Gene Association: STX3

UniProt Search: STX3 (PROTEIN_CODING)
Function Description: syntaxin 3

found 3 associated metabolites with current gene based on the text mining result from the pubmed database.

Beta-tocopherol

(2R)-2,5,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H48O2 (416.3654)


beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1].

   

CHAPS

3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonate

C32H58N2O7S (614.3965)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents

   

Gamma-tocopherol/beta-tocopherol

2H-1-BENZOPYRAN-6-OL, 3,4-DIHYDRO-2,5,8-TRIMETHYL-2-(4,8,12-TRIMETHYLTRIDECYL)-, (2R*(4R*,8R*))- 6-CHROMANOL, 2,5,8-TRIMETHYL-2-(4,8,12-TRIMETHYLTRIDECYL)-

C28H48O2 (416.3654)


beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). Beta-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. It has a role as a plant metabolite and a food component. It is a vitamin E and a tocopherol. beta-Tocopherol is a natural product found in Trachycarpus fortunei, Crataegus monogyna, and other organisms with data available. A natural tocopherol with less antioxidant activity than alpha-tocopherol. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in GAMMA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3].