Gene Association: SLC29A1

UniProt Search: SLC29A1 (PROTEIN_CODING)
Function Description: solute carrier family 29 member 1 (Augustine blood group)

found 60 associated metabolites with current gene based on the text mining result from the pubmed database.

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one

C10H12N4O5 (268.0808)


Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Guanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.0917)


Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695)


Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Cytidine

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H13N3O5 (243.0855)


Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

I07-0299

[(1S,3R,4R,5R,6R,10S,12S,16R,18S,21R)-2-Hydroxy-1,4,6,12,17,17-hexamethyl-18-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyspiro[3,6-dioxabicyclo[3.1.0]hexane-4,8-9-oxahexacyclo[11.9.0.01,21.04,12.05,10.016,21]docos-13-ene]-3-yl] acetate

C37H54O11 (674.3666)


Cimicifugoside is a triterpenoid. CID 441913 is a natural product found in Actaea racemosa with data available.

   

Deoxycytidine

4-Amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2(1H)-one

C9H13N3O4 (227.0906)


Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).

   

Hypoxanthine

1,7-Dihydro-6H-purine-6-one

C5H4N4O (136.0385)


Hypoxanthine, also known as purine-6-ol or Hyp, belongs to the class of organic compounds known as purines. Purines are a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Hypoxanthine is also classified as an oxopurine, Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the nucleotide salvage pathway. Hypoxanthine exists in all living species, ranging from bacteria to plants to humans. Hypoxanthine has been detected, but not quantified in, several different foods, such as radish (var.), mountain yams, welsh onions, greenthread tea, and common beets. Hypoxanthine is occasionally found as a constituent of nucleic acids, where it is present in the anticodon of tRNA in the form of its nucleoside inosine. Biologically, hypoxanthine can be formed a number of ways. For instance, it is one of the products of the action of xanthine oxidase on xanthine. However, more frequently xanthine is formed from oxidation of hypoxanthine by xanthine oxidoreductase. The enzyme hypoxanthine-guanine phosphoribosyltransferase converts hypoxanthine into IMP in the nucleotide salvage pathway. Hypoxanthine is also a spontaneous deamination product of adenine. Under normal circumstances hypoxanthine is readily converted to uric acid. In this process, hypoxanthine is first oxidized to xanthine, which is further oxidized to uric acid by xanthine oxidase. Molecular oxygen, the oxidant in both reactions, is reduced to H2O2 and other reactive oxygen species. In humans, uric acid is the final product of purine degradation and is excreted in the urine. Within humans, hypoxanthine participates in a number of other enzymatic reactions. In particular, hypoxanthine and ribose 1-phosphate can be biosynthesized from inosine through its interaction with the enzyme purine nucleoside phosphorylase. Hypoxanthine is also involved in the metabolic disorder called the purine nucleoside phosphorylase deficiency. Purine nucleoside phosphorylase (PNP) deficiency is a disorder of the immune system (primary immunodeficiency) characterized by recurrent infections, neurologic symptoms, and autoimmune disorders. PNP deficiency causes a shortage of white blood cells, called T-cells, that help fight infection. Affected individuals develop neurologic symptoms, such as stiff or rigid muscles (spasticity), uncoordinated movements (ataxia), developmental delay, and intellectual disability. PNP deficiency is associated with an increased risk to develop autoimmune disorders, such as autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura (ITP), autoimmune neutropenia, thyroiditis, and lupus. [Spectral] Hypoxanthine (exact mass = 136.03851) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs widely in plant and animal tissue (CCD). Hypoxanthine is found in many foods, some of which are japanese chestnut, parsnip, okra, and horned melon. Hypoxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=68-94-0 (retrieved 2024-07-02) (CAS RN: 68-94-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.

   

Purine

{7h-imidazo[4,} 5-D]pyrimidine

C5H4N4 (120.0436)


Purine, also known as purine base or 1H-purine, belongs to the class of organic compounds known as purines and purine derivatives. These are aromatic heterocyclic compounds containing a purine moiety, which is formed a pyrimidine-ring ring fused to an imidazole ring. Two of the bases in nucleic acids, adenine and guanine, are purines. Purines from food (or from tissue turnover) are metabolised by several enzymes, including xanthine oxidase, into uric acid. Purine exists in all living species, ranging from bacteria to humans. High levels of uric acid can predispose to gout when the acid crystalises in joints; this phenomenon only happens in humans and some animal species (e.g. dogs) that lack an intrinsic uricase enzyme that can further degrade uric acid. In humans, purine is involved in thioguanine action pathway. Outside of the human body, purine is found, on average, in the highest concentration within cocoa beans. Purine has also been detected, but not quantified in several different foods, such as rapinis, plains prickly pears, blackcurrants, radish, and parsley. This could make purine a potential biomarker for the consumption of these foods. Purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. A purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. Purines, including substituted purines and their tautomers, are the most widely distributed kind of nitrogen-containing heterocycle in nature. Purine is found in many foods, some of which are triticale, chickpea, japanese persimmon, and wild carrot. KEIO_ID P049 Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

6-Methylmercaptopurine

6-(methylsulfanyl)-9H-purine

C6H6N4S (166.0313)


6-Methylmercaptopurine is a metabolite of mercaptopurine. Mercaptopurine (also called 6-mercaptopurine, 6-MP or its brand name Purinethol) is an immunosuppressive drug. It is a thiopurine. (Wikipedia) KEIO_ID M104

   

5-Fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia) 5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Thioguanine

2-Amino-1,7-dihydro-6H-purine-6-thione

C5H5N5S (167.0266)


Thioguanine is only found in individuals that have used or taken this drug. It is an antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia. [PubChem]Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1594; ORIGINAL_PRECURSOR_SCAN_NO 1590 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1575; ORIGINAL_PRECURSOR_SCAN_NO 1574 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1573; ORIGINAL_PRECURSOR_SCAN_NO 1568 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1582; ORIGINAL_PRECURSOR_SCAN_NO 1581 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1583; ORIGINAL_PRECURSOR_SCAN_NO 1581 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1576; ORIGINAL_PRECURSOR_SCAN_NO 1575 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 852 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 853; ORIGINAL_PRECURSOR_SCAN_NO 850 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 852; ORIGINAL_PRECURSOR_SCAN_NO 850 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 872; ORIGINAL_PRECURSOR_SCAN_NO 869 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 865; ORIGINAL_PRECURSOR_SCAN_NO 862 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 863; ORIGINAL_PRECURSOR_SCAN_NO 861 L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2254 - Amidophosphoribosyltransferase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 6-Thioguanine (Thioguanine; 2-Amino-6-purinethiol) is an anti-leukemia and immunosuppressant agent, acts as an inhibitor of SARS and MERS coronavirus papain-like proteases (PLpros) and also potently inhibits USP2 activity, with IC50s of 25 μM and 40 μM for Plpros and recombinant human USP2, respectively.

   

Zalcitabine

4-Amino-1-[(2R,5S)-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2(1H)-one

C9H13N3O3 (211.0957)


A dideoxynucleoside compound in which the 3-hydroxyl group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of 5 to 3 phosphodiester linkages, which are needed for the elongation of DNA chains, thus resulting in the termination of viral DNA growth. The compound is a potent inhibitor of HIV replication at low concentrations, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal toxic side effect is axonal degeneration resulting in peripheral neuropathy. [PubChem] J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors KEIO_ID Z001 Zalcitabine is a potent nucleoside analogue reverse transcriptase inhibitor used in the treatment of HIV infection.

   

Cannabidiol

1,3-Benzenediol, 2-(3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl)-5-pentyl-, (1R-trans)-

C21H30O2 (314.2246)


An cannabinoid that is cyclohexene which is substituted by a methyl group at position 1, a 2,6-dihydroxy-4-pentylphenyl group at position 3, and a prop-1-en-2-yl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Gemcitabine

4-Amino-1-((2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H11F2N3O4 (263.0718)


Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar by Eli Lilly and Company. As with fluorouracil and other analogues of pyrimidines, the drug replaces one of the building blocks of nucleic acids, in this case cytidine, during DNA replication. The process arrests tumor growth, as new nucleosides cannot be attached to the faulty nucleoside, resulting in apoptosis (cellular suicide). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2603 CONFIDENCE standard compound; INTERNAL_ID 2106 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Gemcitabine (LY 188011) is a pyrimidine nucleoside analog antimetabolite and an antineoplastic agent. Gemcitabine inhibits DNA synthesis and repair, resulting in autophagyand apoptosis[1][2].

   

Tricyclazole

12-methyl-7-thia-2,4,5-triazatricyclo[6.4.0.0²,⁶]dodeca-1(12),3,5,8,10-pentaene

C9H7N3S (189.0361)


Rice fungicid

   

Didanosine

9-[(2R,5S)-5-(Hydroxymethyl)tetrahydrofuran-2-yl]-1,9-dihydro-6H-purin-6-one

C10H12N4O3 (236.0909)


A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. [PubChem] J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3135 Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].

   

Capecitabine

pentyl N-{1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-2-oxo-1,2-dihydropyrimidin-4-yl}carbamate

C15H22FN3O6 (359.1493)


Capecitabine is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to fluorouracil (antimetabolite) in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite CONFIDENCE standard compound; EAWAG_UCHEM_ID 2845 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

Zidovudine

1-[(2R,4S,5S)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H13N5O4 (267.0967)


A dideoxynucleoside compound in which the 3-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. [PubChem] J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI), widely used to treat HIV infection. Zidovudine increases CRISPR/Cas9-mediated editing frequency.

   

Abacavir

4R-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1S-methanol, monohydrochloride

C14H18N6O (286.1542)


Abacavir is only found in individuals that have used or taken this drug. It is a powerful nucleoside analog reverse transcriptase inhibitor (NRTI) used to treat HIV and AIDS. [Wikipedia]Abacavir is a carbocyclic synthetic nucleoside analogue. Intracellularly, abacavir is converted by cellular enzymes to the active metabolite carbovir triphosphate, an analogue of deoxyguanosine-5-triphosphate (dGTP). Carbovir triphosphate inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Stavudine

1-[(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H12N2O4 (224.0797)


Stavudine is only found in individuals that have used or taken this drug. It is a dideoxynucleoside analog that inhibits reverse transcriptase and has in vitro activity against HIV. [PubChem]Stavudine inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

Deoxyribose 1-phosphate

{[(4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}phosphonic acid

C5H11O7P (214.0242)


Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. [HMDB] Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. COVID info from COVID-19 Disease Map KEIO_ID D013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mercaptopurine

GlaxoSmithKline brand OF 6 mercaptopurine

C5H4N4S (152.0157)


Mercaptopurine is only found in individuals that have used or taken this drug. It is an antimetabolite antineoplastic agent with immunosuppressant properties. It interferes with nucleic acid synthesis by inhibiting purine metabolism and is used, usually in combination with other drugs, in the treatment of or in remission maintenance programs for leukemia. [PubChem]Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Nebularine

2-(hydroxymethyl)-5-(9H-purin-9-yl)oxolane-3,4-diol

C10H12N4O4 (252.0859)


Nebularine, also known as purine riboside is found in mushrooms. Nebularine can be isolated from the mushroom Clitocybe nebularis (clouded agaric). Nebularine is a nucleoside analog that is used in a variety of enzyme studies. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents KEIO_ID P081; [MS2] KO009216 KEIO_ID P081

   

Penicillamine

2-amino-3-methyl-3-sulfanylbutanoic acid

C5H11NO2S (149.051)


Penicillamine is only found in individuals that have used or taken this drug. It is the most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilsons disease. [PubChem]Penicillamine is a chelating agent recommended for the removal of excess copper in patients with Wilsons disease. From in vitro studies which indicate that one atom of copper combines with two molecules of penicillamine. Penicillamine also reduces excess cystine excretion in cystinuria. This is done, at least in part, by disulfide interchange between penicillamine and cystine, resulting in formation of penicillamine-cysteine disulfide, a substance that is much more soluble than cystine and is excreted readily. Penicillamine interferes with the formation of cross-links between tropocollagen molecules and cleaves them when newly formed. The mechanism of action of penicillamine in rheumatoid arthritis is unknown although it appears to suppress disease activity. Unlike cytotoxic immunosuppressants, penicillamine markedly lowers IgM rheumatoid factor but produces no significant depression in absolute levels of serum immunoglobulins. Also unlike cytotoxic immunosuppressants which act on both, penicillamine in vitro depresses T-cell activity but not B-cell activity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].

   

Coformycin

Coformycin

C11H16N4O5 (284.1121)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

N-D-Ribosylpyrimidine

Pyrimidine nucleoside; N-D-Ribosylpyrimidine

C9H13N2O4+ (213.0875)


   

5'-Deoxy-5-fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-4-hydroxy-1,2-dihydropyrimidin-2-one

C9H11FN2O5 (246.0652)


5-Deoxy-5-fluorouridine is a metabolite of capecitabine. Capecitabine (Xeloda, Roche) is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to 5-fluorouracil in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. (Wikipedia) D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].

   

8-Cyclopentyl-1,3-dipropylxanthine

8-cyclopentyl-1,3-dipropyl-2,3,6,9-tetrahydro-1H-purine-2,6-dione

C16H24N4O2 (304.1899)


D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists DPCPX (PD 116948), a xanthine derivative, is a highly potent and selective Adenosine A1 receptor antagonist, with a Ki of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes[1][2][3].

   

2-Nitroimidazole

Azomycin, monohydrofluoride

C3H3N3O2 (113.0225)


Azomycin (2-Nitroimidazole) is an antibiotic which can be active against aerobic Gram-positive and Gram-negative bacteria.

   

6-Thioguanosine monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-sulfanylidene-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7PS (379.0352)


6-Thioguanosine monophosphate is a metabolite of tioguanine. Tioguanine, formerly thioguanine, is a drug that is used in the treatment of cancer. It belongs to the family of drugs called antimetabolites. It is a guanine analog. (Wikipedia) Norcodeine

   

Arabinofuranosylcytosine

4-amino-1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Isolated from the mushroom Xerocomus nigromaculatus of unknown palatability This compound has been identified in human blood as reported by (PMID: 31557052 ). Arabinofuranosylcytosine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Arabinofuranosylcytosine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. Arabinofuranosylcytosine (Ara-C), also known as cytarabine, is a chemotherapeutic agent that is widely used in the treatment of various types of cancer, particularly hematological malignancies such as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). The biological functions of Ara-C are primarily related to its antineoplastic properties, which are derived from its mechanism of action within the cell. Here is a detailed description of its biological functions: 1. **Inhibition of DNA Synthesis**: Ara-C functions as a nucleoside analog, which means it resembles the natural building blocks of DNA. Once inside the cell, Ara-C is converted to its active metabolite, araCTP (arabinofuranosylcytosine triphosphate). AraCTP competes with the natural deoxycytidine triphosphate (dCTP) for incorporation into the growing DNA chain during the S phase of the cell cycle. Because Ara-C lacks a 3'-hydroxyl group, its incorporation into DNA leads to chain termination, effectively stopping DNA synthesis. 2. **Cell Cycle Specificity**: Ara-C is most effective against cells that are actively dividing. Since it targets cells in the S phase of the cell cycle, it is particularly harmful to rapidly dividing cancer cells, which often spend a significant portion of their cycle in this phase. 3. **Inhibition of DNA Repair**: Beyond its direct effect on DNA synthesis, Ara-C can also interfere with DNA repair mechanisms. This is because the incorporation of Ara-C into DNA can cause mispairing and induce DNA damage, which the cell may be unable to repair properly. 4. **Cell Death Induction**: The inhibition of DNA synthesis and the induction of DNA damage can lead to cell death through apoptosis or necrosis. Cells that cannot replicate their DNA or repair the damage caused by Ara-C activation are programmed to die, which is a desirable outcome in the context of cancer treatment. 5. **Immune System Modulation**: In some cases, Ara-C can also modulate the immune system, although this is not its primary function. It can affect the function and proliferation of immune cells, which can have implications for both its therapeutic effects and side effects. 6. **Enzymatic Conversion**: Ara-C must be activated within the cell by the enzyme deoxycytidine kinase (dCK), which phosphorylates it to Ara-CMP (monophosphate), then to Ara-CDP (diphosphate), and finally to Ara-CTP. The efficiency of this conversion can vary between different types of cancer cells and normal cells, contributing to the selectivity of Ara-C's action. 7. **Cross-Linking Potential**: Although less common, Ara-C can also form cross-links with DNA, further complicating DNA structure and function, which can contribute to its cytotoxic effects. The biological functions of Ara-C are complex and can vary depending on the dose, the specific cancer type, and the individual patient's metabolism. Its use is carefully monitored in clinical settings due to its potential for significant side effects, including myelosuppression (decreased production of blood cells), gastrointestinal toxicity, and central nervous system toxicity.

   

Inosine

Inosine

C10H12N4O5 (268.0808)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Uridine

Uridine

C9H12N2O6 (244.0695)


C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

hypoxanthine

hypoxanthine

C5H4N4O (136.0385)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C62554 - Poly (ADP-Ribose) Polymerase Inhibitor COVID info from COVID-19 Disease Map C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.

   

Capecitabine

Capecitabine

C15H22FN3O6 (359.1493)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 2353 INTERNAL_ID 2353; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 2140 CONFIDENCE standard compound; INTERNAL_ID 8343 CONFIDENCE standard compound; INTERNAL_ID 4129 Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

Zidovudine

Zidovudine

C10H13N5O4 (267.0967)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3287 Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI), widely used to treat HIV infection. Zidovudine increases CRISPR/Cas9-mediated editing frequency.

   

Adenosine

Adenosine

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

mercaptopurine

6-Mercaptopurine

C5H4N4S (152.0157)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 2786 KEIO_ID M054

   

Cytidine

Cytidine,cell culture tested

C9H13N3O5 (243.0855)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

   

Nebularine

Nebularine

C10H12N4O4 (252.0859)


A purine ribonucleoside that is 9H-purine attached to a beta-D-ribofuranosyl residue at position 9 via a glycosidic (N-glycosyl) linkage. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.257 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.250

   

2-Deoxycytidine

2-Deoxycytidine monohydrate

C9H13N3O4 (227.0906)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite A pyrimidine 2-deoxyribonucleoside having cytosine as the nucleobase. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H-purin-6-one

C10H12N4O5 (268.0808)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals Formula(Parent): C10H12N4O5; Bottle Name:Inosine; PRIME Parent Name:Inosine; PRIME in-house No.:0256, Purines COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UGQMRVRMYYASKQ_STSL_0164_Inosine_2000fmol_180430_S2_LC02_MS02_125; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione

C9H12N2O6 (244.0695)


C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DRTQHJPVMGBUCF_STSL_0179_Uridine_8000fmol_180506_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.088 Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Purine

InChI=1\C5H4N4\c1-4-5(8-2-6-1)9-3-7-4\h1-3H,(H,6,7,8,9

C5H4N4 (120.0436)


Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

hypoxanthine

hypoxanthine

C5H4N4O (136.0385)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C62554 - Poly (ADP-Ribose) Polymerase Inhibitor A purine nucleobase that consists of purine bearing an oxo substituent at position 6. COVID info from COVID-19 Disease Map C471 - Enzyme Inhibitor Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; FDGQSTZJBFJUBT_STSL_0163_Hypoxanthine_0125fmol_180430_S2_LC02_MS02_115; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.

   

6-Methylmercaptopurine

6-Methylmercaptopurine

C6H6N4S (166.0313)


   

Stavudine

Stavudine

C10H12N2O4 (224.0797)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2238; ORIGINAL_PRECURSOR_SCAN_NO 2235 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2232; ORIGINAL_PRECURSOR_SCAN_NO 2230 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2236; ORIGINAL_PRECURSOR_SCAN_NO 2234 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2225; ORIGINAL_PRECURSOR_SCAN_NO 2224 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2291; ORIGINAL_PRECURSOR_SCAN_NO 2290 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2235; ORIGINAL_PRECURSOR_SCAN_NO 2233 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9439; ORIGINAL_PRECURSOR_SCAN_NO 9434 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9395 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9567; ORIGINAL_PRECURSOR_SCAN_NO 9562 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9454; ORIGINAL_PRECURSOR_SCAN_NO 9450 Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

Didanosine

2,3-Dideoxyinosine

C10H12N4O3 (236.0909)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].

   

thioguanine

6-Thioguanine

C5H5N5S (167.0266)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2254 - Amidophosphoribosyltransferase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 6-Thioguanine (Thioguanine; 2-Amino-6-purinethiol) is an anti-leukemia and immunosuppressant agent, acts as an inhibitor of SARS and MERS coronavirus papain-like proteases (PLpros) and also potently inhibits USP2 activity, with IC50s of 25 μM and 40 μM for Plpros and recombinant human USP2, respectively.

   

Pesticide5_Tricyclazole_C9H7N3S_Beam

Pesticide5_Tricyclazole_C9H7N3S_Beam

C9H7N3S (189.0361)


   

5-Fluorouridine

1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-pyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Doxifluridine

1-[(4S,5R)-3,4-dihydroxy-5-methyl-2-oxolanyl]-5-fluoropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].

   

Gemcitabine

Gemcitabine

C9H11F2N3O4 (263.0718)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Gemcitabine (LY 188011) is a pyrimidine nucleoside analog antimetabolite and an antineoplastic agent. Gemcitabine inhibits DNA synthesis and repair, resulting in autophagyand apoptosis[1][2].

   

Zalcitabine

Zalcitabine

C9H13N3O3 (211.0957)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors Zalcitabine is a potent nucleoside analogue reverse transcriptase inhibitor used in the treatment of HIV infection.

   

Penicillamine

D-penicillamine

C5H11NO2S (149.051)


An alpha-amino acid having the structure of valine substituted at the beta position with a sulfanyl group. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].

   

Abacavir

Abacavir

C14H18N6O (286.1542)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

DPCPX

8-Cyclopentyl-1,3-dipropylxanthine

C16H24N4O2 (304.1899)


D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists DPCPX (PD 116948), a xanthine derivative, is a highly potent and selective Adenosine A1 receptor antagonist, with a Ki of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes[1][2][3].

   

Azomycin

2-Nitroimidazole

C3H3N3O2 (113.0225)


Azomycin (2-Nitroimidazole) is an antibiotic which can be active against aerobic Gram-positive and Gram-negative bacteria.

   

6-Thioguanosine monophosphate

6-Thioguanosine monophosphate

C10H14N5O7PS (379.0352)