NO2 (155.0946)


Retronecine is a member of pyrrolizines. Retronecine is a natural product found in Senecio nebrodensis, Lappula spinocarpos, and other organisms with data available. Retronecine is a pyrrolizidine alkaloid found in a variety of plants in the genera Senecio and Crotalaria, and the family Boraginaceae. It is the most common central core for other pyrrolizidine alkaloids. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids

   

Cinnamtannin A2

(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-4-[(2R,3R,4S)-2-(3,4-dihydroxyphenyl)-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C60H50O24 (1154.2692)


Cinnamtannin A2 is a proanthocyanidin isolated from Cinnamomum cassia. It has a role as a plant metabolite. Cinnamtannin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. Isolated from Cinnamomum cassia (Chinese cinnamon). Cinnamtannin A2 is found in many foods, some of which are cocoa bean, chinese cinnamon, chocolate, and herbs and spices. Cinnamtannin A2 is found in chinese cinnamon. Cinnamtannin A2 is isolated from Cinnamomum cassia (Chinese cinnamon). A proanthocyanidin isolated from Cinnamomum cassia.

   

1-Hydroxyanthraquinone

1-hydroxy-9,10-dihydroanthracene-9,10-dione

C14H8O3 (224.0473)


CONFIDENCE standard compound; INTERNAL_ID 8284 CONFIDENCE standard compound; INTERNAL_ID 25 D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

Tropate

Tropicamide impurity C, European Pharmacopoeia (EP) Reference Standard

C9H10O3 (166.063)


Tropic acid is a 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. It has a role as a human xenobiotic metabolite. It is functionally related to a propionic acid and a hydratropic acid. It is a conjugate acid of a tropate. Tropic acid is a natural product found in Hyoscyamus muticus, Datura stramonium, and other organisms with data available. Tropic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Tropate, also known as Tropic acid or alpha-(Hydroxymethyl)phenylacetic acid, is classified as a beta hydroxy acid or a Beta hydroxy acid derivative. Beta hydroxy acids are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Tropate is considered to be soluble in water and acidic. Tropate can be synthesized from hydratropic acid and propionic acid. Tropate can be synthesized into tropan-3alpha-yl 3-hydroxy-2-phenylpropanoate A 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. KEIO_ID T059 Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1]. Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1].

   

(-)-Limonene

(S)-(-)-Limonene, purum, >=95.0\\% (sum of enantiomers, GC)

C10H16 (136.1252)


Limonene is a monoterpene with a clear colourless liquid at room temperature, a naturally occurring chemical which is the major component in oil of oranges. Limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Limonene is a botanical (plant-derived) solvent of low toxicity. Mild skin irritation may occur from exposure to limonene and oxidation products of limonene may produce dermal sensitization, and may have irritative and bronchoconstrictive airway effects; however, data are scant and more studies are required. Limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Limonene is one of the active components of dietary phytochemicals that appears to be protective against cancer (PMID:16563357, 15499193, 15325315, 2024047). (4S)-limonene is an optically active form of limonene having (4S)-configuration. It is an enantiomer of a (4R)-limonene. (-)-Limonene is a natural product found in Poiretia latifolia, Kippistia suaedifolia, and other organisms with data available. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Spearmint Oil (part of). An optically active form of limonene having (4S)-configuration. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

DIMETHACHLOR

DIMETHACHLOR

C13H18ClNO2 (255.1026)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 707 CONFIDENCE standard compound; INTERNAL_ID 8395 CONFIDENCE standard compound; INTERNAL_ID 3390

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

propachlor

propachlor

C11H14ClNO (211.0764)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 708 CONFIDENCE standard compound; INTERNAL_ID 3622 CONFIDENCE standard compound; INTERNAL_ID 8397

   

4-Hydroxyindole

4-Hydroxyindole

C8H7NO (133.0528)


   

5-Aminopentanoic acid

5-Aminovaleric acid hydrochloride

C5H11NO2 (117.079)


5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386). 5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB] 5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

N-Acetyl-L-phenylalanine

N-Acetylphenylalanine, (D,L)-isomer, 3H-labeled

C11H13NO3 (207.0895)


N-Acetyl-L-phenylalanine or N-Acetylphenylalanine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyl-L-phenylalanine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-phenylalanine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-phenylalanine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylphenylalanine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free phenylalanine can also occur. In particular, N-Acetyl-L-phenylalanine can be biosynthesized from L-phenylalanine and acetyl-CoA by the enzyme phenylalanine N-acetyltransferase (EC 2.3.1.53). N-Acetyl-L-phenylalanine is a potential uremic toxin and is considered as a hazardous amphipathic metabolite of phenylalanine (PMID: 4038506). Many N-acetylamino acids, including N-acetylphenylalanine, are classified as uremic toxins (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-phenylalanine appears in large amount in urine of patients with phenylketonuria (PKU), which is a human genetic disorder due to the lack of phenylalanine hydroxylase, the enzyme necessary to metabolize phenylalanine to tyrosine (PMID: 3473611). N-Acetyl-L-phenylalanine is a product of enzyme phenylalanine N-acetyltransferase [EC 2.3.1.53] which is found in the phenylalanine metabolism pathway. N-Acetyl-L-phenylalanine is produced for medical, feed, and nutritional applications such as in the preparation of aspartame. Afalanine (N-Acetyl-DL-phenylalanine) is also approved for use as an antidepressant. Acetylphenylalanine is a hazardous amphipathic metabolite of phenylalanine. It appears in large amount in urine of patients with phenylketonuria which is a human genetic disorder due to the lack of phenylalanine hydroxylase, the enzyme necessary to metabolize phenylalanine to tyrosine. Acetylphenylalanine is a product of enzyme phenylalanine N-acetyltransferase [EC 2.3.1.53] in the pathway phenylalanine metabolism. (KEGG; Wikipedia) [HMDB] N-Acetyl-L-phenylalanine (N-Acetylphenylalanine), the principal acylamino acid in Escherichia coli, is synthesized from L-phenylalanine and acetyl-CoA[1].

   

N-Acetylhistamine

N-(2-(1H-Imidazol-4-yl)ethyl)acetamide (acd/name 4.0)

C7H11N3O (153.0902)


N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

Asparagine

(2S)-2-Amino-3-carbamoylpropanoic acid

C4H8N2O3 (132.0535)


Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.

   

dADP

[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O9P2 (411.0345)


Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945) [HMDB]. dADP is found in many foods, some of which are medlar, oil palm, greenthread tea, and green vegetables. Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ST 24:4;O5

1beta,3beta,14beta-trihydroxy-5beta-bufa-20,22-dienolide

C24H34O5 (402.2406)


C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693

   

Prostaglandin B1

7-{2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}heptanoic acid

C20H32O4 (336.23)


Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).

   

N4-Acetylsulfamethoxazole

N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}ethanimidic acid

C12H13N3O4S (295.0627)


N4-Acetylsulfamethoxazole is a metabolite of the sulfonamide bacteriostatic antibiotic sulfamethoxazole. Sulfamethoxazole is metabolized via acetylation catalyzed by liver extramitochondrial N-acetyl transferases. Acetylsulfamethoxazole is excreted in urine. Acetylsulfamethoxazole and sulfamethoxazole can be used as a probe for the molecular percentage enrichment of liver extramitochondrial acetyl-CoA. N4-Acetylsulfamethoxazole can be used as a reference for measuring sulfamethoxazole impurities and waste determination (PMID: 15307787). It is one of the critical aspects of urine and stone analysis (PMID: 3811034) and its quantitative determination in body fluids could be performed by reversed-phase high-performance liquid chromatography, a rapid, precise and simple procedure (PMID: 6668314). It is also reported the renal excretion rate of the metabolite N4-acetylsulfamethoxazole is not dependent on the urinary pH (PMID: 670346). N4-Acetylsulfamethoxazole is only found in individuals who have consumed the drug sulfamethoxazole. D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 299

   

Tetrachlorvinphos

2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate

C10H9Cl4O4P (363.8993)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9564; ORIGINAL_PRECURSOR_SCAN_NO 9561 ORIGINAL_PRECURSOR_SCAN_NO 9569; CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9637; ORIGINAL_PRECURSOR_SCAN_NO 9633 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9615; ORIGINAL_PRECURSOR_SCAN_NO 9613 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9571; ORIGINAL_PRECURSOR_SCAN_NO 9569 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9608; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 497; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9519

   

2'-Deoxyuridine 5'-monophosphate disodium salt

{[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O8P (308.041)


Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide. It belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. dUMP exists in all living species, ranging from bacteria to humans. Within humans, dUMP participates in a number of enzymatic reactions. In particular, dUMP can be biosynthesized from dCMP through its interaction with the enzyme deoxycytidylate deaminase. In addition, dUMP can be biosynthesized from deoxyuridine; which is mediated by the enzyme thymidine kinase, cytosolic. In humans, dUMP is involved in pyrimidine metabolism. A pyrimidine 2-deoxyribonucleoside 5-monophosphate having uracil as the nucleobase. Outside of the human body, dUMP has been detected, but not quantified in several different foods, such as breadnut tree seeds, sea-buckthornberries, sour cherries, black walnuts, and common oregano. dUMP is formed by the reduction of ribonucleotides to deoxyribonucleotides by ribonucleoside diphosphate reductase [EC 1.17.4.1]. dUMP by the action of by thymidylate synthetase [EC 2.1.1.45] produces dTMP (5,10-Methylene-5,6,7,8-tetrahydrofolate is a cofactor for the reaction). The nuclear form of uracil-DNA glycosylase (UNG2), that its major role is to remove misincorporated dUMP residues (cells deficient in removal of misincorporated dUMP accumulate uracil residues). (PMID 11554311) [HMDB]. dUMP is found in many foods, some of which are ginger, evergreen huckleberry, vanilla, and common walnut. dUMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=964-26-1 (retrieved 2024-07-15) (CAS RN: 964-26-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

dGDP

[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis . [HMDB]. dGDP is found in many foods, some of which are tea, black chokeberry, european plum, and roman camomile. dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis (Wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

4-Methylbenzoic acid

4-Toluic acid, potassium salt

C8H8O2 (136.0524)


4-Methylbenzoic acid is found in brassicas. 4-Methylbenzoic acid is isolated from horseradis KEIO_ID M017 p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

dIMP

[(2R,3S,4R,5R)-3-Hydroxy-5-(6-hydroxy-9H-purin-9-yl)tetrahydrofuran-2-yl]methyl dihydrogen phosphate

C10H13N4O7P (332.0522)


dIMP is a deoxyribonucleoside and is considered a derivative of the nucleoside inosine, differing from the latter by the replacement of a hydroxyl group (-OH) by hydrogen (-H) at the 2 position of its ribose sugar moiety. The hydrolytic deamination of dAMP residues in DNA yields dIMP residues. The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it can pair not only with thymine but also with cytosine and therefore would result in A-T to G-C transitions after DNA replication. Hypoxanthine DNA glycosylase (EC 3.2.2.15) excises hypoxanthine from DNA containing dIMP residues in mammalian cells. (PMID: 10684927, 8016081) [HMDB] dIMP is a deoxyribonucleoside and is considered a derivative of the nucleoside inosine, differing from the latter by the replacement of a hydroxyl group (-OH) by hydrogen (-H) at the 2 position of its ribose sugar moiety. The hydrolytic deamination of dAMP residues in DNA yields dIMP residues. The deamination of adenine residues in DNA generates hypoxanthine, which is mutagenic since it can pair not only with thymine but also with cytosine and therefore would result in A-T to G-C transitions after DNA replication. Hypoxanthine DNA glycosylase (EC 3.2.2.15) excises hypoxanthine from DNA containing dIMP residues in mammalian cells. (PMID: 10684927, 8016081). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Fentrazamide

4-(2-chlorophenyl)-N-cyclohexyl-N-ethyl-5-oxo-4,5-dihydro-1H-1,2,3,4-tetrazole-1-carboxamide

C16H20ClN5O2 (349.1305)


   

alpha-D-Glucose 1,6-bisphosphate

{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[(phosphonooxy)methyl]oxan-2-yl]oxy}phosphonic acid

C6H14O12P2 (339.9961)


Glucose 1,6-diphosphate (G-1,6-P2) is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6-P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induces a rapid fall in the content of G-l,6-P2 in the brain. Glucose 1,6-diphosphate has been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice, a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Chronic alcohol intake produces an increase in the concentration of G 1,6-P2 in human muscle before the first sign of myopathy appears. When myopathy is present the level decreases to be similar to healthy humans. These changes could contribute to the decline in skeletal muscle performance (PMID:1449560, 2018547, 2003594, 3407759). Glucose 1,6-diphosphate is considered to be a major regulator of carbohydrate metabolism. It has been demonstrated that G-1,6-P2 is a potent activator (deinhibitor) of skeletal muscle phosphofructokinase (PFK) and phosphoglucomutase, while being an inhibitor of hexokinase (see Ref. 2). In addition, G-1,6 P2 has been shown to inhibit 6-phosphogluconate dehydrogenase in various rat tissues and fructose 1,6-bisphosphatase in bovine liver. Various factors and conditions affect the tissue content of G-1,6-P2. Specifically, anoxia induce a rapid fall in the content of G-l,6-P2 in brain. Glucose 1,6-diphosphate (G 1,6-P2 )have been recognized as a regulatory signal implicated in the control of metabolism, oxygen affinity of red cells and other cellular functions. The levels of G 1,6-P2 are reduced in the liver and in the muscle of rats with experimentally induced diabetes. In muscle of genetically dystrophic mice a decrease in the levels of G 1,6-P2 has been found, probably resulting from enhancement of glucose 1,6-P2 phosphatase activity. G 1,6-P2 is an inhibitor of hexokinase and its level is increased significantly after 5 min of exercise (~ 25\\%) and then decreased continuously. G 1,6-P2 is a potent allosteric activator of phosphofructokinase, and is markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Fumonisin B2

2-[2-({19-amino-6-[(3,4-dicarboxybutanoyl)oxy]-16,18-dihydroxy-5,9-dimethylicosan-7-yl}oxy)-2-oxoethyl]butanedioic acid

C34H59NO14 (705.3935)


Fumonisin B2 is from Fusarium moniliforme Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Fusarium moniliforme. It is a structural analog of fumonisin B1. Fumonisin B2 is more cytotoxic than fumonisin B1. Fumonisin B2 inhibits sphingosine acyltransferase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens From Fusarium moniliforme

   

Bensultap

Thiobenzenesulphonic acid S,s-(2-(dimethylamino)trimethylene) ester

C17H21NO4S4 (431.0353)


   

Carbosulfan

2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl N-[(dibutylamino)sulfanyl]-N-methylcarbamate

C20H32N2O3S (380.2134)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Fluridone

1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-1,4-dihydropyridin-4-one

C19H14F3NO (329.1027)


CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8814; ORIGINAL_PRECURSOR_SCAN_NO 8813 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8806; ORIGINAL_PRECURSOR_SCAN_NO 8805 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8777; ORIGINAL_PRECURSOR_SCAN_NO 8775 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8811; ORIGINAL_PRECURSOR_SCAN_NO 8810 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8752; ORIGINAL_PRECURSOR_SCAN_NO 8747 CONFIDENCE standard compound; INTERNAL_ID 704; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8718; ORIGINAL_PRECURSOR_SCAN_NO 8717 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Mycobutin

72559-06-9

C46H62N4O11 (846.4415)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Ekalux

Diethoxy-quinoxalin-2-yloxy-sulphanylidene-$l^{5}-phosphane

C12H15N2O3PS (298.0541)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

nalorphine

nalorphine

C19H21NO3 (311.1521)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Oxyfluorfen

4-[2-chloro-4-(trifluoromethyl)phenoxy]-2-ethoxy-1-nitrobenzene

C15H11ClF3NO4 (361.0329)


   

Nilutamide

5,5-Dimethyl-3-(4-nitro-3-(trifluoromethyl)phenyl)- 2,4-imidazolidinedione

C12H10F3N3O4 (317.0623)


Nilutamide is an antineoplastic hormonal agent primarily used in the treatment of prostate cancer. Nilutamide is a pure, nonsteroidal anti-androgen with affinity for androgen receptors (but not for progestogen, estrogen, or glucocorticoid receptors). Consequently, Nilutamide blocks the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. Prostate cancer is mostly androgen-dependent and can be treated with surgical or chemical castration. To date, antiandrogen monotherapy has not consistently been shown to be equivalent to castration. CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4399; ORIGINAL_PRECURSOR_SCAN_NO 4395 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4426; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4395; ORIGINAL_PRECURSOR_SCAN_NO 4393 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4406; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4403; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4490; ORIGINAL_PRECURSOR_SCAN_NO 4487 L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents

   

Undecanoic acid

1-Decanecarboxylic acid

C11H22O2 (186.162)


Undecanoic acid, also known as N-undecylic acid or N-undecanoate, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanoic acid is a potentially toxic compound. Undecylic acid (systematically named undecanoic acid) is a flavouring ingredient. It is a naturally-occurring carboxylic acid with chemical formula CH3(CH2)9COOH (Wikipedia). Undecanoic acid is found in many foods, some of which are coconut, fruits, fats and oils, and rice. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Triflumizole

Pesticide6_Triflumizole_C15H15ClF3N3O_4-Chloro-N-[(1E)-1-(1H-imidazol-1-yl)-2-propoxyethylidene]-2-(trifluoromethyl)benzenamine

C15H15ClF3N3O (345.0856)


CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4745; ORIGINAL_PRECURSOR_SCAN_NO 4742 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4719; ORIGINAL_PRECURSOR_SCAN_NO 4717 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4736; ORIGINAL_PRECURSOR_SCAN_NO 4734 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4793; ORIGINAL_PRECURSOR_SCAN_NO 4791 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4768; ORIGINAL_PRECURSOR_SCAN_NO 4766 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4866; ORIGINAL_PRECURSOR_SCAN_NO 4864 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9932; ORIGINAL_PRECURSOR_SCAN_NO 9930 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9966; ORIGINAL_PRECURSOR_SCAN_NO 9964 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9898; ORIGINAL_PRECURSOR_SCAN_NO 9896 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9932; ORIGINAL_PRECURSOR_SCAN_NO 9927 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9953; ORIGINAL_PRECURSOR_SCAN_NO 9952 CONFIDENCE standard compound; INTERNAL_ID 1088; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9950; ORIGINAL_PRECURSOR_SCAN_NO 9949

   

Carboxin

2-methyl-N-phenyl-5,6-dihydro-1,4-oxathiine-3-carboxamide

C12H13NO2S (235.0667)


CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8169 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8163; ORIGINAL_PRECURSOR_SCAN_NO 8162 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8129; ORIGINAL_PRECURSOR_SCAN_NO 8127 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8224; ORIGINAL_PRECURSOR_SCAN_NO 8222 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8211; ORIGINAL_PRECURSOR_SCAN_NO 8210 CONFIDENCE standard compound; INTERNAL_ID 456; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8221; ORIGINAL_PRECURSOR_SCAN_NO 8218 D016573 - Agrochemicals D010575 - Pesticides Carboxin (Carboxine) is a systemic agricultural fungicide and seed protectant.

   

Trichloromethylthio-1,2,5,6-tetrahydrophthalamide

2-[(trichloromethyl)sulfanyl]-2,3,3a,4,7,7a-hexahydro-1H-isoindole-1,3-dione

C9H8Cl3NO2S (298.9341)


D016573 - Agrochemicals D010575 - Pesticides

   

Fludrocortisone acetate

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; INTERNAL_ID 2101 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Metaxalone

5-(3,5-dimethylphenoxymethyl)-1,3-oxazolidin-2-one

C12H15NO3 (221.1052)


Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. Its exact mechanism of action is not known, but it may be due to general central nervous system depression. It is considered to be a moderately strong muscle relaxant, with relatively low incidence of side effects. Skelaxin comes in an 800 mg scored tablet. It previously came in both 400 mg and 800 mg tablets. The 400 mg tablet has been discontinued. Possible side effects include nausea, vomiting, drowsiness and CNS side effects such as dizziness, headache, and irritability. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3127

   

Metconazole

Pesticide6_Metconazole_C17H22ClN3O_5-(4-Chlorophenylmethyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol

C17H22ClN3O (319.1451)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3171 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9898; ORIGINAL_PRECURSOR_SCAN_NO 9895 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9890; ORIGINAL_PRECURSOR_SCAN_NO 9888 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9838; ORIGINAL_PRECURSOR_SCAN_NO 9837 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9910; ORIGINAL_PRECURSOR_SCAN_NO 9909 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9790; ORIGINAL_PRECURSOR_SCAN_NO 9789 CONFIDENCE standard compound; INTERNAL_ID 589; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9852; ORIGINAL_PRECURSOR_SCAN_NO 9851 CONFIDENCE standard compound; INTERNAL_ID 8446 CONFIDENCE standard compound; INTERNAL_ID 2583

   

Robinetin

4H-1-Benzopyran-4-one, 3,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O7 (302.0427)


Robinetin is a pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. It has a role as a plant metabolite. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Robinetin is a natural product found in Acacia mearnsii, Intsia bijuga, and other organisms with data available. A pentahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 7, 3, 4 and 5. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5]. Robinetin (3,3',4',5',7-Pentahydroxyflavone), a naturally occurring flavonoid with remarkable ‘two color’ intrinsic fluorescence properties, has antifungal, antiviral, antibacterial, antimutagenesis, and antioxidant activity. Robinetin also can inhibit lipid peroxidation and protein glycosylation[1][2][3][4][5].

   

Roseoflavin

8-Dimethylaminoriboflavin

C18H23N5O6 (405.1648)


A benzopteridine that is riboflavin in which the methyl group at position 8 is substituted by a dimethylamino group.

   

Trilostane

(1S,2R,6R,8S,11S,12S,15S,16S)-5,15-dihydroxy-2,16-dimethyl-7-oxapentacyclo[9.7.0.0²,⁸.0⁶,⁸.0¹²,¹⁶]octadec-4-ene-4-carbonitrile

C20H27NO3 (329.1991)


Trilostane is only found in individuals that have used or taken this drug. It is an inhibitor of 3 beta-hydroxysteroid dehydrogenase used in the treatment of Cushings syndrome. It was withdrawn from the United States market in April 1994. [Wikipedia]Trilostane produces suppression of the adrenal cortex by inhibiting enzymatic conversion of steroids by 3-beta-hydroxysteroid dehydrogenase/delta 5,4 ketosteroid isomerase, thus blocking synthesis of adrenal steroids. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02C - Antiadrenal preparations > H02CA - Anticorticosteroids C471 - Enzyme Inhibitor > C54678 - Hydroxysteroid Dehydrogenase Inhibitor > C2184 - 3-Hydroxysteroid Dehydrogenase Inhibitor C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C2355 - Anti-Adrenal D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Same as: D01180

   

2-Hydroxymyristic acid

alpha-Hydroxy-N-tetradecylic acid

C14H28O3 (244.2038)


2-Hydroxymyristic acid is an analog of myristic acid that becomes metabolically activated in cells to form 2-hydroxymyristoyl-CoA, a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase, the enzyme that catalyzes protein N-myristoylation. Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. (PMID 8103677) [HMDB] 2-Hydroxymyristic acid is an analog of myristic acid that becomes metabolically activated in cells to form 2-hydroxymyristoyl-CoA, a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase, the enzyme that catalyzes protein N-myristoylation. Treatment of T cells with 2-hydroxymyristic acid inhibits the myristoylation and alters the stability of p56lck. (PMID 8103677).

   

Metycaine

Piperocaine

C16H23NO2 (261.1729)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Boldione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-diene-5,14-dione

C19H24O2 (284.1776)


Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993) [HMDB] Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993).

   

Tiamulin

Tiamulin

C28H47NO4S (493.3226)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06127 CONFIDENCE standard compound; INTERNAL_ID 1055

   

Levallorphan

(1R,9R,10R)-17-(prop-2-en-1-yl)-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C19H25NO (283.1936)


An opioid antagonist with properties similar to those of naloxone; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Methylphenobarbital

5-Ethyl-1-methyl-5-phenyl-2,4,6(1H,3H,5H)-pyrimidinetrione

C13H14N2O3 (246.1004)


Methylphenobarbital is only found in individuals that have used or taken this drug. It is a barbiturate that is metabolized to phenobarbital. It has been used for similar purposes, especially in epilepsy, but there is no evidence mephobarbital offers any advantage over phenobarbital. [PubChem]Methylphenobarbital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Pemoline

2-amino-5-phenyl-4,5-dihydro-1,3-oxazol-4-one

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Sekisanin

8H-[1,3]Dioxolo[6,7][2]benzopyrano[3,4-c]indol-6a(3H)-ol,4,4a,5,6-tetrahydro-3-methoxy-5-methyl-, (3S,4aS,6aS,13bS)-

C18H21NO5 (331.142)


   

Rubiadin

1,3-dihydroxy-2-methyl-9,10-dihydroanthracene-9,10-dione

C15H10O4 (254.0579)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

pilosine

Isopilosine

C16H18N2O3 (286.1317)


   

5a-Pregnane-3,20-dione

(1S,2S,7S,10R,11S,14S,15S)-14-acetyl-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-one

C21H32O2 (316.2402)


5a-Pregnane-3,20-dione is a biologically active 5-alpha-reduced metabolite of plasma progesterone. It is the immediate precursor of 5-alpha-pregnan-3-alpha-ol-20-one (allopregnanolone), a neuroactive steroid that binds with GABA(A) receptor. A biologically active 5-alpha-reduced metabolite of plasma progesterone. It is the immediate precursor of 5-alpha-pregnan-3-alpha-ol-20-one (allopregnanolone), a neuroactive steroid that binds with GABA(A) receptor. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.

   

1,3-Diaminopropane

Trimethylenediamine dihydrochloride

C3H10N2 (74.0844)


1,3-Diaminopropane, also known as DAP or trimethylenediamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing a primary aliphatic amine group. 1,3-Diaminopropane is a stable, flammable, and highly hygroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled, or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1,3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway. 1,3-Diaminopropane has been detected, but not quantified in, several different foods, such as cassava, shiitakes, oyster mushrooms, muscadine grapes, and cinnamons. This could make 1,3-diaminopropane a potential biomarker for the consumption of these foods. 1,3-Propanediamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=109-76-2 (retrieved 2024-07-09) (CAS RN: 109-76-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

1,6-di-O-Galloylglucose

[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(3,4,5-trihydroxybenzoyloxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C20H20O14 (484.0853)


1,6-di-o-galloylglucose, also known as 1-o,6-O-digalloyl-beta-D-glucose or dgg16 cpd, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). 1,6-di-o-galloylglucose is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 1,6-di-o-galloylglucose can be found in garden rhubarb, which makes 1,6-di-o-galloylglucose a potential biomarker for the consumption of this food product.

   

Penicillin V

(2S,5R,6R)-3,3-Dimethyl-7-oxo-6-[(phenoxyacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C16H18N2O5S (350.0936)


Penicillin V is narrow spectrum antibiotic used to treat mild to moderate infections caused by susceptible bacteria. It is a natural penicillin antibiotic that is administered orally. Penicillin V may also be used in some cases as prophylaxis against susceptible organisms. Natural penicillins are considered the drugs of choice for several infections caused by susceptible gram positive aerobic organisms, such as Streptococcus pneumoniae, groups A, B, C and G streptococci, nonenterococcal group D streptococci, viridans group streptococci, and non-penicillinase producing staphylococcus. Aminoglycosides may be added for synergy against group B streptococcus (S. agalactiae), S. viridans, and Enterococcus faecalis. The natural penicillins may also be used as first or second line agents against susceptible gram positive aerobic bacilli such as Bacillus anthracis, Corynebacterium diphtheriae, and Erysipelothrix rhusiopathiae. Natural penicillins have limited activity against gram negative organisms; however, they may be used in some cases to treat infections caused by Neisseria meningitidis and Pasteurella. They are not generally used to treat anaerobic infections. Resistance patterns, susceptibility and treatment guidelines vary across regions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Tetraphenylarsonium

Tetraphenylarsonium

C24H20As+ (383.0781)


   

Estriol-16-Glucuronide

(2S,3S,4S,5R,6R)-6-[[(8R,9S,13S,14S,16R,17R)-3,17-dihydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-16-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C24H32O9 (464.2046)


Estriol-16-glucuronide is a glucuronide derivative of the steroid estriol where the glucuronic acid is attached to the 16-hydroxyl group of Estriol. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. Estriol (also known as oestriol) is one of the three main estrogens produced by the human body. It is only produced in significant amounts during pregnancy as it is made by the placenta. [HMDB] Estriol-16-glucuronide is a glucuronide derivative of the steroid estriol where the glucuronic acid is attached to the 16-hydroxyl group of Estriol. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. Estriol (also known as oestriol) is one of the three main estrogens produced by the human body. It is only produced in significant amounts during pregnancy as it is made by the placenta. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

N-[4-[1-[2-(6-Methylpyridin-2-yl)ethyl]piperidine-4-carbonyl]phenyl]methanesulfonamide

N-[4-[1-[2-(6-Methylpyridin-2-yl)ethyl]piperidine-4-carbonyl]phenyl]methanesulphonamide

C21H27N3O3S (401.1773)


D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Norvaline

alpha -DL-Aminopentanoic acid

C5H11NO2 (117.079)


Norvaline is a non-proteinogenic branched-chain amino acid with the chemical formula C5H11NO2, isomeric with valine. It has previously been reported to be a natural component of an antifungal peptide of Bacillus subtilis. Norvaline and other modified branched chain amino acids have received attention in recent studies, as they appear to be incorporated in some recombinant proteins found in E. coli. This amino acid is often made synthetically. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.

   

TES (buffer)

N-Tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid [TES]

C6H15NO6S (229.062)


   

Hydroxypropionic acid

beta-Hydroxypropionic acid

C3H6O3 (90.0317)


3-Hydroxypropionic acid is a carboxylic acid. It is an intermediate in the breakdown of branched-chain amino acids and propionic acid from the gut. Typically it originates from propionyl-CoA and a defect in the enzyme propionyl carboxylase. This leads to a buildup in propionyl-CoA in the mitochondria.  Such a buildup can lead to a disruption of the esterified CoA:free CoA ratio and ultimately to mitochondrial toxicity. Detoxification of these metabolic end products occurs via the transfer of the propionyl moiety to carnitine-forming propionyl-carnitine, which is then transferred across the inner mitochondrial membrane. 3-Hydroxypropionic acid is then released as the free acid. As an industrial chemical, it is used in the production of various chemicals such as acrylates in industry. When present in sufficiently high levels, 3-hydroxypropionic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of hydroxypropionic acid are associated with many inborn errors of metabolism including biotinidase deficiency, malonic aciduria, methylmalonate semialdehyde dehydrogenase deficiency, methylmalonic aciduria, methylmalonic aciduria due to cobalamin-related disorders, and propionic acidemia. Hydroxypropionic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. Infants with acidosis have symptoms that include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. 3-Hydroxypropionic acid is also a microbial metabolite found in Escherichia, Klebsiella and Saccharomyces (PMID: 26360870).

   

Sinapyl alcohol

4-[(1E)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenol

C11H14O4 (210.0892)


Sinapyl alcohol is an organic compound derived from cinnamic acid. This phytochemical is one of the monolignols. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. Sinapyl alcohol is a precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenes and coumarins.[From Wiki].

   

Acenaphthene

1,2-dihydroacenaphthylene

C12H10 (154.0782)


   

Flurenol

Flurenol

C14H10O3 (226.063)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3094

   

3,5-Dinitrosalicylic acid

3,5-Dinitrosalicylic acid, monopotassium salt

C7H4N2O7 (228.0019)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates KEIO_ID D050

   

o-Fluorobenzoate

2-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


KEIO_ID F024

   

Vistamycin

ribostamycin

C17H34N4O10 (454.2275)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID R016

   

Taurolithocholate

2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO5S (483.3018)


Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257) [HMDB] Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents CONFIDENCE standard compound; INTERNAL_ID 61

   

Norspermidine

Initiating explosive iminobispropylamine (dot)

C6H17N3 (131.1422)


Norspermidine, also known as caldine or dipropylentriamin, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Norspermidine exists in all living organisms, ranging from bacteria to humans. Norspermidine has been detected, but not quantified, in several different foods, such as narrowleaf cattails, agaves, hickory nuts, sour cherries, and european chestnuts. Norspermidine is a polyamine of similar structure to the more common spermidine. While norspermidine has been found to occur naturally in some species of plants, bacteria, and algae, it is not known to be a natural product in humans as spermidine is. [HMDB]. Norspermidine is found in many foods, some of which are lentils, sweet bay, sea-buckthornberry, and lemon thyme. KEIO_ID B040

   

Epinine

4-[2-(Methylamino)ethyl]-1,2-benzenediol, 9ci

C9H13NO2 (167.0946)


Epinine, also known as deoxyepinephrine or deoxyadrenaline, is a member of the class of compounds known as catecholamines and derivatives. These compounds contain 4-(2-aminoethyl)pyrocatechol [4-(2-aminoethyl)benzene-1,2-diol] or a derivative thereof formed by substitution. Epinine exists as a solid, and is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Epinine is an alkaloid from Vicia faba and can be found in pulses. Epinine is a dopamine and epinephrine derivative. KEIO_ID E013

   

Tioconazole

1-{2-[(2-chlorothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}-1H-imidazole

C16H13Cl3N2OS (385.9814)


Tioconazole is an antifungal medication of the Imidazole class used to treat infections caused by a fungus or yeast. Tioconazole topical (skin) preparations are also available for ringworm, jock itch, athletes foot, and tinea versicolor or sun fungus. Tioconazole interacts with 14-alpha demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent KEIO_ID T123; [MS2] KO009265 KEIO_ID T123

   

trans-zeatin riboside

(2R,3R,4S,5R)-2-(6-{[(2E)-4-hydroxy-3-methylbut-2-en-1-yl]amino}-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C15H21N5O5 (351.1543)


Trans-zeatin riboside, also known as (E)-N-(4-hydroxy-3-methyl-2-butenyl)adenosine or 9-beta-D-ribofuranosyl-trans-zeatin, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Trans-zeatin riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Trans-zeatin riboside can be found in a number of food items such as winter squash, plains prickly pear, dill, and common buckwheat, which makes trans-zeatin riboside a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.

   

gibberellin A20

gibberellin A20

C19H24O5 (332.1624)


A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and development. Initially identified in Gibberella fujikuroi, it differs from gibberellin A1 in lacking an OH group at C-2 (gibbane numbering).

   

O-acetylhomoserine

O-Acetyl-L-homoserine hydrochloride

C6H11NO4 (161.0688)


Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas) Acquisition and generation of the data is financially supported in part by CREST/JST. Found in green tissues of pea (Pisum sativum)

   

2-Oxovaleric acid

2-Ketopentanoic acid, sodium salt

C5H8O3 (116.0473)


2-Oxovaleric acid is an alpha-ketoacid is a metabolite usually found in human biofluids. Ketoacids have been known to play an important part in the metabolism of valine, leucine, isoleucine. 2-Oxovaleric acid presence has been determined in human blood serum and urine in numerous scientific documents, although its origin remains unclear. (PMID: 11482739, 9869358, 3235498). Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Trigonella caerulea (sweet trefoil) 2-Oxovaleric acid is a keto acid that is found in human blood.

   

4-Octylphenol

1-(p-Hydroxyphenyl)octane

C14H22O (206.1671)


CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4924; ORIGINAL_PRECURSOR_SCAN_NO 4922 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4929; ORIGINAL_PRECURSOR_SCAN_NO 4926 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5507; ORIGINAL_PRECURSOR_SCAN_NO 5506 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5486; ORIGINAL_PRECURSOR_SCAN_NO 5483 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4941; ORIGINAL_PRECURSOR_SCAN_NO 4939 CONFIDENCE standard compound; INTERNAL_ID 938; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5519; ORIGINAL_PRECURSOR_SCAN_NO 5518 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

Lufenuron

1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-[(2,6-difluorophenyl)(hydroxy)methylidene]urea

C17H8Cl2F8N2O3 (509.9784)


CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4912; ORIGINAL_PRECURSOR_SCAN_NO 4910 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4941; ORIGINAL_PRECURSOR_SCAN_NO 4937 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4954; ORIGINAL_PRECURSOR_SCAN_NO 4953 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4964; ORIGINAL_PRECURSOR_SCAN_NO 4962 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4913; ORIGINAL_PRECURSOR_SCAN_NO 4912 CONFIDENCE standard compound; INTERNAL_ID 195; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4945; ORIGINAL_PRECURSOR_SCAN_NO 4943 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

6-Aminopenicillanic acid

(2S,5R,6R)-6-Amino-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C8H12N2O3S (216.0569)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams 6-Aminopenicillanic acid is a metabolite of penicillin v; penicillin g.

   

Benzyl benzoate

Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material

C14H12O2 (212.0837)


Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body. Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties. Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available. See also: ... View More ... P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01138 Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Lecanoricacid

4-(2,4-dihydroxy-6-methylbenzoyl)oxy-2-hydroxy-6-methylbenzoic acid

C16H14O7 (318.0739)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Lecanoric acid is a histidine-decarboxylase inhibitor isolated from fungus. The inhibition by lecanoric acid is competitive with histidineand noncompetitive with pyridoxal phosphate. Lecanoric acid did not inhibit aromatic amino acid decarboxylase[1].

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[2-[6-[2,4-dimethoxy-3,6-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

Epi-coprostanol

(1S,2S,5R,7S,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol

C27H48O (388.3705)


Epi-coprostanol, also known as epicholestanol or presteron, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, epi-coprostanol is considered to be a sterol lipid molecule. Epi-coprostanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Epi-coprostanol is a 27 carbon stanol formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. It is a breakdown product of 5b-coprastanol and can be found in treated sewage. It is considered to be an antioxidant and is a major constituent of ambergris. [HMDB] Same as: D01527

   

CERCOSPORIN

Cercosporin from Cercospora hayii

C29H26O10 (534.1526)


An organic heterohexacyclic compound that is perylo[1,12-def][1,3]dioxepine-6,11-dione substituted by hydroxy groups at positions 5 and 12, by methoxy groups at positions 7 and 10, and by 2-hydroxypropyl groups at positions 8 and 9 (the R,R-stereoisomer). It is a phytotoxin which was first isolated from the pathogenic soybean fungus, Cercospora kikuchii and later found in multiple members of the genus Cercospora. CONFIDENCE isolated standard

   

Tryprostatin B

(3S-trans)-Hexahydro-3-[[2-(3-methyl-2-butenyl)-1H-indol-3-yl]methyl]-pyrrolo[1,2-a]pyrazine-1,4-dione

C21H25N3O2 (351.1947)


A cyclic dipeptide that is brevianamide F (cyclo-L-Trp-L-Pro) substituted at position 2 on the indole ring by a prenyl group. CONFIDENCE Penicillium amphipolaria

   

FT-0775149

methyl (Z)-2-[(2S,3R,12bS)-3-ethyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate

C22H28N2O3 (368.21)


   

4-Coumaryl alcohol

trans-3-(4-hydroxyphenyl)-2-propenoic acid

C9H10O2 (150.0681)


4-coumaryl alcohol, also known as 4-hydroxycinnamyl alcohol or 4-coumaric acid, (E)-isomer, is a member of the class of compounds known as cinnamyl alcohols. Cinnamyl alcohols are aromatic alcohols containing a 3-phenylprop-2-en-1-ol moiety. 4-coumaryl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 4-coumaryl alcohol can be synthesized from (E)-cinnamyl alcohol. 4-coumaryl alcohol is also a parent compound for other transformation products, including but not limited to, trans-coumaryl acetate, p-hydroxyphenyl lignin, and 4-hydroxy cinnamyl alcohol diacetate. 4-coumaryl alcohol can be found in a number of food items such as lemon balm, ginseng, red raspberry, and feijoa, which makes 4-coumaryl alcohol a potential biomarker for the consumption of these food products. 4-coumaryl alcohol can be found primarily in human testes tissue. Paracoumaryl alcohol, also called p-coumaryl alcohol, 4-coumaryl alcohol, 4-hydroxycinnamyl alcohol, or 4-(3-hydroxy-1-propenyl)phenol, is a phytochemical, one of the monolignols. It is synthesized via the phenylpropanoid biochemical pathway. When polymerized, p-coumaryl alcohol forms lignin or lignans . 4-Coumaryl alcohol (CAS: 3690-05-9), also known as p-coumaryl alcohol or 4-hydroxycoumarin, belongs to the class of organic compounds known as cinnamyl alcohols. These are aromatic alcohols containing a 3-phenylprop-2-en-1-ol moiety. Outside of the human body, 4-Coumaryl alcohol has been detected, but not quantified in, several different foods, such as loquats, sweet basils, capers, red algae, and squashberries. This could make 4-coumaryl alcohol a potential biomarker for the consumption of these foods. 4-Coumaryl alcohol is a substrate for NAD(P)H dehydrogenase 1. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

11beta-OHA4

11β-hydroxyandrost-4-ene-3,17-dione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2829 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

Prostaglandin B2

(5Z)-7-{2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-1-en-1-yl}hept-5-enoic acid

C20H30O4 (334.2144)


Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)

   

beta-tocotrienol

(2R)-2,5,8-Trimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

3-Methylcrotonyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-methylbut-2-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H42N7O17P3S (849.1571)


3-Methylcrotonyl-CoA, also known as beta-methylcrotonyl-coenzyme A or dimethylacryloyl-CoA, belongs to the class of organic compounds known as acyl-CoAs. These are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, 3-methylcrotonyl-CoA is considered to be a fatty ester lipid molecule. 3-Methylcrotonyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, is a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), and is a biotin-dependent mitochondrial enzyme in the catabolism of leucine (OMIM: 609010). 3-Methylcrotonyl-CoA is an essential metabolite for leucine metabolism, a substrate of 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), a biotin-dependent mitochondrial enzyme in the catabolism of leucine. (OMIM 609010) [HMDB]. 3-Methylcrotonyl-CoA is found in many foods, some of which are summer savory, lupine, blackcurrant, and soft-necked garlic.

   

Naphthalene-1,2-diol

1,2-Dihydroxynaphthalene monohydrate

C10H8O2 (160.0524)


This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.

   

(E,E)-2,4-Hexadienal

(2Z,4E)-hexa-2,4-dienal

C6H8O (96.0575)


(E,E)-2,4-Hexadienal is found in fishes. (E,E)-2,4-Hexadienal is a flavouring ingredient. (E,E)-2,4-Hexadienal is present in olives, roasted peanuts, tomato, caviar, fish, and te (E,E)-2,4-Hexadienal is a flavouring ingredient. It is found in olives, roasted peanuts, tomato, caviar, fish, and tea.

   

1-O-Hexadecyl-sn-glycero-3-phosphocholine

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-, inner salt, 4-oxide

C24H52NO6P (481.3532)


   

Pyrophosphate

phosphono dihydrogen phosphate

H4O7P2 (177.9432)


The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methanethiol

Methylmercaptan, mercury (2+) salt

CH4S (48.0034)


Methanethiol (also known as methyl mercaptan) is a colorless gas that smells like rotten cabbage. It is a natural substance found in the blood, brain, and other tissues of people and animals. It is released from animal feces. It occurs naturally in certain foods, such as some nuts and cheese. It is also one of the main chemicals responsible for bad breath and flatulence. At very high concentrations methanethiol is highly toxic and affects the central nervous system. The chemical formula for methanethiol is CH3SH; it is classified as a thiol. Methanethiol is also considered to be a weak acid, with a pKa of ~10.4. This acidic property makes it reactive with dissolved metals in aqueous solutions. The environmental chemistry of these interactions in seawater or fresh water environments such as lakes has yet to be fully investigated. -- Wikipedia. Flavouring agent. Isolated from higher plants, e.g. radish (Raphanus sativus), also present in orange juice, pineapple, strawberries, asparagus, wheatbread, gruyere cheese, hop oil, coffee, roasted filberts, cooked rice and other foods

   

5,10-Methenyl-tetrahydrofolate

5,10-Methenyl-tetrahydrofolate

C20H22N7O6+ (456.1631)


   

Mandelonitrile

(R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE

C8H7NO (133.0528)


Mandelonitrile is a chemical compound of the cyanohydrin class. Small amounts of mandelonitrile occur in the pits of some fruits. (Wikipedia)

   

Dihydrolipoamide

Dihydrolipoamide, (+-)-isomer

C8H17NOS2 (207.0752)


Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG) [HMDB]. Dihydrolipoamide is found in many foods, some of which are enokitake, mugwort, welsh onion, and tea. Dihydrolipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG ID C00579). It is converted to lipoamide via the enzyme dihydrolipoamide dehydrogenase [EC:1.8.1.4]. Dihydrolipoamide is also a substrate of enzyme Acyltransferases [EC 2.3.1.-]. (KEGG).

   

hydroxymuconic semialdehyde

2-hydroxy-6-oxohexa-2,4-dienoic acid

C6H6O4 (142.0266)


   

Dopaquinone

(2S)-2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)propanoic acid

C9H9NO4 (195.0532)


Dopaquinone, also known as o-dopaquinone or L-dopaquinone, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha-amino acids which have the L-configuration of the alpha-carbon atom. Dopaquinone is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-Dopaquinone is a metabolite of L-DOPA and a precursor of melanin. Melanin is synthesized from tyrosine by hydroxylation to dihydroxyphenylalanine (DOPA) and subsequent oxidation to dopaquinone. Both reactions are catalyzed by the enzyme tyrosinase, which is the rate-limiting step. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopaquinone typically combines with cysteine to form pheomelanin (a pigment-polymer). Alternatively, dopaquinone can be converted to leucodopachrome and eventually to eumelanin (also a pigment-polymer). Dopaquinone can be found in skin and feces. Within the cell, dopaquinone is primarily located in the cytoplasm. Dopaquinone is involved in several metabolic disorders, some of which include transient tyrosinemia, hawkinsinuria, tyrosinemia type I, and alkaptonuria. Chronically high levels of dopaquinone are associated with Parkinsons disease (PD). Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). Dopaquinone is a substrate of enzyme monophenol monooxygenase [EC 1.14.18.1] in tyrosine metabolism pathway (KEGG). [HMDB]

   

Formylmethanofuran

7-[[(1S)-1-carboxy-4-[[(1S)-1-carboxy-4-[2-[4-[[5-(formamidomethyl)-3-furyl]methoxy]phenyl]ethylamino]-4-oxo-butyl]amino]-4-oxo-butyl]amino]-7-oxo-heptane-1,3,4-tricarboxylic acid

C35H44N4O16 (776.2752)


   

Isopropyl catechol

3-isopropylbenzene-1,2-diol

C9H12O2 (152.0837)


   

UDP-N-acetylmuraminate

(2r)-2-{[(2r,3r,4r,5s,6r)-3-(Acetylamino)-2-{[(S)-{[(R)-{[(2r,3s,4r,5r)-5-(2,4-Dioxo-3,4-Dihydropyrimidin-1(2h)-Yl)-3,4-Dihydroxytetrahydrofuran-2-Yl]methoxy}(Hydroxy)phosphoryl]oxy}(Hydroxy)phosphoryl]oxy}-5-Hydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-4-Yl]oxy}propanoic Acid

C20H31N3O19P2 (679.1027)


UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]

   

Uroporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C40H44N4O16 (836.2752)


Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Glutamic gamma-semialdehyde

Glutamic acid gamma-semialdehyde, (L)-isomer

C5H9NO3 (131.0582)


L-glutamic-gamma-semialdehyde, also known as 5-oxo-L-norvaline or glutamic acid gamma-semialdehyde, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamic-gamma-semialdehyde is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamic-gamma-semialdehyde can be found in a number of food items such as rubus (blackberry, raspberry), jackfruit, loganberry, and plains prickly pear, which makes L-glutamic-gamma-semialdehyde a potential biomarker for the consumption of these food products. L-glutamic-gamma-semialdehyde exists in all living species, ranging from bacteria to humans. In humans, L-glutamic-gamma-semialdehyde is involved in the arginine and proline metabolism. L-glutamic-gamma-semialdehyde is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], prolidase deficiency (PD), arginine: glycine amidinotransferase deficiency (AGAT deficiency), and ornithine aminotransferase deficiency (OAT deficiency). Glutamic gamma-semialdehyde is the metabolic precursor for proline biosynthesis. The conversion from L-Glutamate, an ATP- and NADPH-dependent reaction, is catalyzed by the enzyme Delta-1-pyrroline-5-carboxylate synthetase (P5CS) (OMIM 138250). L-Glutamic-gamma-semialdehyde can also be converted to or be formed from the amino acids L-ornithine (EC 2.6.1.13) and L-proline (EC 1.5.99.8 and EC 1.5.1.2). It is also one of the few metabolites that can be a precursor to other metabolites of both the urea cycle and the citric acid cycle (BioCyc).

   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

UDP-N-acetylmuramoyl-L-alanine

Uridine-5-diphosphate-n-acetylmuramoyl-l-alanine

C23H36N4O20P2 (750.1398)


   

dXTP

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H15N4O14P3 (507.9798)


   

Uridine 3'-monophosphate

{[(2R,3S,4R,5R)-4-hydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)-2-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C9H13N2O9P (324.0359)


Uridine 3-monophosphate (3-UMP) belongs to the class of compounds called pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Uridine 3-monophosphate has been identified in the human placenta (PMID: 32033212). COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Casbene

(2E,6E,10E)-3,7,11,15,15-pentamethylbicyclo[12.1.0]pentadeca-2,6,10-triene

C20H32 (272.2504)


   

Tyr-OEt

Ethyl 2-amino-3-(4-hydroxyphenyl)propanoate

C11H15NO3 (209.1052)


   

Sakebiose

(2R,3S,4S,5S,6R)-2-(hydroxymethyl)-6-{[(2S,3R,4S,5S,6R)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


3-O-alpha-D-Mannopyranosyl-D-galactose is found in fruits. 3-O-alpha-D-Mannopyranosyl-D-galactose is isolated from enzymic hydrolysate of peach gum. Isolated from enzymic hydrolysate of peach gum. 3-O-alpha-D-Mannopyranosyl-D-galactose is found in fruits.

   

Decyl alcohol

N-Decyl alcohol, magnesium salt

C10H22O (158.1671)


1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods

   

Coformycin

Coformycin

C11H16N4O5 (284.1121)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

Benzene oxide

7-oxabicyclo[4.1.0]hepta-2,4-diene

C6H6O (94.0419)


   

Choloyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-({4-[(1S,5R,9R,11S,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoyl}sulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C45H74N7O20P3S (1157.3922)


Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG). The conjugation of bile acids to glycine and taurine for excretion into bile occurs via a reaction catalyzed by the enzyme Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes. Choloyl-CoA is an intermediate metabolite in the Bile acid biosynthesis (KEGG) D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Bleomycin B2

Dehydrophleomycin D1

C55H84N20O21S2 (1424.5561)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Aristolochene

(4S,4aR,6S)-4,4a-dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene 7betaH-eremophila-9,11-diene

C15H24 (204.1878)


   

Z-Arg-Arg-NHMec

Z-Arg-Arg-NHMec; Benzyloxycarbonylarginyl-arginine 4-methylcoumarin-7-ylamide

C30H39N9O6 (621.3023)


   

Tolylacetonitrile

Tolylacetonitrile; o-Tolylacetonitrile; o-Methylbenzyl cyanide; 2-Methylbezeneacetonitrile

C9H9N (131.0735)


   

Hydroxylaminobenzene

(Hydroxyamino)benzene

C6H7NO (109.0528)


   

Acenaphthoquinone

1,2-Diketoacenaphthene

C12H6O2 (182.0368)


   

Chlordecone alcohol

1,2,3,4,6,7,8,9,10,10-Decachloropentacyclo[5.3.0.0(2,6).0(3,9).0(4,8)]decan-5-ol

C10H2Cl10O (487.6991)


Chlordecone alcohol is the major metabolite of Chlordecone [ an organochlorine pesticide, CAS# 143-50-0] in humans via bioreduction in the liver by Chlordecone reductase [EC: 1.1.1.225 ,CAS # 102484-73-1]. (PMID 2420999). Chlordecone treatment actively suppresses induction of 2B1 and 2B2 mRNAs in adult human hepatocytes; anti-estrogens such as Tamoxifen fail to reverse 2B1/2 mRNA induction following Chlordecone treatment of hepatocytes. (PMID 7513451). Both Chlordecone and Chlordecone alcohol alter the permeability of isolated ovine erythrocytes. (PMID 2455063). Chlordecone alcohol is the major metabolite of Chlordecone [ an organochlorine pesticide, CAS# 143-50-0] in humans via bioreduction in the liver by Chlordecone reductase [EC: 1.1.1.225 ,CAS # 102484-73-1]. (PMID 2420999)

   

Arginine, N2-benzoyl

5-{[amino(imino)methyl]amino}-2-(benzoylamino)pentanoic acid

C13H18N4O3 (278.1379)


   

Uridine 2'-phosphate

{[(2R,3R,4R,5R)-2-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl]oxy}phosphonic acid

C9H13N2O9P (324.0359)


Uridine 2- phosphate is a product of the decylclization reaction carried out by the enzyme 2,3-cyclic nucleotide-3-phosphodiesterase (CNPase, EC 3.1.4.37) which hydrolyses Uridine 2,3-cyclic phosphate to Uridine 2-phosphate. CNPase is a unique RNase in that it only cleaves nucleoside 2,3-cyclic phosphates and not the RNA internucleotide linkage, like other RNases such as RNase A and RNase T1. [HMDB] Uridine 2- phosphate is a product of the decylclization reaction carried out by the enzyme 2,3-cyclic nucleotide-3-phosphodiesterase (CNPase, EC 3.1.4.37) which hydrolyses Uridine 2,3-cyclic phosphate to Uridine 2-phosphate. CNPase is a unique RNase in that it only cleaves nucleoside 2,3-cyclic phosphates and not the RNA internucleotide linkage, like other RNases such as RNase A and RNase T1.

   

arcaine

arcaine

C6H16N6 (172.1436)


D007004 - Hypoglycemic Agents > D001645 - Biguanides

   

Z-Gly-Pro-Leu-Gly-Pro

N-[(Phenylmethoxy)carbonyl]glycyl-L-prolyl-L-leucylglycyl-L-proline

C28H39N5O8 (573.2798)


   

N1,N12-Diacetylspermine

N-[3-({4-[(3-acetamidopropyl)amino]butyl}amino)propyl]acetamide

C14H30N4O2 (286.2369)


N1,N12-Diacetylspermine is a polyamine commonly occurring in normal human urine (PMID 7775374). It has been reported that urinary N1,N12-Diacetylspermine can be used as a marker to efficiently detect colorectal and breast cancers at early stages (PMID 15837752). N1,N12-Diacetylspermine has been identified in the human placenta (PMID: 32033212). N1,N12-Diacetylspermine is a polyamine commonly occurring in normal human urine (PMID 7775374). It has been reported that urinary N1,N12-Diacetylspermine can be used as a marker to efficiently detect colorectal and breast cancers at early stages (PMID 15837752). [HMDB]

   

L-Erythritol 1-phosphate

2,3,4-trihydroxybutyl dihydrogen phosphate

C4H11O7P (202.0242)


   

D-Erythrulose 4-phosphate

D-Erythrulose 4-phosphate

C4H9O7P (200.0086)


A ketotetrose phosphate that is D-erythrulose carrying a phosphono substituent at position O-4.

   

11a-Hydroxyprogesterone

(1S,2R,10S,11S,15S,17R)-14-acetyl-17-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O3 (330.2195)


Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia; Progesterones reproductive function serves to convert the endometrium to its secretory stage to prepare the uterus for implantation. If pregnancy does not occur, progesterone levels will decrease leading to menstruation in the human. Normal menstrual bleeding is a progesterone withdrawal bleeding. -- Wikipedia; During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine musculature. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. Progesterone has an effect upon vaginal epithelium and cervical mucus. -- Wikipedia [HMDB] Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. Progesterones reproductive function serves to convert the endometrium to its secretory stage to prepare the uterus for implantation. If pregnancy does not occur, progesterone levels will decrease leading to menstruation in the human. Normal menstrual bleeding is a progesterone withdrawal bleeding. During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine musculature. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition, progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. Progesterone has an effect upon vaginal epithelium and cervical mucus. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins

   

4-Hydroxyphenylacetaldehyde

2-(4-Hydroxyphenyl)acetaldehyde

C8H8O2 (136.0524)


4-Hydroxyphenylacetaldehyde is a byproduct of tyrosine metabolism. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

6,7-Dimethyl-8-(1-D-ribityl)lumazine

2,4(1H,3H)-Pteridinedione, 6,7-dimethyl-8-(2,3,4,5-tetrahydroxypentyl)-, [2S-(2R*,3R*,4S*)]-

C13H18N4O6 (326.1226)


6,7-Dimethyl-8-(1-D-ribityl)lumazine belongs to the class of organic compounds known as pteridines and derivatives. These are polycyclic aromatic compounds containing a pteridine moiety, which consists of a pyrimidine fused to a pyrazine ring to form pyrimido(4,5-b)pyrazine. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an extremely weak basic (essentially neutral) compound (based on its pKa). 6,7-Dimethyl-8-(1-D-ribityl)lumazine exists in all living organisms, ranging from bacteria to humans. In humans, 6,7-dimethyl-8-(1-D-ribityl)lumazine is involved in riboflavin metabolism. Outside of the human body, 6,7-dimethyl-8-(1-D-ribityl)lumazine has been detected, but not quantified in, several different foods, such as quinoa, arrowhead, conchs, watermelons, and Elliotts blueberries. This could make 6,7-dimethyl-8-(1-D-ribityl)lumazine a potential biomarker for the consumption of these foods. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an intermediate in riboflavin metabolism. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is the second to last step in the synthesis of ribitol and is converted from 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine via the enzyme riboflavin synthase beta chain. It is then converted into riboflavin via the enzyme riboflavin synthase alpha chain (EC 2.5.1.9). 6,7-Dimethyl-8-(1-D-ribityl)lumazine is an intermediate in riboflavin metabolism. 6,7-Dimethyl-8-(1-D-ribityl)lumazine is the second to last step in the synthesis of ribitol and is converted from 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine via the enzyme riboflavin synthase beta chain. It is then

   

Ac-Phe-3,5-diiodo-Tyr-OH

N-Acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine

C20H20I2N2O5 (621.9462)


   

(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid

7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]heptanoic acid

C20H32O5 (352.225)


(13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. (13E)-11a-Hydroxy-9,15-dioxoprost-13-enoic acid is a substrate for Carbonyl reductase 1.

   

15-Keto-prostaglandin E2

(5Z)-7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH)

   

17a-Hydroxypregnenolone

1-[(1S,2R,5S,10R,11S,14R,15S)-5,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl]ethan-1-one

C21H32O3 (332.2351)


17a-Hydroxypregnenolone is a 21-carbon steroid that is converted from pregnenolone by cytochrome P450 17alpha hydroxylase/C17,20 lyase (CYP17, EC 1.14.99.9). 17a-Hydroxypregnenolone is an intermediate in the delta-5 pathway of biosynthesis of gonadal steroid hormones and the adrenal corticosteroids. The first, rate-limiting and hormonally regulated step in the biosynthesis of all steroid hormones is the conversion of cholesterol to pregnenolone. The conversion of cholesterol to pregnenolone is accomplished by the cleavage of the cholesterol side chain, catalyzed by a mitochondrial cytochrome P450 enzyme termed P450scc where scc designates Side Chain Cleavage. All steroid hormones are made from the pregnenolone produced by P450scc; thus, the presence or absence of each of the activities of CYP17 directs this pregnenolone towards its final metabolic pathway. While all cytochrome P450 enzymes can catalyze multiple reactions on a single active site, CYP17 is the only one described to date in which these multiple activities are differentially regulated by a physiologic process. 17a-Hydroxypregnenolone is converted to dehydroepiandrosterone by the 17,20 lyase activity of CYP17. The ratio of the 17,20 lyase to 17 alpha-hydroxylase activity of CYP17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated post-translationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase, the presence of cytochrome b5, and the serine phosphorylation of CYP17. (PMID: 12573809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).

   

Debromoaplysiatoxin

Aplysiatoxin, 17-debromo-

C32H48O10 (592.3247)


A member of the class of aplysiatoxins that has the structure of the parent aplysiatoxin, but is lacking the bromo substituent on the benzene ring at the position para to the phenolic hydroxy group. It is a cyanotoxin produced by several species of freshwater and marine cyanobacteria, as well as algae and molluscs. D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens

   

Psicofuranine

9-D-Psicofuranosyl-6-aminopurine

C11H15N5O5 (297.1073)


   

bacteriopheophytin

Bacteriopheophytin; Bacteriopheophytin a

C55H76N4O6 (888.5765)


   

Leukotriene F4

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-carboxyethyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C28H44N2O8S (568.2818)


Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene F4 is an intermediate in Arachidonic acid metabolism. Leukotriene F4 is converted from Leukotriene E4 via the enzyme Transferases (EC 2.3.2.-).

   

Harmalol

1-Methyl-4,9-dihydro-3H-beta-carbolin-7-ol hydrochloride

C12H12N2O (200.095)


Harmalol is found in fruits. Harmalol is an alkaloid from Passiflora incarnata (maypops). Harmaline is a reversible inhibitor of MAO-A (RIMA). Harmine is a reversible inhibitor of MAO-A (RIMA). It is important to note that unlike synthetic pharmaceutical MAOIs such as phenelzine, harmine is reversible and selective meaning it does not have nearly as high a risk for the "cheese syndrome" caused by consuming tyramine-containing foods, which is a risk associated with monoamine oxidase A inhibitors, but not monoamine oxidase B inhibitors. Several alkaloids that function as monoamine oxidase inhibitors (MAOIs) are found in the seeds of Peganum harmala (also known as Harmal or Syrian Rue), including harmine, harmaline, and harmalol, which are members of a group of substances with a similar chemical structure collectively known as harmala alkaloids. These alkaloids are of interest for their use in Amazonian shamanism, where they are derived from other plants. The harmala alkaloid harmine which was once known as Telepathine and Banisterine is a naturally occurring beta-carboline alkaloid that is structurally related to harmaline, and also found in the vine Banisteriopsis caapi. Tetrahydroharmine is also found in B. caapi, but not P. harmala. Dr. Alexander Shulgin has suggesed that harmaline may be a breakdown product of harmine. Harmine and harmaline are reversible MAOIs of the MAO-A isoform of the enzyme, and can stimulate the central nervous system by inhibiting the metabolism of monoamine compounds such as serotonin and norepinephrine. The harmala alkaloids occur in Peganum harmala in concentrations of roughly 3\\%, though tests have documented anywhere from 2-7\\%, as natural sources tend to vary widely in chemical makeup. Harmala alkaloids are also found in the Banisteriopsis caapi vine, the key plant ingredient in the sacramental beverage Ayahuasca, in concentrations that range between 0.31-8.43\\% for harmine, 0.03-0.83\\% for harmaline and 0.05-2.94\\% for tetrahydroharmine. Other psychoactive plants are often added to Ayahuasca to achieve visionary states of consciousness; for example leaves from Psychotria viridis, which is a source of dimethyltryptamine (DMT). The harmala alkaloids serve to potentiate these brewed compounds by preventing their breakdown in the digestive tract. The harmala alkaloids are not especially psychoactive on their own, even at high dosages, when vomiting and diarrhea become the main effect Alkaloid from Passiflora incarnata (maypops)

   

cephamycin C

5-Thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid, 3-(((aminocarbonyl)oxy)methyl)-7-((5-amino-5-carboxy-1-oxopentyl)amino)-7-methoxy-8-oxo-

C16H22N4O9S (446.1107)


One of three naturally occurring cephamycin antibiotics, differing from the A and B forms in its carbamoyloxymethyl substituent at C-3. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

1,3-Dichloropropene

1,3-dichloro-1-Propene (acd/name 4.0)

C3H4Cl2 (109.969)


1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N2-(Carboxyethyl)-L-arginine

N2-(2-Carboxyethyl)-L-arginine

C9H18N4O4 (246.1328)


   

2-Chloroethanol

beta-Chloroethyl alcohol

C2H5ClO (80.0029)


   

Azlocillin

(2S,5R,6R)-3,3-Dimethyl-7-oxo-6-{[(2R)-2-{[(2-oxoimidazolidin-1-yl)carbonyl]amino}-2-phenylacetyl]amino}-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C20H23N5O6S (461.1369)


Azlocillin is only found in individuals that have used or taken this drug. It is a semisynthetic ampicillin-derived acylureido penicillin.By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, azlocillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that azlocillin interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Cefotetan

(6R,7S)-7-{4-[carbamoyl(carboxy)methylidene]-1,3-dithietane-2-amido}-7-methoxy-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C17H17N7O8S4 (575.0021)


Cefotetan is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. [PubChem]The bactericidal action of cefotetan results from inhibition of cell wall synthesis by binding and inhibiting the bacterial penicillin binding proteins which help in the cell wall biosynthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Echothiophate

diethyl {[2-(trimethylazaniumyl)ethyl]sulfanyl}phosphonate

C9H23NO3PS+ (256.1136)


Echothiophate is only found in individuals that have used or taken this drug. It is a potent, long-acting irreversible cholinesterase inhibitor used as an ocular hypertensive in the treatment of glaucoma. Occasionally used for accomodative esotropia.Echothiophate Iodide is a long-acting cholinesterase inhibitor for topical use which enhances the effect of endogenously liberated acetylcholine in iris, ciliary muscle, and other parasympathetically innervated structures of the eye. Echothiophate iodide binds irreversibly to cholinesterase, and is long acting due to the slow rate of hydrolysis by cholinesterase. It causes miosis, increase in facility of outflow of aqueous humor, fall in intraocular pressure, and potentiation of accommodation. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors

   

Chlorobenzene

Chlorobenzene (acd/name 4.0)

C6H5Cl (112.008)


Chlorobenzene is an aromatic organic compound with the chemical formula C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals. Rhodococcus phenolicus is a bacterium species able to degrade chlorobenzene as sole carbon sources.

   

(Lys8)-Vasopressin

N-[6-amino-1-[(2-amino-2-oxoethyl)amino]-1-oxohexan-2-yl]-1-[19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-benzyl-16-[(4-hydroxyphenyl)methyl]-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carbonyl]pyrrolidine-2-carboxamide

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

Metiamide

3-methyl-1-(2-{[(5-methyl-1H-imidazol-4-yl)methyl]sulfanyl}ethyl)thiourea

C9H16N4S2 (244.0816)


Metiamide belongs to the class of organic compounds known as imidazoles. These are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

Ginkgolide J

(1R,4aR,5R,7aS,9S,10R,11S)-11-tert-butyl-1,4b,10-trihydroxy-5-methyltetrahydro-4bH,9H-9,4a-(epoxymethano)cyclopenta(c)furo(2,3-b)furo(3,2:3,4)cyclopenta(1,2-d)furan-2,6,13(1H,5H)-trione

C20H24O10 (424.1369)


Isolated from Ginkgo biloba (ginkgo). Ginkgolide J is found in ginkgo nuts and fats and oils. Ginkgolide J is found in fats and oils. Ginkgolide J is isolated from Ginkgo biloba (ginkgo Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].

   

Magnesium dichloride

magnesium(2+) ion dichloride

Cl2Mg (93.9228)


C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent Flavouring agent and nutrient supplement

   

Chlorphenesin

3-(4-Chlorophenoxy)-1,2-propanediol

C9H11ClO3 (202.0397)


Chlorphenesin is only found in individuals that have used or taken this drug. It is a centrally acting muscle relaxant. Its mode of action is unknown. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1203)The mechanism of action of chlorphenesin is not well defined, and its effects are measured mainly by subjective responses. It is known that chlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Cinoxacin

5-Ethyl-8-oxo-5,8-dihydro-1,3-dioxa-5,6-diaza-cyclopenta[b]naphthalene-7-carboxylic acid

C12H10N2O5 (262.059)


Cinoxacin is only found in individuals that have used or taken this drug. It is a synthetic antimicrobial related to oxolinic acid and nalidixic acid and used in urinary tract infections. [PubChem]Evidence exists that cinoxacin binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. It appears to also inhibit DNA gyrase. This enzyme is necessary for proper replicated DNA separation. By inhibiting this enzyme, DNA replication and cell division is inhibited. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors

   

Cefpodoxime

(6R,7R)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H17N5O6S2 (427.062)


Cefpodoxime is an oral third generation cephalosporin antibiotic. It is active against most Gram positive and Gram negative bacteria. It is commonly used to treat acute otitis media, pharyngitis, and sinusitis. Cefpodoxime proxetil is a prodrug which is absorbed and de-esterified by the intestinal mucosa to Cefpodoxime. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5008)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

Asitribin

3-(13-{5-[5-(1,5-dihydroxyundecyl)oxolan-2-yl]oxolan-2-yl}-13-hydroxytridecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H66O7 (622.4808)


Asiminacin is found in fruits. Asiminacin is a constituent of Asimina triloba (pawpaw) and Annona squamosa (sugar apple). Constituent of the seeds of Asimina triloba (pawpaw). Asitribin is found in fruits.

   

Atisine

Anthorine

C22H33NO2 (343.2511)


A organic heterohexacyclic compound and diterpene alkaloid isolated from Aconitum anthora. In solution, it is a 2:1 mixture of readily interconvertible epimers at position 20 (the carbon attached to both the nitrogen and an oxygen atom).

   

Cassaine

NCI60_041577

C24H39NO4 (405.2879)


A tricyclic diterpenoid isolated from several plant species of the genus Erythrophleum.

   
   

SCILLIROSIDE

SCILLIROSIDE

C32H44O12 (620.2833)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Rhazin

methyl (1S,12S,13S,14S,15E)-15-ethylidene-13-(hydroxymethyl)-3,17-diazapentacyclo[12.3.1.02,10.04,9.012,17]octadeca-2(10),4,6,8-tetraene-13-carboxylate

C21H24N2O3 (352.1787)


Akuammidine is a natural product found in Aspidosperma quebracho-blanco, Tabernaemontana citrifolia, and other organisms with data available.

   

Ibogamine

CID 442109

C19H24N2 (280.1939)


A monoterpenoid indole alkaloid with formula C19H24N2. It is isolated from the flowering plant genus, Tabernaemontana and exhibits anti-addictive properties.

   
   

Davidigenin

1- (2,4-Dihydroxyphenyl) -3- (4-hydroxyphenyl) -1-propanone

C15H14O4 (258.0892)


A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, and 4 respectively.

   

Hernandulcin

6-(2-hydroxy-6-methylhept-5-en-2-yl)-3-methylcyclohex-2-en-1-one

C15H24O2 (236.1776)


Hernandulcin is a constituent of Lippia dulcis leaves and flowers. Natural sweetener more than 1000 times sweeter than sucrose Hernandulcin is a sesquiterpene with the molecular formula C15H24O2. By slightly modifying the compound, researchers have identified the two chemical groups which caused the sweet taste - the carbonyl group, and the hydroxyl group. The structure of hernandulcin is very simple, and after a panel of volunteers tasted hernandulcin, it was determined that it was 1,000 times sweeter than sugar. Hernandulcin also has a bitter aftertaste, and does not cause tooth decay, which would make it a good candidate for a mouthwash. Hernandulcin is an intensely sweet chemical compound gained from the chiefly Mexican and South American plant Lippia dulcis. Constituent of Lippia dulcis leaves and flowers. Natural sweetener more than 1000 times sweeter than sucrose

   

Cinerin I

25402-06-6

C20H28O3 (316.2038)


   

(S)-Actinidine

(7S)-4,7-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine

C10H13N (147.1048)


Alkaloid from Actinidia arguta (taravine) and Valeriana officinalis (valerian). (S)-Actinidine is found in many foods, some of which are kiwi, fruits, herbs and spices, and fats and oils. (S)-Actinidine is found in fats and oils. (S)-Actinidine is an alkaloid from Actinidia arguta (taravine) and Valeriana officinalis (valerian

   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

chlorophorin

2,4,3,5-tetrahydroxy-4(3,7-di-methyl-2,6-octadienyl)-stilbene

C24H28O4 (380.1987)


   

Dunnione

2,3,3-trimethyl-2H,3H,4H,5H-naphtho[1,2-b]furan-4,5-dione

C15H14O3 (242.0943)


   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Texasin

6,7-Dihydroxy-3-(4-methoxyphenyl)-4-benzopyrone

C16H12O5 (284.0685)


   

5-Demethoxydeoxypodophyllotoxin

5-Demethoxydeoxypodophyllotoxin

C21H20O6 (368.126)


D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents

   

gamma-Fagarine

4,8-Dimethoxyfuro[2,3-b]quinoline; 8-Methoxydictamnine; Fagarine

C13H11NO3 (229.0739)


Gamma-Fagarine is an organic heterotricyclic compound, an organonitrogen heterocyclic compound and an oxacycle. gamma-Fagarine is a natural product found in Haplophyllum bucharicum, Haplophyllum griffithianum, and other organisms with data available. gamma-Fagarine is found in fruits. gamma-Fagarine is an alkaloid from Aegle marmelos (bael fruit

   
   

Sulfometuron-methyl

methyl 2-({[(4,6-dimethylpyrimidin-2-yl)carbamoyl]amino}sulfonyl)benzoate

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

2,6-Dinitrotoluene

1-Methyl-2,6-dinitrobenzene

C7H6N2O4 (182.0328)


   

m-Fluoroaniline

m-Fluoroaniline

C6H6FN (111.0484)


   

Chlorothalonil

Chlorothalonil; Tetrachloroisophthalonitrile; Daconil; TPN

C8Cl4N2 (263.8816)


D010575 - Pesticides > D008975 - Molluscacides D016573 - Agrochemicals

   

Thiocarbohydrazide

1,3-Diamino-2-thiourea

CH6N4S (106.0313)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulphonic acid

C19H41NO3S (363.2807)


   

CE(16:0)

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl hexadecanoate

C43H76O2 (624.5845)


CE(16:0), also known as cholesteryl palmitic acid, is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination of steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(16:0) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. Cholesteryl palmitate is one of the four important lipids found in the tear film. Amniotic fluid cholesteryl palmitate, as measured by thin-layer chromatography, appears to be a very sensitive and specific predictor for the risk of respiratory distress syndrome (RDS) in newborns of normal pregnancies (PMID:3405552, 16922549). Cholesteryl palmitic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl palmitate is one of the four important lipids found in the tear film. Amniotic fluid cholesteryl palmitate, as measured by thin-layer chromatography, appears to be a very sensitive and specific predictor for the risk of respiratory distress syndrome (RDS) in newborns of normal pregnancies. (PMID: 3405552, 16922549) [HMDB]

   

S-(p-Azidophenacyl)glutathione

S-(4-Azidophenacyl)glutathione; S-(p-Azidophenacyl)glutathione

C18H22N6O7S (466.1271)


   

FA 10:2;O

7R-hydroxy-2,4-dimethyl-2E,4E-octadienoic acid

C10H16O3 (184.1099)


   

1,3,5-Trichloro-2-methoxybenzene

Benzene, 1,3,5-trichloro-2-methoxy- (9ci)

C7H5Cl3O (209.9406)


1,3,5-Trichloro-2-methoxybenzene is found in alcoholic beverages. Off-odour component found in foods etc. Responsible for cork taint in wine

   

Pepsinostreptin

Isobutyryl-Val-Val-Sta-Ala-Sta

C33H61N5O9 (671.4469)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins

   

omega-COOH-LTE4NAc

omega-Carboxy-N-acetyl-LTE4; (7E,9E,11Z,14Z)-(5S,6R)-6-((N-Acetyl)cystein-S-yl)-5-hydroxyeicosa-7,9,11,14-tetraen-1,20-dioate; omega-COOH-LTE4NAc

C25H37NO8S (511.224)


   

candoxatrilat

4-((2-Carboxy-3-(2-methoxyethoxy)propyl)-1-cyclopentanecarbonylamino)-1-cyclohexanecarboxylic acid

C20H33NO7 (399.2257)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors C471 - Enzyme Inhibitor > C783 - Protease Inhibitor

   

R-Soterenol

N-[2-hydroxy-5-[1-hydroxy-2-(propan-2-ylamino)ethyl]phenyl]methanesulfonamide

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

Methanophenazine

Methanophenazine; 2-(2,3-Dihydro-all-trans-pentaprenyloxy)phenazine; 2-(2,3-Dihydropentaprenyloxy)phenazine

C37H50N2O (538.3923)


   

FA 7:1

(2E)-2,4-dimethylpent-2-enoic acid

C7H12O2 (128.0837)


   

Cyclohexyl acetate

Cyclohexyl ester OF acetic acid

C8H14O2 (142.0994)


Cyclohexyl acetate, also known as adronal acetate, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Cyclohexyl acetate is a sweet, ethereal, and fruity tasting compound. Cyclohexyl acetate has been detected, but not quantified, in several different foods, such as brassicas, onion-family vegetables, pulses, and soy beans. Cyclohexyl acetate is a flavouring agent. It is found in many foods, some of which are pulses, soy bean, brassicas, and onion-family vegetables.

   

Pyricarbate

N-methyl[(6-{[(methyl-C-hydroxycarbonimidoyl)oxy]methyl}pyridin-2-yl)methoxy]carboximidic acid

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Lagosin

Fungichromin

C35H58O12 (670.3928)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics Same as: D01829

   

2-(4-Chlorophenoxy)propionic acid

2-(4-Chlorophenoxy)propionic acid, potassium salt

C9H9ClO3 (200.024)


   

LY382884

(3S,4aR,6S,8aR)-6-[(4-carboxyphenyl)methyl]-decahydroisoquinoline-3-carboxylic acid

C18H23NO4 (317.1627)


   

Cyclopropanamine

Cyclopropanamine

C3H7N (57.0578)


A primary aliphatic amine that consists of cyclopropane bearing a single amino substituent.

   

2-Benzothiazolesulfonamide

1,3-Benzothiazole-2-sulfonamide

C7H6N2O2S2 (213.9871)


   

Mirex

1,2,3,4,5,5,6,7,8,9,10,10-Dodecachloropentacyclo[5.3.0.0(2,6).0(3,9).0(4,8)]decane

C10Cl12 (539.6262)


Mirex is a chlorinated hydrocarbon that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. Ironically, the spread of the red imported fire ant was actually encouraged by the use of Mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976.

   

Dimethylstilbestrol

(E)-4,4-(1,2-Dimethyl-1,2-ethenediyl)bisphenol

C16H16O2 (240.115)


   

4-Propylphenol

1-Hydroxy-4-N-propylbenzene

C9H12O (136.0888)


4-Propylphenol is a flavouring ingredien Flavouring ingredient

   

1,6-DINITROPYRENE

1,6-DINITROPYRENE

C16H8N2O4 (292.0484)


D009676 - Noxae > D009153 - Mutagens

   

(Chloromethyl)oxirane

(RS)-3-Chloro-1,2-epoxypropane

C3H5ClO (92.0029)


(Chloromethyl)oxirane is used for cross-linking dextrose units in food starc It is used for cross-linking dextrose units in food starch.

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

Ethisterone

(1S,2R,10R,11S,14R,15S)-14-ethynyl-14-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H28O2 (312.2089)


Ethisterone is a metabolite of danazol. Ethisterone is a progestogen hormone. The first orally active progestin, ethisterone (pregneninolone, 17α-ethynyltestosterone or 19–norandrostane), the 17α-ethynyl analog of testosterone, was synthesized in 1938 by Hans Herloff Inhoffen, Willy Logemann, Walter Hohlweg, and Arthur Serini at Schering AG in Berlin and marketed in Germany in 1939 as Proluton C and by Schering in the U.S. in 1945 as Pranone. Ethisterone was also marketed in the U.S. (Wikipedia) G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04

   

2,4-Diphenyl-1-butene

1,1-(1-Methylene-1,3-propanediyl)bisbenzene, 9ci

C16H16 (208.1252)


2,4-Diphenyl-1-butene is a styrene dimer. Present as an impurity in polystyrene food containers and other products - liberated on heatin

   

2,2-Dichlorethyl ether

1,5-Dichloro-3-oxapentane

C4H8Cl2O (141.9952)


   

Stilben-4-ol

trans-4-hydroxystilbene;

C14H12O (196.0888)


   

Thallium

Thallium chloride, (203)TL,(35)CL-labeled

ClTl (239.9433)


A mercury-thallium alloy, which forms a eutectic at 8.5\\% thallium, is reported to freeze at -60 C, some 20 °C below the freezing point of mercury. This alloy is used in thermometers and low-temperature switches. In organic synthesis thallium(III) salts, as thallium trinitrate or triacetate, are useful reagents performing different transformations in aromatics, ketones, olefins, among others. Thallium is a constituent of the alloy in the anode plates in magnesium seawater batteries. Soluble thallium salts are added to gold plating baths to increase the speed of plating and to reduce grain size within the gold layer. A thallium stress test is a form of scintigraphy, where the amount of thallium in tissues correlates with tissue blood supply. Viable cardiac cells have normal Na+/K+ ion exchange pumps. The Tl+ cation binds the K+ pumps and is transported into the cells. Exercise or dipyridamole induces widening (vasodilation) of normal coronary arteries. This produces coronary steal from areas where arteries are maximally dilated. Areas of infarct or ischemic tissue will remain "cold". Pre- and post-stress thallium may indicate areas which will benefit from myocardial revascularization. Redistribution indicates the existence of coronary steal and the presence of ischemic coronary artery disease. Although thallium is a modestly abundant element in the Earths crust, with a concentration estimated to be about 0.7 mg/kg, mostly in association with potassium-based minerals in clays, soils, and granites, thallium is not generally economically recoverable from these sources. The major source of thallium for practical purposes is the trace amount that is found in copper, lead, zinc, and other heavy-metal-sulfide ores. One of the main methods of removing thallium (both radioactive and normal) from humans is to use Prussian blue, which is a material which absorbs thallium. Up to 20 g per day of Prussian blue is fed by mouth to the person, and it passes through their digestive system and comes out in the stool. Hemodialysis and hemoperfusion are also used to remove thallium from the blood serum. At later stage of the treatment additional potassium is used to mobilize thallium from the tissue. Thallium is a chemical element with the symbol Tl and atomic number 81. This soft gray poor metal resembles tin but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861 by the newly developed method of flame spectroscopy. Each discovered the new element in residues of sulfuric acid production. Thallium and its compounds are extremely toxic, and should be handled with great care. There are numerous recorded cases of fatal thallium poisoning. Contact with skin is dangerous, and adequate ventilation should be provided when melting this metal. Thallium(I) compounds have a high aqueous solubility and are readily absorbed through the skin. Exposure to them should not exceed 0.1 mg per m2 of skin in an 8-hour time-weighted average (40-hour work week). Thallium is a suspected human carcinogen. For a long time thallium compounds were easily available as rat poison. This fact and that it is water soluble and nearly tasteless led to frequent intoxications caused by accident or criminal intent. Thallium can also be obtained from the smelting of lead and zinc ores. Manganese nodules found on the ocean floor also contain some thallium, but the collection of these nodules has been and continues to be prohibitively expensive. There is also the potential for damaging the environment of the oceans. In addition, several other thallium minerals, containing 16\\% to 60\\% thallium, occur in nature as complexes of sulfides or selenides that primarily contain antimony, arsenic, copper, lead, and/or silver. However, these minerals are rare, and they have had no commercial importance as sources of thallium. The Allchar deposit in southern Macedonia was the only area where thallium was ever actively mined. This dep...

   

17beta-Acetylestradiol

acetic acid (3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl) ester

C20H26O3 (314.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.

   

Fluoroacetaldehyde

2-fluoroacetaldehyde

C2H3FO (62.0168)


   

GSK 4716

4-hydroxy-N-[(E)-(4-propan-2-ylphenyl)methylideneamino]benzamide

C17H18N2O2 (282.1368)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.

   
   

2-Nitrobenzoic acid

O-Carboxynitrobenzene

C7H5NO4 (167.0219)


   

2,6-Dibromophenol

2,6-Dibromo-phenol

C6H4Br2O (249.8629)


2,6-Dibromophenol is found in crustaceans. 2,6-Dibromophenol is an important flavour component of marine fish, molluses and crustacean 2,6-Dibromophenol is an endogenous metabolite.

   

5-(3-Methyl-1-triazeno)imidazole-4-carboxamide

5-(3-Methyl-1-triazeno)imidazole-4-carboxamide monohydrochloride

C5H8N6O (168.076)


D009676 - Noxae > D000477 - Alkylating Agents

   

Dimethylurea

N,N-Dimethyl-urea

C3H8N2O (88.0637)


Dimethylurea (DMU) (IUPAC systematic name: 1,3-Dimethylurea ) is a urea derivative and used as an intermediate in organic synthesis. It is a colorless crystalline powder with little toxicity.

   

alpha-Hydroxytamoxifen

(3E)-4-{4-[2-(dimethylamino)ethoxy]phenyl}-3,4-diphenylbut-3-en-2-ol

C26H29NO2 (387.2198)


alpha-Hydroxytamoxifen is a metabolite of tamoxifen. Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia)

   

Nornitrogen mustard

Nornitrogen mustard, hydrochloride

C4H9Cl2N (141.0112)


Nornitrogen mustard is a metabolite of cyclophosphamide. Cyclophosphamide (trade names Endoxan, Cytoxan, Neosar, Procytox, Revimmune), also known as cytophosphane, is a nitrogen mustard alkylating agent, from the oxazophorines group. An alkylating agent adds an alkyl group (CnH2n+1) to DNA. It attaches the alkyl group to the guanine base of DNA, at the number 7 nitrogen atom of the imidazole ring. It is used to treat various types of cancer and some autoimmune disorders. (Wikipedia) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds

   

Aminopropylcadaverine

N-(3-Aminopropyl)-1,5-pentanediamine

C8H21N3 (159.1735)


Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE. [HMDB] Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE.

   

alpha-Fluoro-beta-alanine

3-amino-2-fluoropropanoic acid

C3H6FNO2 (107.0383)


   

Mannopine

AGN-PC-0OKTBE

C11H22N2O8 (310.1376)


A hexitol derivative that is D-mannitol in which the hydroxy group at position 1 is replaced by the alpha-amino group of L-glutamine. It is produced in crown gall tumours induced in a wide range of dicotyledenous plants by Agrobacterium tumefaciens.

   

N-Deacetylcolchicine

(7S)-7-amino-1,2,3,10-tetramethoxy-6,7-dihydro-5H-benzo[a]heptalen-9-one

C20H23NO5 (357.1576)


Deacetylcolchicine is a carbotricyclic compound, an alkaloid and a member of acetamides.N-Deacetylcolchicine has been reported in Apis cerana

   

Jasmolin I

(1S)-2-methyl-4-oxo-3-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-yl (1R,3R)-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate

C21H30O3 (330.2195)


   

Tuberculostearic acid

10R-methyl-octadecanoic acid

C19H38O2 (298.2872)


Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256). Tuberculostearic acid (TBSA) is a mycobacterial cell wall constituent that is possible to measure in plasma samples of patients with active tuberculosis. (PMID 14723350). Detection of tuberculostearic acid in cerebrospinal fluid by use of gas chromatography-mass spectrometry has proven to be a very rapid, sensitive, and specific test for tuberculous meningitis. (PMID 8438134). Tuberculostearic acid can also be found in Actinomycetales (PMID: 109465). Tuberculostearic acid is the characteristic fatty acid of acid-fast bacteria of the order Actinomycetales. (PMID 3329256)

   

Islandicin

Funiculosin

C15H10O5 (270.0528)


   

Succinaldehyde

1,4-Butane dialdehyde

C4H6O2 (86.0368)


   

Hydroxypyruvaldehyde phosphate

Hydroxypyruvaldehyde phosphate

C3H5O6P (167.9824)


   

Gonyautoxin II

{4-[(carbamoyloxy)methyl]-10,10-dihydroxy-2,6-diimino-hexahydro-1H-pyrrolo[1,2-c]purin-9-yl}oxidanesulfonic acid

C10H17N7O8S (395.0859)


Gonyautoxin III is found in mollusks. Gonyautoxin III is from Gonyaulax and Protogonyaulax species. From Gonyaulax and Protogonyaulax subspecies Gonyautoxin II is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Anabaseine

3-(3,4,5,6-tetrahydropyridin-2-yl)pyridine

C10H12N2 (160.1)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Anabaseine is a non-selective nicotinic agonist. Anabaseine stimulates all AChRs, preferentially stimulates skeletal muscle and brain α7 subtypes[1][2]. Anabaseine is also a weak partial agonist at α4β2 nAChRs[3].

   

Neoherculin

(Z,2E,6Z,8E,10Z)-N-(2-methylpropyl)dodeca-2,6,8,10-tetraenimidic acid

C16H25NO (247.1936)


Neoherculin is found in herbs and spices. Neoherculin is a constituent of Zanthoxylum species Constituent of Zanthoxylum subspecies Neoherculin is found in herbs and spices.

   

2-(3-methylthio)propylmalate

2-(3-Methylthio)propylmalic acid

C8H14O5S (222.0562)


   

Cilazprilat

(4S,7S)-7-[[(1S)-1-carboxy-3-phenylpropyl]amino]-6-oxo-1,2,3,4,7,8,9,10-octahydropyridazino[1,2-a]diazepine-4-carboxylic acid

C20H27N3O5 (389.1951)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

alpha-Cyperene

3H-3a,7-Methanoazulene,2,4,5,6,7,8-hexahydro-1,4,9,9-tetramethyl-, (3aR,4R,7R)-

C15H24 (204.1878)


Isolated from Cyperus rotundus (nutgrass) and other plants. alpha-Cyperene is found in burdock and root vegetables. alpha-Cyperene is found in burdock. alpha-Cyperene is isolated from Cyperus rotundus (nutgrass) and other plant

   

Arcapillin

4H-1-Benzopyran-4-one, 2-(2,4-dihydroxy-5-methoxyphenyl)-5-hydroxy-6,7-dimethoxy-

C18H16O8 (360.0845)


A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 2, 4 and 5 and methoxy groups at positions 5, 6 and 7 respectively.

   

(±)-Tryptophan

alpha-Amino-beta-(3-indolyl)-propionic acid

C11H12N2O2 (204.0899)


(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.

   

1,2-Dihydronaphthalene-1,2-diol

1,2-Dihydroxy-1,2-dihydronaphthalene, (trans)-(+-)-isomer

C10H10O2 (162.0681)


This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.

   

flumequine

flumequine

C14H12FNO3 (261.0801)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 1030 CONFIDENCE standard compound; INTERNAL_ID 8533 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3642

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.0579)


Rubiadin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. It has a role as an antibacterial agent, an antioxidant, a hepatoprotective agent and a plant metabolite. Rubiadin is a natural product found in Coprosma tenuicaulis, Prismatomeris tetrandra, and other organisms with data available. A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

Hydroxyanthraquinone

InChI=1/C14H8O3/c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16/h1-7,15

C14H8O3 (224.0473)


1-hydroxyanthraquinone is a monohydroxyanthraquinone. 1-Hydroxyanthraquinone is a natural product found in Rheum palmatum, Handroanthus impetiginosus, and Morinda citrifolia with data available. D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

ribosylzeatin

(3R,4S,5R)-2-(((E)-4-((7H-purin-6-yl)amino)-2-methylbut-2-en-1-yl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol;trans-Zeatinriboside

C15H21N5O5 (351.1543)


9-ribosyl-trans-zeatin is a 9-ribosylzeatin having trans-zeatin as the nucleobase. It has a role as a plant metabolite and a cytokinin. It is a nucleoside analogue and a 9-ribosylzeatin. It is functionally related to an adenosine. Zeatin riboside is a natural product found in Rhodococcus fascians, Pseudomonas syringae, and other organisms with data available. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins A 9-ribosylzeatin having trans-zeatin as the nucleobase. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits. trans-Zeatinriboside is a type of cytokinin precursor, acts as a major long-distance signalling form in xylem vessels, regulates leaf size and meristem activity-related traits.

   

Flumequine

7-fluoro-12-methyl-4-oxo-1-azatricyclo[7.3.1.0⁵,¹³]trideca-2,5(13),6,8-tetraene-3-carboxylic acid

C14H12FNO3 (261.0801)


Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria. It functions by inhibiting DNA gyrase, a type II topoisomerase, and topoisomerase IV, enzymes necessary to separate bacterial DNA, thereby inhibiting cell division. Flumequine is a 9-fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[ij]quinolizine-2-carboxylic acid. The molecular formula is C14H12FNO3 It is a white powder, odorless, flavorless, insoluble in water but soluble in organic solvent. Flumequine is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class used to treat bacterial infections. It is a first-generation fluoroquinolone antibacterial that has been removed from clinical use and is no longer being marketed. It kills bacteria by interfering with the enzymes that cause DNA to unwind and duplicate. Flumequine was used in veterinarian medicine for the treatment of enteric infections (all infections of the intestinal tract), as well as to treat cattle, swine, chickens, and fish, but only in a limited number of countries. It was occasionally used in France (and a few other European Countries) to treat urinary tract infections under the trade name Apurone. However this was a limited indication because only minimal serum levels were achieved. The first quinolone used was nalidixic acid (was marketed in many countries as Negram) followed by the fluoroquinolone flumequine. The first-generation fluoroquinolone agents, such as flumequine, had poor distribution into the body tissues and limited activity. As such they were used mainly for treatment of urinary tract infections. Flumequine (benzo quinolizine) was first patented in 1973, (German Patent) by Rikker Labs. Flumequine is a known antimicrobial compound described and claimed in U.S. Pat. No. 3,896,131 (Example 3), July 22, 1975. Flumequine is the first quinolone compound with a fluorine atom at the C6-position of the related quinolone basic molecular structure. Even though this was the first fluoroquinolone, it is oftentimes overlooked when classifying the drugs within this class by generations and excluded from such a list. There continues to be considerable debate as to whether or not this DNA damage is to be considered one of the mechanisms of action concerning the severe adverse reactions experienced by some patients following fluoroquinolone therapy. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

1,6-Digalloyl-beta-D-glucopyranose

[3,4,5-Trihydroxy-6-(3,4,5-trihydroxybenzoyloxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoic acid

C20H20O14 (484.0853)


1,6-Digalloyl-beta-D-glucopyranose is found in green vegetables. 1,6-Digalloyl-beta-D-glucopyranose is present in commercial rhubarb. Present in commercial rhubarb. 1,6-Digalloyl-beta-D-glucopyranose is found in green vegetables.

   

5beta-Coprostanol

(1S,2S,5S,7R,10R,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-ol

C27H48O (388.3705)


Coprosterol or coprostanol is a cholesterol derivative found in human feces, gallstones, eggs, and other biological matter. Coprosterol is the odorous principle of feces. It is formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. This compound has frequently been used as a biomarker for the presence of human faecal matter in the environment. American physician Austin Flint named it stercorin (Wikipedia). The transformation of cholesterol into coprosterol in its passage through the body involves a reduction of the C5:C6 double bond, and a transition from the allocholanic- to the cholanic-ring system. Although it is established that the bacterial flora of the intestine is concerned in the reduction process, the mechanism by which the stereochemical change is brought about is unknown. Current data suggests that cholestenone and coprostanone, and not cholesterol itself, are the immediate precursors of coprosterol which is formed from them in the intestine by bacterial reduction. Coprosterol is also a microbial metabolite, it can be produced by Lactobacillus (PMID: 20338415). Coprosterol or coprostanol is a cholesterol derivative found in human feces, gallstones, eggs, and other biological matter. Coprosterol is the odorous principle of feces. It is formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. This compound has frequently been used as a biomarker for the presence of human faecal matter in the environment. American physician Austin Flint named it stercorin . The transformation of cholesterol into coprosterol in its passage through the body involves a reduction of the C5:C6 double bond, and a transition from the allocholanic- to the cholanic-ring system. Although it is established that the bacterial flora of the intestine is concerned in the reduction process, the mechanism by which the stereochemical change is brought about is unknown. Current data suggests that cholestenone and coprostanone, and not cholesterol itself, are the immediate precursors of coprosterol which is formed from them in the intestine by bacterial reduction. [HMDB] Same as: D01527

   

(±)-2-Hydroxy-2-phenylacetonitrile

(R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE

C8H7NO (133.0528)


(±)-2-Hydroxy-2-phenylacetonitrile, also known as mandelonitrile, alpha-hydroxybenzeneacetonitrile or benzal dehyde cyanohydrin, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Mandelonitrile is a chemical compound of the cyanohydrin class. Hydroxy-2-phenylacetonitrile is a potentially toxic compound. The primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. (±)-2-Hydroxy-2-phenylacetonitrile has been detected, but not quantified, in fruits. This could make (±)-2-hydroxy-2-phenylacetonitrile a potential biomarker for the consumption of these foods. (±)-2- Oxygen therapy can also be administered. Isolated from peach kernels (Prunus persica). (±)-2-Hydroxy-2-phenylacetonitrile is found in fruits.

   

8-iso-15-keto-PGE2

(5Z)-7-[(1S,2R)-3-hydroxy-5-oxo-2-[(1E)-3-oxooct-1-en-1-yl]cyclopentyl]hept-5-enoic acid

C20H30O5 (350.2093)


8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states (PMID: 14504139). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)

   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

12-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

12-L-Hydroperoxy-5,8,10,14-eicosatetraenoic acid

C20H32O4 (336.23)


   

N-(N-(N-((Hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan

2-({2-[(2-{[(azepan-1-yl)(hydroxy)methylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-1-hydroxy-3-(1H-indol-3-yl)propylidene}amino)-3-(1H-indol-3-yl)propanoate

C35H44N6O5 (628.3373)


   

3,17-Dihydroxypregn-5-en-20-one

1-{5,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl}ethan-1-one

C21H32O3 (332.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).

   

Lonol

N,N-Dimethyl-3-[[1-(phenylmethyl)-3-indazolyl]oxy]-1-propanamine

C19H23N3O (309.1841)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents

   

cefuroxime axetil

1-{3-[(carbamoyloxy)methyl]-7-[2-(furan-2-yl)-2-(methoxyimino)acetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carbonyloxy}ethyl acetate

C20H22N4O10S (510.1057)


   

cephamycin C

7-[(5-Amino-5-carboxy-1-hydroxypentylidene)amino]-3-[(C-hydroxycarbonimidoyloxy)methyl]-7-methoxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate

C16H22N4O9S (446.1107)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Epi-Lipoxin A4

5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C20H32O5 (352.225)


   

N-Acetyl-DL-phenylalanine

2-[(1-Hydroxyethylidene)amino]-3-phenylpropanoate

C11H13NO3 (207.0895)


C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent

   

Soterenol monohydrochloride

2-Hydroxy-5-(1-hydroxy-2-(isopropylamino)ethyl)methane sulfonanilide monohydrochloride

C12H20N2O4S (288.1144)


C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator

   

Triflumizole

N-[4-chloro-2-(trifluoromethyl)phenyl]-1-(1H-imidazol-1-yl)-2-propoxyethan-1-imine

C15H15ClF3N3O (345.0856)


   

Tropine

8-Methyl-8-azabicyclo[3.2.1]octan-3-ol

C8H15NO (141.1154)


Pseudotropine, also known as tropine hydrochloride, (endo)-isomer or tropine, (exo)-isomer, is a member of the class of compounds known as tropane alkaloids. Tropane alkaloids are organic compounds containing the nitrogenous bicyclic alkaloid parent N-Methyl-8-azabicyclo[3.2.1]octane. Pseudotropine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Pseudotropine can be found in a number of food items such as winter savory, japanese chestnut, blackcurrant, and black walnut, which makes pseudotropine a potential biomarker for the consumption of these food products. Pseudotropine (3β-tropanol, ψ-tropine, 3-pseudotropanol or PTO) is a derivative of tropane and an isomer of tropine . Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

C11:0

Hendecanoic acid

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Ginkgolide J

9H-1,7A-(EPOXYMETHANO)-1H,6AH-CYCLOPENTA(C)FURO(2,3-B)FURO(3,2:3,4)CYCLOPENTA(1,2-D)FURAN-5,9,12(4H)-TRIONE, 3-(1,1-DIMETHYLETHYL)HEXAHYDRO-2,4,7B-TRIHYDROXY-8-METHYL-, (1S,2R,3S,3AS,4R,6AR,7AR,7BR,8S,10AS,11AS)-

C20H24O10 (424.1369)


ginkgolide-J is a natural product found in Ginkgo biloba with data available. See also: Ginkgo (part of). Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

Texasin

6,7-Dihydroxy-3-(4-methoxyphenyl)-4-benzopyrone

C16H12O5 (284.0685)


   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

6-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. A trihydroxyflavanone having a structure of naringenin prenylated at C-6. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

BENZYDAMINE

BENZYDAMINE

C19H23N3O (309.1841)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D000893 - Anti-Inflammatory Agents

   

Limonene

(S)-(−)-Limonene

C10H16 (136.1252)


A monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. Found in over 300 essential oils, the ==(R)==-form is the most widespread, followed by the racemate and then the (S)-form. Extensively used in the flavour industry [DFC] (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

Harmolol

Harmolol

C12H12N2O (200.095)


A harmala alkaloid in which the harman skeleton is hydroxy-substituted at C-7 and has been reduced across the 3,4 bond. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.398 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.386

   

Lysipressin

[Lys8]-Vasopressin TFA

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1628)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Acetylsulfamethoxazole

N4-Acetyl-Sulfamethoxazole

C12H13N3O4S (295.0627)


D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 2672 CONFIDENCE standard compound; INTERNAL_ID 8589 CONFIDENCE standard compound; INTERNAL_ID 4117 CONFIDENCE standard compound; INTERNAL_ID 2014

   

MONURON

MONURON

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

CAPTAN

CAPTAN

C9H8Cl3NO2S (298.9341)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 3039

   

Oxyfluorfen

Oxyfluorfen

C15H11ClF3NO4 (361.0329)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3174

   

fludrocortisone

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-en-3,20-dione 21-acetate

C23H31O6F (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3240 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cinchonine

(R)-alpha-[(8R)-8-Vinyl-1-azabicyclo[2.2.2]octane-2-yl]-4-quinolinemethanol

C19H22N2O (294.1732)


Cinchonan in which a hydrogen at position 9 is substituted by hydroxy (S configuration). It occurs in the bark of most varieties of Cinchona shrubs, and is frequently used for directing chirality in asymmetric synthesis. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Origin: Plant; Formula(Parent): C19H22N2O; Bottle Name:Cinchonine; PRIME Parent Name:Cinchonine; PRIME in-house No.:V0325; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.610 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2401; CONFIDENCE confident structure Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].

   

Epicholestanol

5alpha-cholestan-3alpha-ol

C27H48O (388.3705)


A 5alpha-chloestane compound having a 3alpha-hydroxy substituent. Same as: D01527 Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Procyanidin C1

(2R,3R,4S)-2-(3,4-dihydroxyphenyl)-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-8-yl]-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-yl]chroman-3,5,7-triol

C45H38O18 (866.2058)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2]. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2].

   

Picrotoxinin

picrotoxinine

C15H16O6 (292.0947)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.577 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.573 Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

Dehydrocholic acid

(4R)-4-[(5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxo-1,2,4,5,6,8,9,11,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H34O5 (402.2406)


Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.

   

carbofuran

S-Carboxymethylcysteine

C5H9NO4S (179.0252)


D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054

   

cinoxacin

cinoxacin

C12H10N2O5 (262.059)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.746 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740

   

Cephalomannine

[(1S,2S,3R,4S,7R,9R,10S,12S,15S)-4,12-diacetyloxy-1,9-dihydroxy-15-[(2R,3S)-2-hydroxy-3-[[(E)-2-methylbut-2-enoyl]amino]-3-phenylpropanoyl]oxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-2-yl] benzoate

C45H53NO14 (831.3466)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.172 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.307 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.248 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog that can be isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2][3][4]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2].

   

Trilostane

Trilostane

C20H27NO3 (329.1991)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02C - Antiadrenal preparations > H02CA - Anticorticosteroids C471 - Enzyme Inhibitor > C54678 - Hydroxysteroid Dehydrogenase Inhibitor > C2184 - 3-Hydroxysteroid Dehydrogenase Inhibitor C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C2355 - Anti-Adrenal D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4414; ORIGINAL_PRECURSOR_SCAN_NO 4413 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4409; ORIGINAL_PRECURSOR_SCAN_NO 4407 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4370; ORIGINAL_PRECURSOR_SCAN_NO 4368 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4405; ORIGINAL_PRECURSOR_SCAN_NO 4404 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4411; ORIGINAL_PRECURSOR_SCAN_NO 4410 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4413; ORIGINAL_PRECURSOR_SCAN_NO 4412 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8763; ORIGINAL_PRECURSOR_SCAN_NO 8759 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9288; ORIGINAL_PRECURSOR_SCAN_NO 9285 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9297; ORIGINAL_PRECURSOR_SCAN_NO 9293 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9341; ORIGINAL_PRECURSOR_SCAN_NO 9336 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8839; ORIGINAL_PRECURSOR_SCAN_NO 8834 CONFIDENCE standard compound; INTERNAL_ID 720; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8911; ORIGINAL_PRECURSOR_SCAN_NO 8909

   

tioconazole

tioconazole

C16H13Cl3N2OS (385.9814)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Ethisterone

17alpha-Ethynyl-17beta-hydroxyandrost-4-en-3-one

C21H28O2 (312.2089)


A 17beta-hydroxy steroid that is testosterone in which the 17beta hydrogen is replaced by an ethynyl group. Ethisterone was the first orally active progestin and is a metabolite of danazol. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04

   

6-Hydroxynicotinic Acid

6-Hydroxynicotinic Acid

C6H5NO3 (139.0269)


A monohydroxypyridine that is the 6-hydroxy derivative of nicotinic acid. 6-Hydroxynicotinic acid is an endogenous metabolite.

   

5-Aminovaleric acid

5-Aminopentanoic acid

C5H11NO2 (117.079)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JJMDCOVWQOJGCB-UHFFFAOYSA-N_STSL_0196_5-Aminovaleric acid_0500fmol_180831_S2_L02M02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.

   

2-Oxovaleric acid

2-Oxopentanoic acid

C5H8O3 (116.0473)


An oxopentanoic acid carrying an oxo group at position 2. 2-Oxovaleric acid is a keto acid that is found in human blood.

   

UNDECANOIC ACID

UNDECANOIC ACID

C11H22O2 (186.162)


A straight-chain, eleven-carbon saturated medium-chain fatty acid found in body fluids; the most fungitoxic of the C7:0 - C18:0 fatty acid series. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Lufenuron

Pesticide3_Lufenuron_C17H8Cl2F8N2O3_N-[[[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]amino]carbonyl]-2,6-difluorobenzamide

C17H8Cl2F8N2O3 (509.9784)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE Reference Standard (Level 1); Source lufenuron_28102013_11_HCD15.txt

   

Prostaglandin B2

15S-hydroxy-9-oxo-5Z,8(12),13E-prostatrienoic acid

C20H30O4 (334.2144)


   

Hydroxypropionic acid

3-Hydroxypropionic acid

C3H6O3 (90.0317)


A 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens attached to the terminal carbon is replaced by a hydroxy group. Hydroxypropionic acid, also known as 3-hydroxypropionate or hydracrylic acid, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Hydroxypropionic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Hydroxypropionic acid can be synthesized from propionic acid. Hydroxypropionic acid is also a parent compound for other transformation products, including but not limited to, beta-propiolactone, ascr#5, and 3-hydroxypropanoyl-CoA. Hydroxypropionic acid can be found in a number of food items such as apple, poppy, yam, and cupuaçu, which makes hydroxypropionic acid a potential biomarker for the consumption of these food products. Hydroxypropionic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine. Hydroxypropionic acid exists in all living organisms, ranging from bacteria to humans. In humans, hydroxypropionic acid is involved in the propanoate metabolism. Hydroxypropionic acid is also involved in few metabolic disorders, which include malonic aciduria, malonyl-coa decarboxylase deficiency, and methylmalonic aciduria due to cobalamin-related disorders. Moreover, hydroxypropionic acid is found to be associated with biotinidase deficiency and propionic acidemia. Hydroxypropionic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Hydroxypropanoic acid, or alternately hydroxypropionic acid, may refer to either of two isomeric chemical compounds: 3-Hydroxypropionic acid (hydracrylic acid) Lactic acid (2-hydroxypropanoic acid) . Chronically high levels of hydroxypropionic acid are associated with at least 5 inborn errors of metabolism including: Biotinidase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria, Methylmalonic, Aciduria Due to Cobalamin-Related Disorders and Propionic acidemia (T3DB).

   

16-Glucuronide-estriol

Estriol-16beta-D-glucopyranosiduronic acid

C24H32O9 (464.2046)


A steroid glucosiduronic acid that is estriol in which the phenolic hydrogen has been replaced by a beta-D-glucuronyl residue. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

E-4031

N-[4-[1-[2-(6-Methylpyridin-2-yl)ethyl]piperidine-4-carbonyl]phenyl]methanesulfonamide

C21H27N3O3S (401.1773)


D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

2-Deoxyuridine 5-monophosphate

2-Deoxyuridine 5-monophosphate

C9H13N2O8P (308.041)


   

pemoline

pemoline

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

N-Acetylhistamine

N-[2-(1H-imidazol-5-yl)ethyl]acetamide

C7H11N3O (153.0902)


A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.

   

sinapyl alcohol

sinapyl alcohol

C11H14O4 (210.0892)


A primary alcohol, being cinnamyl alcohol hydroxylated at C-4 and methoxylated at C-3 and -5. Sinapyl alcohol, also known as 4-(3-hydroxy-1-propenyl)-2,6-dimethoxy-phenol or 4-hydroxy-3,5-dimethoxycinnamyl alcohol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Sinapyl alcohol can be found in a number of food items such as ginseng, endive, sea-buckthornberry, and white cabbage, which makes sinapyl alcohol a potential biomarker for the consumption of these food products. Sinapyl alcohol is an organic compound structurally related to cinnamic acid. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. This phytochemical is one of the monolignols, which are precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenoids and coumarins .

   

6-Aminopenicillanic acid

6-Aminopenicillanic acid

C8H12N2O3S (216.0569)


A penicillanic acid compound having a (6R)-amino substituent. The active nucleus common to all penicillins; it may be substituted at the 6-amino position to form the semisynthetic penicillins, resulting in a variety of antibacterial and pharmacologic characteristics. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Benzyl Benzoate

Benzyl Benzoate

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Rubiadin

9,10-Anthracenedione, 1,3-dihydroxy-2-methyl-

C15H10O4 (254.0579)


Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].

   

bis(3-aminopropyl)amine

bis(3-aminopropyl)amine

C6H17N3 (131.1422)


   

fumonisin B2

1,1-[(1S,2R)-1-[(2S,9R,11S,12S)-12-amino-9,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl]ester-1,2,3-propanetricarboxylic acid

C34H59NO14 (705.3935)


A fumonisin that is (2S,3S,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,14,15-triol in which the hydroxy groups at positions 14 and 15 have each been esterified by condensation with the 1-carboxy group of 3-carboxyglutaric acid (giving a 3-carboxyglutarate ester group with R configuration in each case). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 5969 CONFIDENCE Reference Standard (Level 1)

   

p-coumaryl alcohol

4-(3-Hydroxyprop-1-en-1-yl)phenol

C9H10O2 (150.0681)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents Annotation level-1

   

Hippeastrine

(2S,3S,9S,10S)-9-hydroxy-4-methyl-11,16,18-trioxa-4-azapentacyclo[11.7.0.02,10.03,7.015,19]icosa-1(20),7,13,15(19)-tetraen-12-one

C17H17NO5 (315.1107)


Hippeastrine is an indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an indole alkaloid, a delta-lactone, a secondary alcohol and an organic heteropentacyclic compound. Hippeastrine is a natural product found in Pancratium trianthum, Pancratium canariense, and other organisms with data available. An indole alkaloid isolated from the Amaryllidaceae family and has been shown to exhibit cytotoxic activity. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Amaryllidaceae alkaloids

   

BENZOYLFORMIC ACID

Phenylglyoxylic acid

C8H6O3 (150.0317)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

Tetraconazole

Pesticide6_Tetraconazole_C13H11Cl2F4N3O_1-[2-(2,4-Dichlorophenyl)-3-(1,1,2,2-tetrafluoroethoxy)propyl]-1H-1,2,4-triazole

C13H11Cl2F4N3O (371.0215)


D016573 - Agrochemicals D010575 - Pesticides

   

CARBOXIN

Pesticide5_Carboxin_C12H13NO2S_Vitavax

C12H13NO2S (235.0667)


D016573 - Agrochemicals D010575 - Pesticides Carboxin (Carboxine) is a systemic agricultural fungicide and seed protectant.

   

15-keto-Prostaglandin E2

9,15-dioxo-11-hydroxy-prosta-5Z,13E-dien-1-oic acid

C20H30O5 (350.2093)


   

5-heptenoic acid

δ-heptenoic acid

C7H12O2 (128.0837)


   

Hexadecanoate

[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] hexadecanoate

C43H76O2 (624.5845)


   

Thiomedon

N-acetyl-S-methylhomocysteine

C7H13NO3S (191.0616)


N-Acetyl-DL-methionine is an endogenous metabolite.

   

Pseudotropine

Pseudotropine

C8H15NO (141.1154)


Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2]. Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

   

2-Hydroxymyristic acid

2-HYDROXYTETRADECANOIC ACID

C14H28O3 (244.2038)


A derivative of myristic acid having a hydroxy substituent at C-2.

   

D-D 92

trans-1,3-Dichloropropene

C3H4Cl2 (109.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Mucofan

2-Amino-3-[(carboxymethyl)sulfanyl]propanoic acid

C5H9NO4S (179.0252)


D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents

   

FA 6:3;O2

(2E,4Z)-4-hydroxy-6-oxohexa-2,4-dienoic acid

C6H6O4 (142.0266)


cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].

   

FA 14:0;O

Tetradecanoic acid, 3-hydroxy-, D-(-)-

C14H28O3 (244.2038)


   

FA 20:5;O3

(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid

C20H30O5 (350.2093)


   

Prostaglandin B1

9-oxo-15S-hydroxy-8(12),13E-prostadienoic acid

C20H32O4 (336.23)


A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).

   

Leukotriene F4

L-gamma-glutamyl-S-{(1R,2E,4E,6Z,9Z)-1-[(1S)-4-carboxy-1-hydroxybutyl]pentadeca-2,4,6,9-tetraen-1-yl}-L-cysteine

C28H44N2O8S (568.2818)


A leukotriene composed of (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid having (5S)-hydroxy and (6R)-(L-gamma-glutamyl-L-cystein-S-yl) substituents.

   

decanol

Alcohols, C8-10

C10H22O (158.1671)


   

FAL 6:2

Sorbic aldehyde

C6H8O (96.0575)


   

CoA 18:2

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


   

dihydrolipoamide

6,8-disulfanyloctanimidic acid

C8H17NOS2 (207.0752)


   

HENTRIACONTANE

HENTRIACONTANE

C31H64 (436.5008)


   

Cyperene

3H-3a,7-Methanoazulene,2,4,5,6,7,8-hexahydro-1,4,9,9-tetramethyl-, (3aR,4R,7R)-

C15H24 (204.1878)


   
   

β-Estradiol 17-acetate

beta-Estradiol 17-acetate

C20H26O3 (314.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones β-Estradiol 17-acetate is a metabolite of estradiol. Target: Others β-Estradiol 17-acetate is a metabolite of estradiol.

   

CHLOROBENZENE

CHLOROBENZENE

C6H5Cl (112.008)


   

methanethiol

Methyl mercaptan

CH4S (48.0034)


   

DL-Asparagine

DL-Asparagine

C4H8N2O3 (132.0535)


   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

(3S,4aR,6S,8aR)-6-[(4-carboxyphenyl)methyl]-decahydroisoquinoline-3-carboxylic acid

(3S,4aR,6S,8aR)-6-[(4-carboxyphenyl)methyl]-decahydroisoquinoline-3-carboxylic acid

C18H23NO4 (317.1627)


   
   

omega-Carboxy-N-acetyl-LTE4

omega-Carboxy-N-acetyl-LTE4

C25H37NO8S (511.224)


   

DL-Aspartic Acid

15-Epibetanidin 5-[E-feruloyl-(->3)-apiosyl-(1->2)-glucoside]

C4H7NO4 (133.0375)


3,6-hexahydroxydiphenoylglucose is a member of the class of compounds known as hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. 3,6-hexahydroxydiphenoylglucose is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,6-hexahydroxydiphenoylglucose can be found in pomegranate, which makes 3,6-hexahydroxydiphenoylglucose a potential biomarker for the consumption of this food product. Constituent of Allium chinense (rakkyo). Gitogenin 3-[glucosyl-(1->2)-glucosyl-(1->4)-galactoside] is found in onion-family vegetables. Pigment from Phytolacca americana (pokeberry). 15-Epibetanidin 5-[E-feruloyl-(->3)-apiosyl-(1->2)-glucoside] is found in fruits. Isolated from sugar cane leaves (Saccharum officinarum) Constituent of the famine food Physalis angulata (cutleaf ground cherry). 24,25-Epoxywithanolide D is found in herbs and spices and fruits. Isolated from Melilotus alba (white melilot). cis-o-Coumaric acid 2-glucoside is found in herbs and spices and pulses. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids

   

cholesteryl palmitate

cholesteryl palmitate

C43H76O2 (624.5845)


A cholesterol ester obtained by the formal condensation of cholesterol with palmitic acid.

   

Epidihydrocholesterin

Epidihydrocholesterin

C27H48O (388.3705)


   

γ-Fagarine

gamma-Fagarine

C13H11NO3 (229.0739)


   

2-NITROBENZOIC ACID

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

Pyricarbate

Pyridinol carbamate

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

AI3-02280

4-02-00-01068 (Beilstein Handbook Reference)

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

CHEBI:18450

(R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE

C8H7NO (133.0528)


   

537-33-7

InChI=1\C11H14O4\c1-14-9-6-8(4-3-5-12)7-10(15-2)11(9)13\h3-4,6-7,12-13H,5H2,1-2H3\b4-3

C11H14O4 (210.0892)


   

Fagarine

4-27-00-02211 (Beilstein Handbook Reference)

C13H11NO3 (229.0739)


   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

Scabide

InChI=1\C14H12O2\c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12\h1-10H,11H

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Hentriacontan

N-Hentriacontane

C31H64 (436.5008)


   

Antak

InChI=1\C10H22O\c1-2-3-4-5-6-7-8-9-10-11\h11H,2-10H2,1H

C10H22O (158.1671)


   

cuminol

InChI=1\C10H14O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-6,8,11H,7H2,1-2H

C10H14O (150.1045)


4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

93-03-8

3,4-Dimethoxyphenylmethyl alcohol

C9H12O3 (168.0786)


Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2]. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2].

   

83-32-9

InChI=1\C12H10\c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11\h1-6H,7-8H

C12H10 (154.0782)


   

AIDS-085621

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[oxo-(3,4,5-trihydroxyphenyl)methoxy]methyl]-2-tetrahydropyranyl] ester

C20H20O14 (484.0853)


   

Bio1_001201

7-[2-[(E,3S)-3-hydroxyoct-1-enyl]-5-keto-1-cyclopentenyl]enanthic acid

C20H32O4 (336.23)


   

99-94-5

InChI=1\C8H8O2\c1-6-2-4-7(5-3-6)8(9)10\h2-5H,1H3,(H,9,10

C8H8O2 (136.0524)


p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

129-43-1

InChI=1\C14H8O3\c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16\h1-7,15

C14H8O3 (224.0473)


D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

Actinidine

(7S)-4,7-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine

C10H13N (147.1048)


A member of the class of cyclopentapyridines that is 6,7-dihydrocyclopenta[c]pyridine bearing two methyl substituents at positions 4 and 7.

   

Thiomethane

4-01-00-01273 (Beilstein Handbook Reference)

CH4S (48.0034)


   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

nigerose

Sakebiose

C12H22O11 (342.1162)


Detected in saké. Can be obtained preparatively by hydrolysis of the D-glucan from fruiting bodies of the bracket fungus Laetiporus sulphureus (sulphur polypore) (Takeo et al). Sakebiose is found in mushrooms and alcoholic beverages.

   

2,4-Hexadienal

2,4-Hexadienal

C6H8O (96.0575)


(e,e)-2,4-hexadienal, also known as fema 3429, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms (e,e)-2,4-hexadienal is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e,e)-2,4-hexadienal can be found in a number of food items such as fishes, tea, nuts, and fruits, which makes (e,e)-2,4-hexadienal a potential biomarker for the consumption of these food products.

   

Linoleoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3449)


An octadecadienoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of linoleic acid. Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976, 16020546) [HMDB]

   

Uroporphyrinogen III

Uroporphyrinogen III

C40H44N4O16 (836.2752)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uroporphyrinogen iii, also known as urogen iii, is a member of the class of compounds known as porphyrins. Porphyrins are compounds containing a fundamental skeleton of four pyrrole nuclei united through the alpha-positions by four methine groups to form a macrocyclic structure. Uroporphyrinogen iii is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Uroporphyrinogen iii can be found in a number of food items such as pili nut, rubus (blackberry, raspberry), sunflower, and pecan nut, which makes uroporphyrinogen iii a potential biomarker for the consumption of these food products. Uroporphyrinogen iii can be found primarily in blood. Uroporphyrinogen iii exists in all living species, ranging from bacteria to humans. In humans, uroporphyrinogen iii is involved in the porphyrin metabolism. Uroporphyrinogen iii is also involved in few metabolic disorders, which include acute intermittent porphyria, congenital erythropoietic porphyria (CEP) or gunther disease, hereditary coproporphyria (HCP), and porphyria variegata (PV).

   

N-Deacetylcolchicine

N-Deacetylcolchicine

C20H23NO5 (357.1576)


   

Cirsilineol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,7-dimethoxy-

C18H16O7 (344.0896)


Cirsilineol is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsilineol is a natural product found in Thymus herba-barona, Salvia tomentosa, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 3 and hydroxy groups at positions 5 and 4 respectively.

   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. A picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

CYCLOHEXYLAMINE

CYCLOHEXYLAMINE

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

Trimethylenediamine

Trimethylenediamine

C3H10N2 (74.0844)


An alkane-alpha,omega-diamine comprising a propane skeleton with amino substituents at positions 1 and 3.

   

trans-1,3-Dichloropropene

trans-1,3-Dichloropropene

C3H4Cl2 (109.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

METAXALONE

METAXALONE

C12H15NO3 (221.1052)


D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

2-chloroethanol

2-chloroethanol

C2H5ClO (80.0029)


A chloroethanol carrying a chloro substituent at position 2.

   

Penicillin V

Penicillin V

C16H18N2O5S (350.0936)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

levallorphan

levallorphan

C19H25NO (283.1936)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Diphosphoric acid

Pyrophosphoric acid

H4O7P2 (177.9432)


An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5α-Dihydroprogesterone

5alpha-pregnane-3,20-dione

C21H32O2 (316.2402)


A C21-steroid hormone that is 5alpha-pregnane substituted by oxo groups at positions 3 and 20. It is a metabolite of progestrone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 5a-Pregnane-3,20-dione is the endogenous progesterone metabolite.

   

nilutamide

nilutamide

C12H10F3N3O4 (317.0623)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents

   

DL-Tryptophan

DL-Tryptophan

C11H12N2O2 (204.0899)


DL-Tryptophan is an endogenous metabolite.

   

4-Methylbenzoic acid

4-Methylbenzoic acid

C8H8O2 (136.0524)


p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.

   

ACENAPHTHENE

ACENAPHTHENE

C12H10 (154.0782)


   

chlorphenesin

chlorphenesin

C9H11ClO3 (202.0397)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents

   

Carbosulfan

Carbosulfan

C20H32N2O3S (380.2134)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

N-PHENYLHYDROXYLAMINE

N-PHENYLHYDROXYLAMINE

C6H7NO (109.0528)


   

Azlocillin

Azlocillin

C20H23N5O6S (461.1369)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A semisynthetic penicillin antibiotic used in treating infections caused by Pseudomonas aeruginosa, Escherichia coli, and Haemophilus influenzae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

FLURIDONE

FLURIDONE

C19H14F3NO (329.1027)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

sulfometuron-methyl

sulfometuron-methyl [ANSI]

C15H16N4O5S (364.0841)


D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Mephobarbital

Mephobarbital

C13H14N2O3 (246.1004)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Cefotetan

cefotetan disodium

C17H17N7O8S4 (575.0021)


A semi-synthetic cephalosporin antibiotic with [(1-methyl-1H-tetrazol-5-yl)sulfanyl]methyl, methoxy and {[4-(2-amino-1-carboxy-2-oxoethylidene)-1,3-dithietan-2-yl]carbonyl}amino groups at the 3, 7alpha, and 7beta positions, respectively, of the cephem skeleton. It is resistant to a wide range of beta-lactamases and is active against a broad spectrum of aerobic and anaerobic Gram-positive and Gram-negative microorganisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Fludrocortisone acetate

Fludrocortisone acetate

C23H31FO6 (422.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Androsta-1,4-diene-3,17-dione

Androsta-1,4-diene-3,17-dione

C19H24O2 (284.1776)


   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

METIAMIDE

METIAMIDE

C9H16N4S2 (244.0816)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29702 - Histamine-2 Receptor Antagonist D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Metiamide (SK&F 92058) is a histamine H2-receptor antagonist developed from another H2 antagonist, burimamide.

   

ribostamycin

ribostamycin

C17H34N4O10 (454.2275)


An amino cyclitol glycoside that is 4,6-diaminocyclohexane-1,2,3-triol having a 2,6-diamino-2,6-dideoxy-alpha-D-glucosyl residue attached at position 1 and a beta-D-ribosyl residue attached at position 2. It is an antibiotic produced by Streptomyces ribosidificus (formerly S. thermoflavus). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic

   

CEFPODOXIME

CEFPODOXIME

C15H17N5O6S2 (427.062)


A third-generation cephalosporin antibiotic with methoxymethyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamino substituents at positions 3 and 7, respectively, of the cephem skeleton. Given by mouth as its proxetil ester prodrug, it is used to treat acute otitis media, pharyngitis, and sinusitis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Echothiophate

Echothiophate

C9H23NO3PS+ (256.1136)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors

   

11beta-Hydroxyandrostenedione

11-Beta-hydroxyandrostenedione

C19H26O3 (302.1882)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 11-Beta-hydroxyandrostenedione (4-Androsten-11β-ol-3,17-dione) is a steroid mainly found in the the adrenal origin (11β-hydroxylase is present in adrenal tissue, but absent in ovarian tissue). 11-Beta-hydroxyandrostenedione is a 11β-hydroxysteroid dehydrogenase (11βHSD) isozymes inhibitor. As 4-androstenedione increases, measuring plasma 11-Beta-hydroxyandrostenedione can distinguish the adrenal or ovarian origin of hyperandrogenism[1][2].

   

15-Oxoprostaglandin e1

15-dehydro-prostaglandin E1

C20H32O5 (352.225)


   

2-FLUOROBENZOIC ACID

2-FLUOROBENZOIC ACID

C7H5FO2 (140.0274)


   

benzocatechol

Naphthalene-1,2-diol

C10H8O2 (160.0524)


   

(R)-Mandelonitrile

(R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE

C8H7NO (133.0528)


   

6-Oxoprostaglandin e1

6-Ketoprostaglandin E1

C20H32O6 (368.2199)


A prostaglandin E that is prostaglandin E1 bearing a keto substituent at the 6-position. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Benzene oxide

Benzene oxide

C6H6O (94.0419)


   
   

Deoxyepinephrine

Deoxyepinephrine

C9H13NO2 (167.0946)


   

13(S)-HPODE

13(S)-HPODE

C18H32O4 (312.23)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 13-HPODE

   

3-Uridylic acid

3-Uridylic acid

C9H13N2O9P (324.0359)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Deoxyadenosine-5-diphosphate

2-Deoxyadenosine-5-diphosphate

C10H15N5O9P2 (411.0345)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Deoxyguanosine-5-diphosphate

2-Deoxyguanosine-5-diphosphate

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

4-Hydroxyphenylacetaldehyde

2-(4-Hydroxyphenyl)acetaldehyde

C8H8O2 (136.0524)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

CHLORDECONE ALCOHOL

CHLORDECONE ALCOHOL

C10H2Cl10O (487.6991)


   

(+)-aristolochene

(+)-aristolochene

C15H24 (204.1878)


   

Uridine 2-phosphate

Uridine 2-phosphate

C9H13N2O9P (324.0359)


   

2-Deoxyinosine 5-monophosphate

2-Deoxyinosine 5-monophosphate

C10H13N4O7P (332.0522)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

6-Sialyllactosamine

6-Sialyllactosamine

C25H42N2O19 (674.2382)


   

1,6-bis-O-galloyl-beta-D-glucose

1,6-bis-O-galloyl-beta-D-glucose

C20H20O14 (484.0853)


A galloyl-beta-D-glucose compound having two galloyl groups in the 1- and 6-positions.

   

8-L-Lysine vasopressin

[Lys8]-Vasopressin TFA

C46H65N13O12S2 (1055.4317)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2]. Lysipressin (Lysine vasopressin) is antidiuretic hormone that have been found in pigs and some marsupial families. Lysipressin induces contraction of the rabbit urinary bladder smooth muscle, activate adenylate-cyclase[1][2].

   

Ethyl L-tyrosinate

L-Tyrosine ethyl ester

C11H15NO3 (209.1052)


   

6,7-Dimethyl-8-ribityllumazine

6,7-Dimethyl-8-ribityllumazine

C13H18N4O6 (326.1226)


   

N1,N12-Diacetylspermine

N(1),N(12)-diacetylspermine

C14H30N4O2 (286.2369)


   

(2S)-2-amino-5-oxopentanoic acid

(2S)-2-amino-5-oxopentanoic acid

C5H9NO3 (131.0582)


   

Cilazaprilat

(4S,7S)-7-[[(1S)-1-carboxy-3-phenylpropyl]amino]-6-oxo-1,2,3,4,7,8,9,10-octahydropyridazino[1,2-a]diazepine-4-carboxylic acid

C20H27N3O5 (389.1951)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Hernandulcin

Hernandulcin

C15H24O2 (236.1776)


   

Dopaquinone

L-dopaquinone

C9H9NO4 (195.0532)


An L-phenylalanine derivative in which the phenyl group of L-phenylalanine is replaced by a 3,4-dioxocyclohexa-1,5-dien-1-yl group.

   

O-Acetyl-L-homoserine

O-Acetyl-L-homoserine

C6H11NO4 (161.0688)


The O-acetyl derivative of L-homoserine.

   

Choloyl-CoA

Choloyl-CoA

C45H74N7O20P3S (1157.3922)


A steroidal acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cholic acid. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Sanshool

alpha-Sanshool

C16H25NO (247.1936)


   

D-Erythritol 4-phosphate

D-Erythritol 4-phosphate

C4H11O7P (202.0242)


   

UDP-N-acetyl-α-D-muramic acid

(2R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-2-[[[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxypropanoic acid

C20H31N3O19P2 (679.1027)


UDP-N-acetyl-alpha-D-muramic acid is a UDP-N-acetyl-D-muramate in which the anomeric centre of the pyranose fragment has alpha-configuration. It is a conjugate acid of an UDP-N-acetyl-alpha-D-muramate(3-). A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed.

   

2-(3-methylthiopropyl)malic acid

2-(3-methylthiopropyl)malic acid

C8H14O5S (222.0562)


   
   

N2-(Carboxyethyl)-L-arginine

N2-(Carboxyethyl)-L-arginine

C9H18N4O4 (246.1328)


   
   

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

[[(2R,3S,5R)-5-(2,6-dioxo-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H15N4O14P3 (507.9798)


   
   

Thallous chloride

thallium(i) chloride

ClTl (239.9433)


   

O-Nitrobenzoate

2-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

Daconil

Tetrachloroisophthalonitrile

C8Cl4N2 (263.8816)


D010575 - Pesticides > D008975 - Molluscacides D016573 - Agrochemicals

   

1-Chloro-2,3-epoxypropane

1-Chloro-2,3-epoxypropane

C3H5ClO (92.0029)


   

2,6-DNT

2,6-DINITROTOLUENE

C7H6N2O4 (182.0328)


   

1,3-DIMETHYLUREA

1,3-DIMETHYLUREA

C3H8N2O (88.0637)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


   

DL-NORVALINE

DL-NORVALINE

C5H11NO2 (117.079)


DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.

   

e-Tokoferol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 5 and 8 and a farnesyl chain at position 2. It has been isolated from various cultivars of wheat.

   

2,4,6-TRICHLOROANISOLE

Benzene,1,3,5-trichloro-2-methoxy-

C7H5Cl3O (209.9406)


   

Tuberculostearic acid

10-Methyloctadecanoic acid

C19H38O2 (298.2872)


A methyl-branched fatty acid, the structure of which is that of stearic acid carrying a methyl group at C-10.

   

Aminopropylcadaverine

Aminopropylcadaverine

C8H21N3 (159.1735)


A polyazaalkane that is the 1,4,11-triaza derivative of undecane.

   

Fluoroacetaldehyde

Fluoroacetaldehyde

C2H3FO (62.0168)


   
   

4-PROPYLPHENOL

4-PROPYLPHENOL

C9H12O (136.0888)


   

P-Octylphenol

4-N-Octylphenol

C14H22O (206.1671)


A member of the class of phenols that is phenol which is substituted at the para- position by an octyl group. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

BENZOHYDROQUINONE

1,4-Dihydroxynaphthalene

C10H8O2 (160.0524)


   

CYCLOHEXYL ACETATE

CYCLOHEXYL ACETATE

C8H14O2 (142.0994)


   

QUINALPHOS

QUINALPHOS

C12H15N2O3PS (298.0541)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2,6-DIBROMOPHENOL

2,6-DIBROMOPHENOL

C6H4Br2O (249.8629)


A dibromophenol that is phenol in which both of the hydrogens that are ortho to the phenolic hydroxy group have been replaced by bromines. 2,6-Dibromophenol is an endogenous metabolite.

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

3,5-DINITROSALICYLIC ACID

3,5-Dinitro-2-hydroxybenzoic acid

C7H4N2O7 (228.0019)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

Nornitrogen mustard

Bis(2-chloroethyl)amine

C4H9Cl2N (141.0112)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds

   

4-Hydroxystilbene

trans-4-hydroxystilbene;

C14H12O (196.0888)


   

MTIC

5-(3-Methyl-1-triazeno)imidazole-4-carboxamide

C5H8N6O (168.076)


D009676 - Noxae > D000477 - Alkylating Agents

   

Succindialdehyde

Succinic aldehyde

C4H6O2 (86.0368)


   

4-CPP

2-(4-Chlorophenoxy)propionic acid

C9H9ClO3 (200.024)


   

2,4-Diphenyl-1-butene

3-phenylbut-3-enylbenzene

C16H16 (208.1252)


   

alpha-Hydroxytamoxifen

alpha-Hydroxytamoxifen

C26H29NO2 (387.2198)


   

Zwittergent 3-14

N-Tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate

C19H41NO3S (363.2807)


   
   

2-hydroxymethyl-tetrahydro-pyran-3,4,5-triol

2-hydroxymethyl-tetrahydro-pyran-3,4,5-triol

C6H12O5 (164.0685)


   

1-O-Hexadecyl-lyso-sn-glycero-3-phosphocholine

1-O-Hexadecyl-2-lyso-sn-glycero-3-phosphocholine

C24H52NO6P (481.3532)


   

[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate

[5-(6-Aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate

C10H15N5O10P2 (427.0294)


   

alpha-Amylcinnamaldehyde

Heptanal, 2-benzylidene-

C14H18O (202.1358)


   

alpha-Fluoro-beta-alanine

3-Amino-2-fluoropropionic acid

C3H6FNO2 (107.0383)


   

Queen substance

Queen substance

C10H16O3 (184.1099)


   

Cercosporin from Cercospora hayii

Cercosporin from Cercospora hayii

C29H26O10 (534.1526)


   

1,2-Dimyristoyl-rac-glycerol

1,2-Dimyristoyl-rac-glycerol

C31H60O5 (512.4441)