Gene Association: AQP1
UniProt Search:
AQP1 (PROTEIN_CODING)
Function Description: aquaporin 1 (Colton blood group)
found 79 associated metabolites with current gene based on the text mining result from the pubmed database.
Aristolochic acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Ginsenoside Rg3
(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.
Raffinose
Raffinose is a complex carbohydrate. It is a trisaccharide composed of galactose, fructose, and glucose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose is hydrolyzed to D-galactose and sucrose by D-galactosidase (D-GAL). D-GAL also hydrolyzes other D-galactosides such as stachyose, verbascose, and galactinol [1-O-(D-galactosyl)-myoinositol], if present. The enzyme does not cleave linked galactose, as in lactose. Raffinose is also known as melitose and may be thought of as galactose and sucrose connected via an alpha(1->6) glycosidic linkage. Thus, raffinose can be broken down into galactose and sucrose via the enzyme alpha-galactosidase. Human intestines do not contain this enzyme. Raffinose is a trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Raffinose is a trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. It has a role as a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a trisaccharide. Raffinose is a natural product found in Teucrium polium, Populus tremula, and other organisms with data available. A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. See also: Oligosaccharide (related). A trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 230 Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].
Phloretin
Phloretin is the aglucone of phlorizin, a plant-derived dihydrochalcone phytochemical reported to promote potent antioxidative activities in peroxynitrite scavenging and the inhibition of lipid peroxidation. Phloretin, which is present in apples, pears and tomatoes, has been found to inhibit the growth of several cancer cells and induce apoptosis of B16 melanoma and HL60 human leukemia cells. Phloretin also inhibits HT-29 cell growth by inducing apoptosis, which may be mediated through changes in mitochondrial membrane permeability and activation of the caspase pathways. Phloretin is a well-known inhibitor of eukaryotic urea transporters, blocks VacA-mediated urea and ion transport (PMID:18158826, 11560962, 18063724, 15671209, 12083758). Phloretin is a biomarker for the consumption of apples. Phloretin has been found to be a metabolite of Escherichia (PMID:23542617). Phloretin is a member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. It has a role as a plant metabolite and an antineoplastic agent. It is functionally related to a dihydrochalcone. Phloretin is a natural dihydrochalcone found in apples and many other fruits. Phloretin is a natural product found in Malus doumeri, Populus candicans, and other organisms with data available. A natural dihydrochalcone found in apples and many other fruits. Phloretin is a dihydrochalcone, a type of natural phenols. It is the phloroglucin ester of paraoxyhydratropic acid. It can be found in apple tree leaves. Phloretin is a biomarker for the consumption of apples. A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. IPB_RECORD: 341; CONFIDENCE confident structure Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
DL-Mannitol
D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.
Atractyloside
Atractyloside A is a terpene glycoside. Atractyloside A is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and Atractylodes lancea with data available. Atractyloside A is a natural TCM reference compound. Atractyloside A is a natural TCM reference compound.
Hypaconitine
Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:
Zingerone
Zingerone is a methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. It has a role as an antioxidant, an anti-inflammatory agent, a radiation protective agent, an antiemetic, a flavouring agent, a fragrance and a plant metabolite. It is a member of phenols, a monomethoxybenzene and a methyl ketone. Zingerone is a pungent component of ginger. Zingerone is a natural product found in Alpinia officinarum, Vitis vinifera, and other organisms with data available. Zingerone is a metabolite found in or produced by Saccharomyces cerevisiae. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etcand is also present in cranberry, raspberry and mango. Zingerone is found in many foods, some of which are pot marjoram, fruits, ginger, and herbs and spices. Zingerone is found in fruits. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etc. Also present in cranberry, raspberry and mang A methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].
(-)-Guttiferone E
Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. (-)-Guttiferone E is found in fruits. (-)-Guttiferone E is a constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. Constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. (-)-Guttiferone E is found in fruits. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].
Marrubiin
Marrubiin is a gamma-lactone. Marrubiin is a natural product found in Marrubium globosum, Marrubium anisodon, and other organisms with data available. Marrubiin, isolated from Marrubium vulgare, exhibits vasorelaxant and antioedematogenic activity. Marrubiin alleviates diabetic symptoms in animals[1][2][3].
Muramic acid
Muramic acid is an amino sugar acid. In terms of chemical composition, it is the ether of lactic acid and glucosamine. It occurs naturally as N-acetylmuramic acid in peptidoglycan, whose primary function is a structural component of many typical bacterial cell walls. Muramic acid, also known as muramate or murexide, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Muramic acid is an amino sugar acid. It occurs naturally as N-acetylmuramic acid in peptidoglycan, whose primary function is a structural component of many typical bacterial cell walls. In terms of chemical composition, it is the ether of lactic acid and glucosamine. Muramic acid is a marker of bacterial peptidoglycan, in environmental and clinical specimens. (PMID: 10778926) [HMDB] Muramic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1114-41-6 (retrieved 2024-07-01) (CAS RN: 1114-41-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Terbutaline
Terbutaline is only found in individuals that have used or taken this drug. It is a selective beta-2 adrenergic agonist used as a bronchodilator and tocolytic. [PubChem]The pharmacologic effects of terbutaline are at least in part attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic- 3,5- adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents Terbutaline is an orally active β2-adrenergic receptor agonist and an active metabolite of bambuterol[1]. Terbutaline can be used in asthma symptom research[2]. Terbutaline is an orally active β2-adrenergic receptor agonist and an active metabolite of bambuterol[1]. Terbutaline can be used in asthma symptom research[2].
Acetazolamide
One of the carbonic anhydrase inhibitors that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3011
Methazolamide
Methazolamide is only found in individuals that have used or taken this drug. It is a potent carbonic anhydrase inhibitor that is used as a diuretic and in the treatment of glaucoma. [PubChem]Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics
Nandrolone decanoate
Nandrolone decanoate is only found in individuals that have used or taken this drug. It is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a schedule III drug in the U.S. Nandrolone is an androgen receptor agonist. The drug bound to the receptor complexes which allows it to enter the nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents
Pentamidine
Pentamidine is only found in individuals that have used or taken this drug. It is an antiprotozoal agent effective in trypanosomiasis, leishmaniasis, and some fungal infections; used in treatment of pneumocystis pneumonia in HIV-infected patients. It may cause diabetes mellitus, central nervous system damage, and other toxic effects. [PubChem]The mode of action of pentamidine is not fully understood. It is thought that the drug interferes with nuclear metabolism producing inhibition of the synthesis of DNA, RNA, phospholipids, and proteins. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
2-Aminobenzimidazole
CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042
Urea
Urea is a highly soluble organic compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Urea is formed in a cyclic pathway known simply as the urea cycle. In this cycle, amino groups donated by ammonia and L-aspartate are converted to urea. Urea is essentially a waste product; it has no physiological function. It is dissolved in blood (in humans in a concentration of 2.5 - 7.5 mmol/liter) and excreted by the kidney in the urine. In addition, a small amount of urea is excreted (along with sodium chloride and water) in human sweat. Urea is found to be associated with primary hypomagnesemia, which is an inborn error of metabolism. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis Formulation aid. Cattle feed supplement. Urea is found in many foods, some of which are globe artichoke, hickory nut, hard wheat, and cherry tomato. D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.
Diphenoxylate
A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
Glycerol
Glycerol or glycerin is a colourless, odourless, viscous liquid that is sweet-tasting and mostly non-toxic. It is widely used in the food industry as a sweetener and humectant and in pharmaceutical formulations. Glycerol is an important component of triglycerides (i.e. fats and oils) and of phospholipids. Glycerol is a three-carbon substance that forms the backbone of fatty acids in fats. When the body uses stored fat as a source of energy, glycerol and fatty acids are released into the bloodstream. The glycerol component can be converted into glucose by the liver and provides energy for cellular metabolism. Normally, glycerol shows very little acute toxicity and very high oral doses or acute exposures can be tolerated. On the other hand, chronically high levels of glycerol in the blood are associated with glycerol kinase deficiency (GKD). GKD causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. There are three clinically distinct forms of GKD: infantile, juvenile, and adult. The infantile form is the most severe and is associated with vomiting, lethargy, severe developmental delay, and adrenal insufficiency. The mechanisms of glycerol toxicity in infants are not known, but it appears to shift metabolism towards chronic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated GKD. Many affected children with organic acidemias experience intellectual disability or delayed development. Patients with the adult form of GKD generally have no symptoms and are often detected fortuitously. Glycerol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-81-5 (retrieved 2024-07-01) (CAS RN: 56-81-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Spartioidine
A pyrrolizine alkaloid that is 13,19-didehydrosenecionane carrying a hydroxy substituent at position 12 and two oxo substituents at positions 11 and 16. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2297 [Raw Data] CB082b_Seneciphylline_pos_40eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_30eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_20eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_10eV_CB000034.txt [Raw Data] CB082b_Seneciphylline_pos_50eV_CB000034.txt Seneciphylline is a toxic pyrrolizidine alkaloid in Gynura japonica[1]. Seneciphylline significantly increases the activities of epoxide hydrase and glutathione-S-transferase but causes reduction of cytochrome P-450 and related monooxygenase activities[2].
Sennoside A
Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Formamide
Formamide, also known as methanamide or ameisensaeureamid, belongs to the class of organic compounds known as carboximidic acids. These are organic acids with the general formula RC(=N)-OH (R=H, organic group). Formamide, in its pure state, has been used as an alternative solvent for the electrostatic self-assembly of polymer nanofilms. Formamide exists in all living organisms, ranging from bacteria to humans. Formamide has been detected, but not quantified in several different foods, such as hyssops, rose hips, asian pears, brassicas, and green bell peppers. It has been used as a softener for paper and fiber. Inhalation of large amounts of formamide vapor may require medical attention. In the past, formamide was produced by treating formic acid with ammonia, which produces ammonium formate, which in turn yields formamide upon heating:HCOOH + NH3 → HCOO−NH+4HCOO−NH+4 → HCONH2 + H2O. Formamide is also generated by aminolysis of ethyl formate: HCOOCH2CH3 + NH3 → HCONH2 + CH3CH2OH. The current industrial process for the manufacture of formamide involves either the carbonylation of ammonia: CO + NH3 → HCONH2. An alternative two-stage process involves the ammonolysis of methyl formate, which is formed from carbon monoxide and methanol: CO + CH3OH → HCOOCH3HCO2CH3 + NH3 → HCONH2 + CH3OH. Formamide is used in the industrial production of hydrogen cyanide. Formamide has been shown to exhibit hematoxicity in animals and is considered hazardous by prolonged exposure through inhalation, oral intake and dermal absorption. Formamide is a metabolite used for biological monitoring of workers exposed to N-N-dimethylformamide (DMF).(PMID 7622279).
Mercury
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products Mercury is a metal that is a liquid at room temperature. Mercury has a long and interesting history deriving from its use in medicine and industry, with the resultant toxicity produced. In high enough doses, all forms of mercury can produce toxicity. The most devastating tragedies related to mercury toxicity in recent history include Minamata Bay and Niagata, Japan in the 1950s, and Iraq in the 1970s. More recent mercury toxicity issues include the extreme toxicity of the dimethylmercury compound noted in 1998, the possible toxicity related to dental amalgams, and the disproved relationship between vaccines and autism related to the presence of the mercury-containing preservative, thimerosal.; Hair has been used in many studies as a bioindicator of mercury exposure for human populations. At the time of hair formation, mercury from the blood capillaries penetrates into the hair follicles. As hair grows approximately 1 cm each month, mercury exposure over time is recapitulated in hair strands. Mercury levels in hair closest to the scalp reflect the most recent exposure, while those farthest from the scalp are representative of previous blood concentrations. Sequential analyses of hair mercury have been useful for identifying seasonal variations over time in hair mercury content, which may be the result of seasonal differences in bioavailability of fish and differential consumption of piscivorous and herbivorous fish species. Knowledge of the relation between fish-eating practices and hair mercury levels is particularly important for adequate mitigation strategies. Physiologically, it exists as an ion in the body. Methyl mercury is well absorbed, and because the biological half-life is long, the body burden in humans may reach high levels. People who frequently eat contaminated seafood can acquire mercury concentrations that are potentially dangerous to the fetus in pregnant women. The dose-response relationships have been extensively studied, and the safe levels of exposure have tended to decline. Individual methyl mercury exposure is usually determined by analysis of mercury in blood and hair. ; Whilst the clinical features of acute mercury poisoning have been well described, chronic low dose exposure to mercury remains poorly characterised and its potential role in various chronic disease states remains controversial. Low molecular weight thiols, i.e. sulfhydryl containing molecules such as cysteine, are emerging as important factors in the transport and distribution of mercury throughout the body due to the phenomenon of "Molecular Mimicry" and its role in the molecular transport of mercury. Chelation agents such as the dithiols sodium 2,3-dimercaptopropanesulfate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) are the treatments of choice for mercury toxicity. Alpha-lipoic acid (ALA), a disulfide, and its metabolite dihydrolipoic acid (DHLA), a dithiol, have also been shown to have chelation properties when used in an appropriate manner. Whilst N-acetyl-cysteine (NAC) and glutathione (GSH) have been recommended in the treatment of mercury toxicity in the past, an examination of available evidence suggests these agents may in fact be counterproductive. Zinc and selenium have also been shown to exert protective effects against mercury toxicity, most likely mediated by induction of the metal binding proteins metallothionein and selenoprotein-P. Evidence suggests however that the co-administration of selenium and dithiol chelation agents during treatment may also be counter-productive. Finally, the issue of diagnostic testing for chronic, historical or low dose mercury poisoning is considered including an analysis of the influence of ligand interactions and nutritional factors upon the accuracy of "chelation challenge" tests. (PMID: 17448359, 17408840, 17193738). Mercury is found in many foods, some of which are rice, wild carrot, horseradish, and endive.
1,3-PROPANEDIOL
1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1]. 1,3-Propanediol is produced in nature by the fermentation of glycerol in microorganism[1].
p-Chloromercuribenzoate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D010575 - Pesticides > D005659 - Fungicides, Industrial > D010663 - Phenylmercury Compounds D004791 - Enzyme Inhibitors > D002729 - Chloromercuribenzoates D004791 - Enzyme Inhibitors > D008626 - Mercuribenzoates
Acetamide
Acetamide (or acetic acid amide or ethanamide), CH3CONH2, the amide of acetic acid, is a white crystalline solid in pure form. It is produced by dehydrating ammonium acetate:. Acetamide is found in red beetroot. Acetamide is found in red beetroot. Acetamide (or acetic acid amide or ethanamide), CH3CONH2, the amide of acetic acid, is a white crystalline solid in pure form. It is produced by dehydrating ammonium acetate
1,1-Bis(p-chlorophenyl)-2-chloroethene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Desmopressin
Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH) which is found naturally in the body. It increases urine concentration and decreases urine production. Desmopressin is used to prevent and control excessive thirst, urination, and dehydration caused by injury, surgery, and certain medical conditions, allowing you to sleep through the night without awakening to urinate. It is also used to treat specific types of diabetes insipidus and conditions after head injury or pituitary surgery. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents
Tetraethylammonium
D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators
MELARSOPROL
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis > P01CD - Arsenic compounds D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
Sodium fluoride (NaF)
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides Indirect food contaminant arising from its use in adhesives for aluminium foil D001697 - Biomedical and Dental Materials
N-Methylformamide
N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents
Mercury chloride
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants Same as: D01905
2-Amino-2-deoxyisochorismate
pentamidine
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent [Raw Data] CB201_Pentamidine_pos_50eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_40eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_30eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_20eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_10eV_isCID-10eV_rep000006.txt KEIO_ID P209; [MS2] KO009179 KEIO_ID P209; [MS3] KO009180 KEIO_ID P209
terbutaline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents CONFIDENCE standard compound; INTERNAL_ID 1101 KEIO_ID T126; [MS3] KO009270 KEIO_ID T126; [MS2] KO009267 KEIO_ID T126 Terbutaline is an orally active β2-adrenergic receptor agonist and an active metabolite of bambuterol[1]. Terbutaline can be used in asthma symptom research[2]. Terbutaline is an orally active β2-adrenergic receptor agonist and an active metabolite of bambuterol[1]. Terbutaline can be used in asthma symptom research[2].
Senna
Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Raffinose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].
urea
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.
D-Mannitol
Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol, a type of sugar alcohol, serves several important biological functions: Osmotic Diuretic: Mannitol is used medically as an osmotic diuretic to reduce intracranial and intraocular pressure. By increasing urine production, it helps to draw excess fluid from the brain and eyes, which is beneficial in conditions like cerebral edema and glaucoma. Sweetener and Sugar Substitute: In the food industry, mannitol is used as a sweetener and sugar substitute. It provides sweetness without contributing to tooth decay and is often used in products for diabetics because it has a minimal impact on blood sugar levels. Preservative: Mannitol’s hygroscopic properties make it useful as a preservative in various products, including pharmaceuticals and foods, to prevent moisture absorption and maintain product stability. Laxative: In high concentrations, mannitol can act as a laxative due to its osmotic effect in the intestine, drawing water into the bowel and stimulating bowel movements. Tissue Protectant: In cryopreservation, mannitol is used to protect tissues from damage caused by freezing and thawing processes. Cell Culture Medium Component: Mannitol is often included in cell culture media to maintain osmotic balance and provide a stable environment for cell growth. Pharmaceutical Excipient: It is used as an excipient in the pharmaceutical industry, helping to enhance the stability and bioavailability of drugs. Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-65-8 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.
Phloretin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.912 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Senna
D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
H2O
An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(-)-Guttiferone E
(-)-Guttiferone E is found in fruits. (-)-Guttiferone E is a constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. Constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. (-)-Guttiferone E is found in fruits. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].
cambogin
Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. Isogarcinol is a natural product found in Garcinia pedunculata, Garcinia cowa, and other organisms with data available. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].
2-AMINOBENZIMIDAZOLE
A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003
Diphenoxylate
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
methazolamide
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics
urea
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis A carbonyl group with two C-bound amine groups. The commercially available fertilizer has an analysis of 46-0-0 (N-P2O5-K2O). D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.
acetazolamide
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2118; ORIGINAL_PRECURSOR_SCAN_NO 2116 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2114 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 INTERNAL_ID 366; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2106; ORIGINAL_PRECURSOR_SCAN_NO 2104 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2172; ORIGINAL_PRECURSOR_SCAN_NO 2170 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2112 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4436; ORIGINAL_PRECURSOR_SCAN_NO 4434 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4453; ORIGINAL_PRECURSOR_SCAN_NO 4450 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4469 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4469; ORIGINAL_PRECURSOR_SCAN_NO 4466 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4488; ORIGINAL_PRECURSOR_SCAN_NO 4483 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4484
Mercury chloride
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants
Gossypose
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].
Phloretol
Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Optim
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents
8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
zingerone
Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].
Hyanit
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.
Aristolochic_acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Ginsenoside
(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. D000970 - Antineoplastic Agents Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].
Glycerin
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents
Sodium fluoride
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials
Nandrolone decanoate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents
p-chloromercuribenzoic acid
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D013439 - Sulfhydryl Reagents D010575 - Pesticides > D005659 - Fungicides, Industrial > D010663 - Phenylmercury Compounds D004791 - Enzyme Inhibitors > D002729 - Chloromercuribenzoates D004791 - Enzyme Inhibitors > D008626 - Mercuribenzoates
(5S,6S)-6-amino-5-[(1-carboxyethenyl)oxy]cyclohexa-1,3-diene-1-carboxylic acid
DESMOPRESSIN
H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents
N-METHYLFORMAMIDE
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents